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Abstract. We consider the class of nonstationary processes Y(t) which can be
represented as Y(f) = BX(t), where X (t) is wide sense stationary and B is a bounded
self-adjoint operator with a bounded inverse. An equivalent characterization of this
class of processes is given and is used to construct examples of nonstationary processes
belonging to this class. A functional analytic treatment is given for describing the
effects of linear time-invariant transformations.

1. Introduction. Let X{t), t El I, be a second-order random process. Here the
index set I will be assumed to be (— ) or Z, where Z is the set of all integers. We
will denote by L(X) the linear manifold generated by all finite linear combinations

diX(ti), ti £ I, a, complex, and by H(X) the Hilbert space obtained by com-
pleting L(X) in the norm defined by ||X||2 = E |X|2, X £ L(X).

The process X(t) is said to be wide sense stationary (w.s.s.) if for arbitrary t, s, h £ /

E{X(t + h)X(s + h)} = £{X(0X(s)}.
In this paper we will study the class of nonstationary processes Y(<) which can be

represented as

Y(t) = BX(t) (1)

where X(t) is w.s.s. and where B is a bounded self-adjoint operator on IKY) onto H{Y)
such that /r 1 exists and is bounded. A process Y{t) belonging to this class of processes
will be said to be a stochastic process with uniformly bounded shift group (SPUBSG).
The representation (1) is clearly not unique for a given process Y(t). We note that a
SPUBSG process is a special case of a deformed stationary process as defined by Mandrekar
[6], in which the deforming operator-valued function of [6] is constant-valued, this
constant being the operator B of Eq. (1). Let the shifts Uh , h £ I, of X(t) be defined
by UhX(t) = X(t + h). It is interesting to note that Y(t) of Eq. (1) is w.s.s. iff B commutes
with the shifts of X(t). This is proved using the technique of [6, p. 282],

Two problems concerning the class of SPUBSG processes will be considered. First,
it is important to find explicit examples of SPUBSG processes and to show that this
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class is large enough to contain nonstationary processes occurring in practice. A con-
tribution towards this end is contained in Sees. 2 and 3. The second problem consists
of obtaining a representation of linear time-invariant transformations of SPUBSG
processes in terms of a frequency response function. We do that in Sec. 4.

2. An equivalent characterization of the SPUBSG property. The following equiva-
lent characterization of SPUBSG processes is needed in Sec. 3. The appellation
"SPUBSG" was motivated by Condition (c) of Theorem 1.

Theorem 1: The following three conditions are equivalent.
(a) 7(0 is SPUBSG.
(b) Let m be an arbitrary positive integer and a, , a2 , ■ • ■ , am be arbitrary complex

numbers. Then there exists a constant M > 0 such that for arbitrary h , t2 , ■ • • , tm
and h £ I

E Ea,7(l4 + h) < ME (2)

(c) There exists a group Th , h £ I, of linear bounded operators on H(Y) onto
H(Y) such that Y(i + h) = ThY{t), t £ I, and supA6/ ||7\|| < °°.

Prooj: (a) =* (b): Let Y(t) be as in Eq. (1). Then, using the boundedness of B and
B1 and the definition of norm in H(Y), we have that

E E a, Y{U + h) < ||£||2 \\B-l\\2E E«,TW
from which inequality (2) follows.

(6) =!> (c): For h £ I, let Th be defined on the elements Y(t), t £ I, by ThY(t) =
Y(t + h). Using condition (2) it follows (see Getoor [5, p. 176]) that the operators
Th, h £ I, can be extended to a group of linear bounded operators on H{Y) onto H(Y)
with supft6; ||7\|| < M.

(c) => (a): From the existence of the group Th , h £ /, it follows [10] (see also [7])
that there exists a self-adjoint operator B with a bounded inverse Bsuch that Uh =
B~lThB, h £ I, is unitary in H{Y). Let X(t) = U.B-'YiO). Then X(t) is w.s.s. and
Y(t) = BX(t).

3. Examples and applications of SPUBSG processes. Let Z(t), t £ Z, be a white-
noise proccss with E{Z(t,)Z(s)) = 5,, for t, s £ Z and let

x1(t) = x; h(t - s)z(s)
s = — oo

where h(s) is complex-valued and such that the sum converges in q.m. Then Xt(t) is
w.s.s. and we have the following lemma.

Lemma 1: Let g(t), t £ Z, be complex-valued and such that there exist two positive
constants Mi and M2 with Mx < |(/(0|2 < M2 for all I £ Z. Let Y,(t) be the process
defined by

Yt(t) = E h(t - s)g(s)Z(s).
8 = — co

Then 7,(0 is SPUBSG.
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Proof: Let H(Z), H(Xi) and H(YX) be the Hilbert spaces spanned by Z(t), Xi(t)
and Yj(t) respectively. Then H(Xi) C H(Z) and H(Yi) C H(Z). Let B be the operator
defined by BZ(s) — g(s)Z(s). With the assumptions on g, B is linear bounded with a
bounded inverse in H(Z). Thus

Fj(0 = ± h(t- s)BZ(s) = B X) h(t - s)Z(s) = BX,(t).

It follows that BH(Xt) = H(Yi) and 7i 1 //(1'i) = 11 (X,). Using the same argument
as when proving (a) => (b) of Theorem 1, it follows that 7,(0 is SPUBSG.

Let X(t) = f-rT exp (iut) d$(u) be a w.s.s. process. Assume that the measure F
determined by the spectral process i>(u) is absolutely continuous with respect to Lebesgue
measure. Then dF(u) = k(u) du, where k(u) is the spectral density for X(t). The following
theorem is a generalization of Lemma 1.

