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LINEAR TIME-INVARIANT TRANSFORMATIONS OF SOME NONSTATIONARY
RANDOM PROCESSES*
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Abstract. We consider the class of nonstationary processes Y(f) which can be
represented as Y (f) = BX(t), where X (f) is wide sense stationary and B is a bounded
self-adjoint operator with a bounded inverse. An equivalent characterization of this
class of processes is given and is used to construct examples of nonstationary processes
belonging to this class. A functional analytic treatment is given for describing the
effects of linear time-invariant transformations.

1. Introduction. Let X(¢), ¢t € I, be a second-order random process. Here the
index set I will be assumed to be (— «, =) or Z, where Z is the set of all integers. We
will denote by L(X) the linear manifold generated by all finite linear combinations
E.-=,"‘ a,X(t), t; € I, a; complex, and by H(X) the Hilbert space obtained by com-
pleting L(X) in the norm defined by || X||* = E |X|?, X € L(X).

The process X(f) is said to be wide sense stationary (w.s.s.) if for arbitrary ¢, s, h € I

E{X(t + WX(s + h)} = E{X()X(s)}.

In this paper we will study the class of nonstationary processes Y (¢) which can be
represented as

Y() = BX(2) (1)

where X (t) is w.s.s. and where B is a bounded self-adjoint operator on H(Y) onto H(Y)
such that B™' exists and is bounded. A process Y (f) belonging to this class of processes
will be said to be a stochastic process with uniformly bounded shift group (SPUBSG).
The representation (1) is clearly not unique for a given process Y (t). We note that a
SPUBSG process is a special case of a deformed stationary process as defined by Mandrekar
[6], in which the deforming operatcr-valued function of [6] is constant-valued, this
constant being the operator B of Eq. (1). Let the shifts U, , b € I, of X(¢) be defined
by U,X(t) = X(¢t + h). It isinteresting to note that Y (¢) of Eq. (1) is w.s.s. iff B commutes
with the shifts of X (). This is proved using the technique of [6, p. 282].

Two problems concerning the class of SPUBSG processes will be considered. First,
it is important to find explicit examples of SPUBSG processes and to show that this

* Received July 21, 1974; revised version received January 5, 1975. The authors are grateful to the
referee for calling reference [6] to their attention and for a number of very useful suggestions on an earlier
version of this paper.

The authors wish to acknowledge the support of the National Science Foundation under Grant
GK-24187, the U. S. Army Research Office under Contract DAHCO-4-69-C0012, and Norges Almen-
vitenskapelige Forskningsrad (Norwegian Research Council).




114 D. TIOSTHEIM AND J. B. THOMAS

class is large enough to contain nonstationary processes occurring in practice. A con-
tribution towards this end is contained in Secs. 2 and 3. The second problem consists
of obtaining a representation of linear time-invariant transformations of SPUBSG
processes in terms of a frequency response function. We do that in Sec. 4.

2. An equivalent characterization of the SPUBSG property. The following equiva-
lent characterization of SPUBSG processes is needed in Sec. 3. The appellation
“SPUBSG” was motivated by Condition (¢) of Theorem 1.

THEOREM 1: The following three conditions are equivalent.

(a) Y () is SPUBSG.

(b) Let m be an arbitrary positive integer and a, , a, , - - - , a,, be arbitrary complex
numbers. Then there exists a constant M > 0 such that for arbitrary ¢, , &, , -+ , t.
and h € I

m 2 m 2
E|XY aY(t:+h)| < ME|Y a.Y(t)|. )
i1=1 i1=1

(¢) There exists a group T, , h € I, of linear bounded operators on H(Y) onto
H(Y) such that Y(t + h) = T, Y (1), t € I, and sup,e; ||Th]| < .

Proof: (a) = (b): Let Y(t) be as in Eq. (1). Then, using the boundedness of B and
B™' and the definition of norm in H(Y), we have that

2

< IBI* IB7'|I* E

2

E

> a: Yt + h) > a:Y(t)
i=1 i=1
from which inequality (2) follows.

