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Abstract. For a class of vector renewal equations arising in the theory of spatially
nonuniform chemical reaction processes, stability conditions are given in terms of the
physicochemical operators D and K. In particular, we provide conditions for the stability
of an initially uniform, multicomponent film bounding a planar catalytic surface, and
for the asymptotic stability of a reaction system composed of a population of catalyst
particles. We obtain such results by identifying a sup norm which is naturally induced
from the factors that symmetrize D and/or K. Further, we exhibit conditions under
which a special class of vector renewal equations has positive solutions.

Notation.

x

X = x2 X+ = (Xi , x2 , ■ ■ •)•

(Vi , v2 , • • •), V, v+ =
Vi

V,+

diag (V) = diag (vu , v22 , • • •)•
$ = {V: v{j > 0, i ^ j}, set of input-output matrices.
$o = {V £ <l>: va = Oj, set of input-output matrices whose column sums vanish.
P = {V: Vu > 0}, set of positive matrices.
M = jV £ P: Va = 1}, set of Markoff matrices.
Rn = space of n X 1 vectors.
L(Rn) = space of n X n matrices.
C[0, °°] = space of continuous functions on [0, »], viz. b £ C[0, °°] iff b £ C[0, °°),

lim,_„ b(t) = b( oo) < co.

1. Introduction. The theory of functional differential equations has been used to
provide insight into the physics of mixing processes by Driver [5] and by Johns and
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Reed f 10]. Further, certain problems arising in investigations of the mixing—diffusion—
chemical reaction sequence in particulate suspensions can be formulated as problems
in integral equations which reflect either the role of spatial gradients, at the local or
single particle level, or the role of finite (non-infinite) renewal probabilities, at the global
or collective particle level. Each factor is characteristic of imperfect contacting and
each must be understood if the structure of systems departing from the idealization
of perfect contacting, i.e. spatial uniformity, is to be understood.

In particular, the chemical response of a thin, initially uniform, layer bounding a
planar catalytic surface is given by

y(0 = y(0) + [' foil'2 Drjr'Ky« - r) dr (1)
•'o

wherein f0(x) = 2 ? exp ( — an2x), a„ = \v(2n — 1) and exp (—a,2l~2Dr) has its
usual meaning (cf. [1]), and where I, D, K are the physicochemical parameters expressed
on the length scale of (anT)~\ The vector y(t) £ RiN'l) gives the limiting composition
of the film-like region on approaching the catalytic plane, z = 0; the distribution
throughout the film may be found from

x(z, 0 = y(0) + [' /(r2 Dr, z)rlKy(t - r) dr (la)
Jo

where j(x, z) = 2 y.„.i" cos (a„z) exp ( — a2x) and x(0, t) = y(t).
If the thin film is replaced by an initially uniform reservoir of infinite extent, Eq. (1)

becomes (on letting I —> co)

y(0 = y(0) + [' -U D-/2Ky« - r) dr
Jo (ttt) (2)

which is comparativel}' well understood (cf. [9]) and which provides the only basis
extant for investigating the chemical dynamics of a collection of catalyst particles under
conditions of imperfect contacting. In particular, if mixing is random, i.e. if particles
are indistinguishable for renewal purposes, the batchwise performance of slurry systems
in which hydrogenations, polymerizations, etc. take place proceeds according to

which follows from

A
dt

y(0 = y(0) + f (A + B(r))y(f - r) dr (3)
^0

y = I p exp (—pr)KT( — T>~l'2TLy/r)y{t — r) dr
Jo

given in [4], where p > 0, T(x) = exp (x2) erfc (x),
A = K(I — p-1/2 D"1/2K)-' = — B(0)

B(t) = -exp (-pr)K(I - (jo"I/2 D'^K)2)"1
X (T(-D"1/2KVr) + T((pt)1/2)p~1/2 D'1/2K)

and where if re (A,) < 0, A, an eigenvalue of D~1/2K,

B(<) = - J p exp (-pt)KT(-D~1/2KVt) dr.

The vector y represents the chemical state of the suspending medium.
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The scalar p characterizes transport, via macroscopic fluctuations, from the suspend-
ing medium to the neighborhood of the particles whereas the matrices D and K char-
acterize transport, via molecular diffusion, in the boundary layers bordering the active
surface and the chemical processes taking place thereon, respectively. Here physico-
chemical coupling in multicomponent systems is of interest; thus we presume that the
chemical networks are representible by linear chemical rate laws and investigate problems
originating in the vector character of Eqs. (1), (2), and (3).