Theorem 2: Let X(t) be w.s.s. with spectral density k(u) and let Y(t) be defined by

Y(t) = it hit- s)g(s)X(s)
a = — oo

where g is as in Lemma 1 and h(s) is complex-valued and such that the sum converges
in q.m. If there exist two positive constants M3 and il/4 such that M3 < k(u) < M4 ,
uE [-*,*■], then Y(t) is SPUBSG.

Prooj: With the assumptions on the spectral density we have that X{i) is purely
nondeterministic, and it can be represented [2, 3] in the form

X(s) = J exp (ws)/(exp (m)) = J exp (tMs)/(exp (iu)) dEu Z(0) (3)

where |/(exp (iu))|2 = k(u); E \d<bz(u)\2 = du\ Eu , u £ [■—*", v], is the resolution of
identity associated with the unitary shift operator T: Z(s) —* Z(s + 1), and Z(s) =
J_tt exp (ius) di>z(u) is a white-noise process such that II(Z) = H(X). From [9. pp,
283-284] it follows that Eq. (3) can be written as X (s) — j(T)Z(s). Using the boundedness
conditions on the spectral density k(u) it is not difficult to show that j(T) is linear
bounded with a bounded inverse j~l(T) such that ||/(T)|| < and ||/_1(7,)|| < 1 /M3 .
Thus

7(0 = it h(t - s)g(s)KT)Z(s) = j(T)Y,(t)
a = — oo

where

7,(0 = it h(t - s)g(s)Z(s)
« = — oo

is SPUBSG according to Lemma 1. Now H(Y) C H(Z) and H(Yi) C H(Z) and, again,
using the same argument as in the proof of Theorem 1, we reach the conclusion that
7(0 is SPUBSG.

The theorem can be interpreted as follows. If we pass a w.s.s. process X(t), t £ Z,
having a spectral density function bounded from above and below, through the linear
time-varying filter with impulse response function h(t — s)g(s), then the output process
is SPUBSG. The filter is realizable iff h(s) = 0 for s < 0.

We indicate a possible application to time-series modeling. Let 7(0, t £ Z, be the
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w.s.s. time series (mixed autoregressive—moving average model [1]) represented by the
difference equation

7(0 - i: a,Y(t ~ S) = Z{t) - E b.Z{t - s) (4)
8=1 8=1

where Z(t) is a w.s.s. white noise process generating the time series Y(t). The coefficients
di , a2 , ■ • • , av and by , b2 , ■ ■ ■ , bQ are complex and the a, , a2 , ■ ■ ■ , a„ are such that
the equation

V

<p{u) = 1 — E a'u' = 0
8=1

has all its roots outside the unit circle. Then 7(0 can be represented as [1]

7(0 = £ h(t - s)Z(8) (5)

where h(s) is determined by the coefficients in Eq. (4).
Nonstationary time-series models are usually obtained [1] from Eq. (4) by relaxing

the condition on the coefficients a, , i — 1, 2, • ■ • , p. We will consider the time series
obtained by relaxing, instead, the conditions on the generating process Z{s). We note
in this connection that, with the notation established in Lemma 1 and Theorem 2,

E E h{t - s)Z{s)
2

< CO iff E Z) h(t - s)g(s)X(s)
2

< CO .

From Lemma 1, we can allow the generating process to be nonstationary white
noise; that is, Z(s) can be replaced by g(s)Z(s) in Eq. (4). The resulting process 7(0
is given by

7(0 = Z Kt - s)g(s)Z(s)

where h(s) is as in Eq. (5) and Y(0 is SPUBSG according to Lemma 1. From Theorem 2
we can even allow the generating process to be correlated; that is, Z(s) can be replaced
in Eq. (4) by g(s)X(s). The corresponding time series 7(0 is given by

7(0 = E h(t - s)g(s)X(s)
8 = — CO

and is SPUBSG according to Theorem 2.

4. Linear time-invariant filters for SPUBSG processes. We treat the continuous-
time case only. The discrete-time results are similar. Let 7(0 = BX(t) be SPUBSG and
continuous in q.m. Denote by Ax the self-adjoint operator defined via Stone's theorem
[9] by

X (0 = exp (iAxt)X(0)

and define Ay = BAXB-1. Let {Euxj be the resolution of identity associated with Ax .
Then

= J udEj
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where for a Borel set A, E1 (A) = BEX(A)B~1. Then, in the terminology of [4, p. 2104],
Ay is a scalar spectral operator. Let / be a complex-valued Borel-measurable function.
We define f(Ar) by f(Ar) = Bj(Ax)B~1. Then

Y(t) = exp {iA Yi) Y(0) (6)

where we note that the operator Av , in contradistinction to the operator B of Eq. (1),
is uniquely determined by Y(t). From Eq. (6) we obtain the spectral representation

Y(t) = J exp (iui) d$r(w)

with $k(m) = EjY{0). This representation makes it possible to represent linear time-
invariant transformations by a frequency response function. Let F, (t) be the SPUBSG
input process to a linear time-invariant filter having frequency response function /(it),
and denote by Y2(t) the output process. Then

Y2(t) = J f(u) exp (iut) d<t>Yl(u) = KAyJY^t) (7)

in analogy with the w.s.s. case.
A given class of nonstationary processes need not be invariant under linear time-

invariant transformations. See, for example, the classes of processes considered by
Priestley [8], The class of SPUBSG processes, however, possesses this in variance property.

Theorem 3: The process Y2(t) of Eq. (7) is SPUBSG. Furthermore, if Fi(<) =
BXi(t), then F2(£) = BX2(t), where X2(t) is the w.s.s. process given by

X2(<) = /(AxJXUt).
Also the shift operators for Y2(t) are the same as the shift operators for Y,(t).

The proof is elementary and is left to the reader.
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