) = (¢): For h € I, let T, be defined on the elements Y (¢), t € I, by T',Y(t) =
Y(t + h). Using condition (2) it follows (see Getoor [5, p. 176]) that the operators
T, , h € I, can be extended to a group of linear bounded operators on H(Y) onto H(Y)
with supse; ||Th|| < M.

(¢) = (a): From the existence of the group 7', , » &€ I, it follows [10] (see also [7])
that there exists a self-adjoint operator B with a bounded inverse B~' such that U, =
B'T\B, h € I, is unitary in H(Y). Let X(t) = U,B~'Y(0). Then X(¢) is w.s.s. and
Y(@) = BX(®).

3. Examples and applications of SPUBSG processes. Let Z(t), t € Z, be a white-
noise proccss with B{Z()Z(s)} = 4., fort, s € Z and let

X0 = Xt = 5)20)
where k(s) is complex-valued and such that the sum converges in q.m. Then X,(¢) is
w.s.s. and we have the following lemma.
Lemma 1: Let ¢g(2), t € Z, be complex-valued and such that there exist two positive
constants M, and M, with M, < |g(t)]* < M, for all t € Z. Let Y,(f) be the process
defined by

V() = 3 At — )g)Z(s).

s=—

Then Y,(¢) is SPUBSG.
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Proof: Let H(Z), H(X,) and H(Y,) be the Hilbert spaces spanned by Z(t), X,(¢)
and Y, (t) respectively. Then H(X,) € H(Z) and H(Y,) € H(Z). Let B be the operator
defined by BZ(s) = ¢(s)Z(s). With the assumptions on ¢, B is linear bounded with a
bounded inverse in H(Z). Thus

Y.() = X, Mt —s)BZ(s) = B Y, h(t — 8)Z(s) = BX,(1).
It follows that BH(X,) = H(Y,) and BT'H(Y,) = H(X,). Using the same argument
as when proving (a) = (b) of Theorem 1, it follows that Y,() is SPUBSG.

Let X(¢) = [_." exp (tut) d®(u) be a w.s.s. process. Assume that thc measure F
determined by the spectral process ®(u) is absolutely continuous with respect to Lebesgue
measure. Then dF (u) = k(u) du, where k(u) is the spectral density for X (¢). The following
theorem is a generalization of Lemma 1.

TrarEOREM 2: Let X (f) be w.s.s. with spectral density k(u) and let Y (¢) be defined by

YO = 2 At — 99X
where g is as in Lemma 1 and h(s) is complex-valued and such that the sum converges
in q.m. If there exist two positive constants M; and M, such that M, < k(u) < M,,
u € [—m, 7], then Y (¢) is SPUBSG.
Proof: With the assumptions on the spectral density we have that X (f) is purely
nondeterministic, and it can be represented [2, 3] in the form

x0) = [ exp Guf(enp () a2 = [ exp Gusf(exp () dB.20)  ®)

where |f(exp ())|* = k(u); E |d®z(u)]* = du; E, , w € [—m, 7], is the resolution of
identity associated with the unitary shift operator T: Z(s) — Z(s 4+ 1), and Z(s) =
J_." exp (tus) d®;(u) is a white-noise process such that H(Z) = H(X). From [9. pp,
283-284] it follows that Eq. (3) can be written as X (s) = f(T)Z(s). Using the boundedness
conditions on the spectral density k(u) it is not difficult to show that f(T') is linear
bounded with a bounded inverse f*(T) such that ||f(T)|| < M, and ||f ' (D)|| < 1/M,.
Thus

Y() = 3 At~ e@IDZE) = JDY.0

where

Vi) = 2 Mt = 99(6)26)
is SPUBSG according to Lemma 1. Now H(Y) C H(Z) and H(Y,) € H(Z) and, again,
using the same argument as in the proof of Theorem 1, we reach the conclusion that
Y (t) is SPUBSG.