In all of the foregoing, N (> 3) component systems are understood and y, a n-vector
where n may be r, N — 1, N, reflects a displacement from either a local or a global
rest state. In each section of the paper there is a preferred state space which simplifies
the investigation carried out therein. Thus, we introduce the spaces R", n = r, N — 1,
N but, because there is little physical content in the selection of R", we do not provide
distinctive symbols for the parameters of the problems formulated therein, preferring
to repeat y, D, and K. At the beginning of each section, however, we give the conditions
on D and K used thereinafter insofar as they deviate from the minimum conditions
of physical admissibility. These latter conditions once established in a preferred or
natural state space carry over to all others. In particular, the diffusive and chemical
processes, individually, will be presumed physically well behaved; thus D and K will
be presumed real and each will have a complete set of eigenvectors, the eigenvalues
of D being real and positive, the eigenvalues of K being real and negative. Alternatively,
— D and K being symmetrizable as well as stable, we can assert that the sets and
8a- where

and
S-D = JG+ = G > 0: G(-D) = (G(-D))+ < 0}

Qk = )G+ = G > 0: GK = (GK)+ < 0)

are not empty. In systems which are physically and chemically simple, it is evident
from above that A = D~1/2Kand A = K(I — p~1/2D~1/2K ) 1 are important determinants
of system evolution on the local and the global scale, respectively. Moreover, for iV = 3
it is easy to exhibit physically admissible D and K such that either D 1 2K or K(I —
p~i/2D~1/2K)-1 have nonreal eigenvalues; further, even if the eigenvalues of the product
operators are real, under certain conditions one or more can be positive, which is sufficient
for local and/or global instability.

For a linear chemical network arising either from a system of unimolecular steps
or from a linearization of a system of bimolecular steps or other less common mass
action kinetics, the formal solution of each of the above equations has been exhibited
elsewhere (that of Eq. (la) in [8], that of Eq. (2) in [9], and that of Eq. (3) in [4]). The
predictions of the theory that have been reported verify that diffusion reaction inter-
ference in multicomponent systems is often the source of otherwise unexplained selec-
tivity in certain complex chemical networks. In general, the response of a system depends
on the latent roots of certain f-matrices arising in the construction of the solution of
Eqs. (la), (2), and (3); in particular, it is necessary to investigate the regions of the
complex plane in which the latent roots of:

Eq. (la): fr'D,/2 cos (fttT1/2) - sin (far172)/"1 K
Eq. (2): fl - D1/2K
Eq. (3): (f - P)m ~ D-1/2K) - pK
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lie for parametric values of D and K if the variety in the pattern of system response
is to be properly classified. Although we readily express assymptotic stability conditions
in the f < :

Eq. (la): re(f,2) > 0
Eq. (2): re(f.) < 0 or re(f,2) < 0 if re(f,) > 0
Eq. (3): re(f,) < 0 or re(f,2) < p if re(f,) > 0,

the dependence of the on the matrix parameters D and K is implicit. Thus, the formal
solutions of Eqs. (la), (2), and (3) are not of much use in classifying the consequences
of physicochemical interactions and investigations of the determinantal equations for
the f, must be supplemented, possibly by direct investigations of the renewal equations
using tools ordinarily reserved for nonlinear equations.

We give the conclusions of such a study herein where the basis of much of our work
is the comparison theorem of Nohel [12]. However, inasmuch as Eqs. (la), (2), and
(3) are linear integral equations, we require only the following special result, which
can be proved directly by construction:

Lemma A. Let a(t) > 0 and b(t) > 0, a, b £ £[0, T] T > 0; then if

x(t) < b(t) + f a(t — t)x(t) dr
Jo

we have that x{t) < x(t) where

x{t) = 6(£) + f a(t — t)x(t) dr.
Jo

Moreover, if a(r) dr < 1 and b £ C[0, °° ] we have that 0 £ C[x, 00 ] where

x(co) = 6(00)^1 — J a(r) drj ■

In See. 2 we investigate Eq. (1) and conclude that if I < l0 = Z)mi„/||KJ| then y(t)
is bounded.

In Sec. 3 we investigate Eq. (3) and give sufficient conditions for its asymptotic
stability; we also show that under such conditions the solution of Eq. (3) can be approx-
imated by the solution of

dyjdt = K(I - p-1/2D-1/2K)_1y0 , y„(0) = y(0).

In Sec. 4 we show that under the condition g_n f\ gK ^ 0, which is realized for
thermodynamically ideal systems, e.g. a network of chemical isomers, the region of
asymptotic stability of Eq. (3), found in Sec. 3, can be enlarged using a technique
developed by Duffin [6].

In Sec. 5 we prove that D 1/2K £ $0 is necessary and sufficient for

T( —D~1/2Kv/1) £ M.

