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STATISTICAL ESTIMATION OF A CRACK DAMAGE PARAMETER
IN MANUFACTURING PROCESSES*

By ALVIN D. WIGGINS (University of California, Davis)

Abstract. A stochastic model of the production of cracks in certain types of linear
manufacturing processes is constructed. Maximum likelihood is used to estimate a
parameter, representing crack damage, of the resulting probability law.

1. Introduction. The purpose of this paper is to construct a mathematical model
of the production of defects in certain types of manufacturing processes, to propose a
certain parameter as a measure of defect or crack damage, and to present an estimate
of this parameter using sampling data. The specific type of process which we have in
mind is one which can be considered in some sense as temporally sequential in character.
The following are examples of the type of process which can qualify for treatment in
terms of the mathematical model developed herein:

1) extrusion processes;

ii) acetylene or arc-welding processes;

iii) hot- or cold-rolling of steel.
For purpose of concreteness only, we shall develop the mathematical model in terms
of application to welding, keeping in mind that extrusion or rolling of steel could equally
well have been used.

2. Derivation. We shall suppose that a manufacturing process involving welding
is such that it produces a random distribution of cracks of varying lengths within the
weld. It will be helpful if we view this random distribution as a two-stage process. In
the first stage we view only the endpoints of the cracks, more specifically the left-hand
endpoints, as being distributed in some random fashion along the length of the weld.
In the second stage we associate with each left-hand endpoint a crack, the length of
which is a random variable. We now imagine an axis of real numbers, having a fixed
origin, and lying parallel to the weld (assuming that the two edges of the metal to be
joined are straight).

The mathematical abstraction of the problem begins by projecting the left-hand
endpoints of the cracks perpendicularly onto the axis of real numbers. Such points we
shall call E-points for brevity. We next project the lengths of the cracks onto the real
axis in the same fashion. The perpendicular projection of a crack length onto the real
axis results in an interval of real numbers, the left-hand endpoint of which is an E-
point. Such an interval will be called a segment.

Let L denote the total length of weld produced. Consider now the real axis, choose
arbitrarily (subject to a mild restriction to be made later) a set of m positive numbers
b, =1,---,m, satisfying0 < ¢, < --- < t, < L (see Fig. 1), and let the {¢;} remain
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fixed throughout the remainder of the analysis. We now ask the following m questions:
“In how many segments is {; ( = 1, --- , m) contained?”’, where the word ‘‘segment”
has the meaning assigned to it above. Note that, operationally, the choice of a ¢; cor-
responds exactly to making a transverse cut of a weld, of polishing, etching, and in-
specting the face of a specimen for cracks. The question: “In how many segments is
t; contained?”’ is operationally equivalent to the question: “How many cracks appear
in the weld face located at ¢; ?”

Corresponding to the first stage of randomness mentioned above we make

Assumption 1. The locations of all E-points in the interval [0, L) are independent
identically distributed random variables having the uniform distribution on the interval
[0, L):

P{X <z} =F@ =0,2<0,
z/L, 0<z<L,
=1, L<uz.

In order that this assumption be reasonable, we require that the physical parameters
underlying the welding process remain unchanged throughout that portion of the weld
which will be subjected to sampling and statistical analysis. Corresponding to the second
stage of randomness mentioned above we make

Assumption 2. Each crack has a length (“segment”’), and these lengths are inde-
pendent identically distributed random variables having the distribution P{Y < y} =
G(y), where G(y) = Ofory < 0,and G(y) = Lfory >z > 0.

Assumption 3. If (X,, YY), -+, (Xu, Yu) are the beginnings and lengths, re-
spectively, of any number M of cracks, then the random variables X, , Y, , - -+, Xy, Yy
are totally independent. From now on we shall say that a crack beginning at X and
having length Y is detected at the point ¢; if the interval (X, X + Y) contains ¢, .

The quantity z in Assumption 2 requires some explanation. We suppose that the
manufacturer, being duly cognizant of contractual obligations, has taken pains to
remove, or in some way eliminate, as many of the defects of manufacture as possible.
Assumption 2 means that he has been successful in removing all cracks of length greater
than 2, and unsuccessful in removing any cracks of length z or less.
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We proceed now to the calculation of the joint probability law of the random variables
denoting the number of cracks detected at each point ¢; . It was hinted earlier that a
mild restriction be placed on the otherwise arbitrary choice of the set {¢,,72 =1, --- , m}
of sampling points. This restriction consists of the assumption that ¢; — ¢,_; > 2. Under
this assumption it is obvious that no crack can cross more than one of the points ¢; .
Suppose first that we choose an observed value of the random variable X according to
the probability distribution F. Next choose an observed value of the random variable
Y according to the probability distribution G. The observed value z of X (E-point)
will fall in some subinterval, say [t.-; , ;). The observed value y of ¥ (segment), when
added to x, may either cross ¢; or it will cross none of the #’s. For a single performance
of the foregoing experiment let C, denote the event consisting of no observed crossings of
any of the t’s, and C, the event consisting of the crossing of ¢; . The probabilities p, =
P(C,), and p; = P(C;) forz = 1,2, --- , m are computed as follows:

p; =Pt —2< X<t and X+ Y > t.}

ti

- J @60 -2 [ 160 - de - o1

=L'e—2+ p@] =L@, <=1, ,m. 2.1
Since
pr+;m=L
we have

m

pe=1-2p—1=mL"u. (2.2)

Now let K, be a random variable denoting the number of crossings of ¢; (number

of cracks in the 7th face), 7 = 1, - - - , m. The conditional probability of the event K, =

ki, -, K,. =k, , given that altogether M cracks have occurred, is obviously the
multinomial probability
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i=1
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1=1

We now propose, as a measure of crack damage, the use of the parameter

p = (M/L)pc().

Note that p is a dimensionless number, since 3/ /L has the dimension of reciprocal
length and ue(z) has the dimension of length. The parameter p can be thought of as the
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fraction of total weld length containing cracks. Note that this fraction can theoretically
exceed 1, due to the possibility of separate cracks existing side by side.

3. Estimation of p. Rewriting (2.3) in terms of p, we have

]ll' k M-k
- () (-5 2

(ﬁ k,»!)(M — K)!

i=1

and this becomes maximum for

p=p=k/m= > k/m=k. (3.2)
i=1
Thus the maximum likelihood estimate of p is the average number of cracks per face,
detected in m specimen faces, subject to the condition that the specimen faces are
separated by more than z. It is easily shown that 3 = % is an unbiased estimate of p,
with variance

o5 = (p/m)(1 — mp/M).

If the total length of welded seam to be produced is very large, one might consider
a passage to the limit, with 3/ — «©, I, —» o, M /L — \. In this case the multinomial
probability law (2.3) becomes asymptotically the product of m independent identical
Poisson probability laws with parameter p = Aug(2).
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