The theorem can be interpreted as follows. If we pass a w.s.s. process X (t), t € Z,
having a spectral density function bounded from above and below, through the linear
time-varying filter with impulse response function h(t — s)g(s), then the output process
is SPUBSG. The filter is realizable iff A(s) = 0 for s < 0.

We indicate a possible application to time-series modeling. Let Y (), t € Z, be the
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w.s.s. time series (mixed autoregressive—moving average model [1]) represented by the
difference equation

P q
Y(t) = 2 aY(t—s) =Z(t) — 2 bZ(t—s) @
s=1 a=1
where Z(t) is a w.s.s. white noise process generating the time series Y (£). The coefficients
a,,8, -+ ,a,and b, , by, -+, b, are complex and the a, , a,, --- , a, are such that
the equation

ow) =1— 2 au =0
a=1

has all its roots outside the unit circle. Then Y (¢) can be represented as [1]

t
Y(O) = X h(t — 920 5)
where h(s) is determined by the coefficients in Eq. (4).

Nonstationary time-series models are usually obtained [1] from Eq. (4) by relaxing
the condition on the coefficients a; , 7 = 1,2, --- , p. We will consider the time series
obtained by relaxing, instead, the conditions on the generating process Z(s). We note
in this connection that, with the notation established in Lemma 1 and Theorem 2,

t 2 t 2
E | ht—9)Zs)| < o iff E|Y kit — 8)g@E)XE6)| < .
From Lemma 1, we can allow the generating process to be nonstationary white
noise; that is, Z(s) can be replaced by ¢(s)Z(s) in Eq. (4). The resulting process Y (¢)
is given by

t

Y(t) = 2 h(t — $)g(8)Z(s)

where A(s) is as in Eq. (5) and Y (¢) is SPUBSG according to Lemma 1. From Theorem 2
we can even allow the generating process to be correlated; that is, Z(s) can be replaced
in Eq. (4) by ¢(s)X(s). The corresponding time series Y (¢) is given by

YO) = X At — 9g(s)X(s)

1=—c

and is SPUBSG according to Theorem 2.

4. Linear time-invariant filters for SPUBSG processes. We treat the continuous-
time case only. The discrete-time results are similar. Let Y (f) = BX(¢) be SPUBSG and
continuous in q.m. Denote by Ax the self-adjoint operator defined via Stone’s theorem

[9] by
X () = exp ({Ax)X(0)

and define A, = BAyB™'. Let {E,*} be the resolution of identity associated with Ay .
Then

o

A,,=f wdE.”
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where for a Borel set A, EY(A) = BE*(A)B™'. Then, in the terminology of [4, p. 2104],
Ay is a scalar spectral operator. Let f be a complex-valued Borel-measurable function.
We define f(4y) by f(Ay) = Bf(Ax)B~'. Then

Y(#) = exp (i441)Y(0) (6)

where we note that the operator Ay , in contradistinction to the operator B of Eq. (1),
is uniquely determined by Y (¢). From Eq. (6) we obtain the spectral representation

@

Y() = f  exp (ut) dy )

with ®,(u) = E,"Y(0). This representation makes it possible to represent, linear time-
invariant transformations by a frequency response function. Let Y,(f) be the SPUBSG
input process to a linear time-invariant filter having frequency response function f(u),
and denote by Y,(¢) the output process. Then

Vi) = [ 1) exp Gub) dey,0) = 1(4r) Y10 )

in analogy with the w.s.s. case.

A given class of nonstationary processes need not be invariant under linear time-
invariant transformations. See, for example, the classes of processes considered by
Priestley [8]. The class of SPUBSG processes, however, possesses this invariance property.

TuEOREM 3: The process Y,(t) of Eq. (7) is SPUBSG. Furthermore, if Y,(f) =
BX,(t), then Y,(t) = BX,(t), where X,(t) is the w.s.s. process given by

X5(t) = f(Ax)X.(2).
Also the shift operators for Y,(f) are the same as the shift operators for Y,(t).

The proof is elementary and is left to the reader.
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