Further we identify a set of functions S such that if / £ S and A £ $0 then /(A) £ M;
the extension, if / £ S and A £ $ then /(A) £ P, is immediate. Such theorems place
important conditions on physically admissible products, D_l iK, and have special
significance for systems operating in the neighborhood of the lines x( = 0, i — 1, • • ■ , N,
which bound the state space.
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2. On the boundedness of the solution of Eq. (1). We introduce M„(<) where

M„(<) = I + [' ur2 Dr)r'KM„(( - r) dr;
Jo

thus y(t) = Mo(t)y(0), where y(t) £ Rf!*~v, and y is bounded iff M„ is bounded. We
introduce a norm on L(RiN~1)) and exhibit sufficient conditions for the existence of
m £ C[0, 00] such that m(t) > ||Mn(<)||, t £ [0, 00).

We limit ourselves to norms on L(i2<JV_1>) induced from inner products on i?(,v_1), viz.

| |V| | = sup | [Vx| |
i iii i-i

where ||x|| = (x, Gx)1/2 and G = G+ > 0, G £ L(RN~1). It follows that

||V|| = max {VVi : det (F,I - VV*) = 0}

where V* is defined via (Vx, Gy) = (x, GV*y) (cf. Shilov [13]), and hence V* = G_1V+G.
We let G = Gfl £ g_D and find that ||/0(r2Di)|| = fo(,l~2Dmint) where Dmin =

min {Di : det (DJ — D) = 0} = jjD_I||_1 inasmuch as Gnj0(r2Dt) = (GDf0(r2Dt)) +
implies/0*(r"DO = /0(r2D<) and therefore, ||/0(r2Di)|| = max {|/0(r2ZM)|}. It follows,
therefore, on using the product and integral inequalities for norms of operators V £ [0, t]
(cf. Bellman [1]), that

||Mo«)|| < 1 + f to(r2 DmiD(t - r))rx I |K11 | |M0(r) 11 dr;
Jo

thus we find from Lemma A that

l|M„(0 ||< m(t)
where

m{t) = 1 + [' f0(r2 Dmin(t - r))r1 | |K11 m(r) dr

and where, inasmuch as > 0, m{t) is a positive strictly increasing function.
We conclude that, for all I > 0, m(t), and therefore M0(<), is bounded on each finite
interval [0, T), T > 0. Further,

lim m{t) < «> iff f/0(r2Z)minr) drl"■ ||K|| (= I||K||/r2 HD"'!!"1) < 1;
t —»co J 0

also if I ||D-111 ||K|| < 1 then lim,^„ m(t) = 1/(1 — I ||D_1|| ||K||) = m(°o). Thus, if
l/l0 < 1, where l0 = (||D-1|| ||K||)-1, then ||Mo(0l| < m(i) < m(°=) < co for t £ [0, ®)
and y is bounded. Nowr x(z, t) = M (z, t)y(0), where

M(z, 0=1+ f f(i'2 Dr, 2)Z-'KM0(< - r) dr
Jo

and, therefore,

I|M(«, Oil < 1 + f loir2 A„inr)r' I|K11 m(t - r) dr = m(t)
«'o

inasmuch as

I l/(r2Dr, 2)|| < ur2Dminr).
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Thus, the condition l/l0 < 1 is sufficient for the boundedness of x, and hence for each
admissible pair of operators D and K, we can compute a film thickness interval [0, i„]
on which each particle of a suspension is physicochemicallv stable.

3. Asymptotic stability of Eq. (3). We use the reduced state variable formulation
of Eq. (3) in which y G Rr, cf. [4], Further, we presume that, in addition to the restrictions
on D and K set forth in the introduction, A = D-1 "K and A = K(I — p~1/2D_I JK)_1
have complete sets of eigenvectors and real, strictly negative, eigenvalues A, and
respectively. In particular, A and A are symmetrizable as well as stable and we let
9A = jG = G+ > 0:GA = (GA)+ < 0} and <?IA = {G = G+ > 0: GA = (GA)+ < 0).

We observe that Lemma A cannot be used directly inasmuch as B(<) G ?[0, °°]
but A (£ £[0, oo ]. Thus, we reexpress Eq. (3) in the following way:

y(t) = M«)y(0)

where

M(0 = exp (At) + ^ ^B(r) + ^ A exp (A(r — r0))B(r0) — r) dr (4)

and where /0' A exp (A(t — r))B(r) ch G ?[0, 0°]. We investigate the boundedness
of M using the method of Sec. 2.

On letting jy,j be the set of right eigenvectors of A and the sets jy,} and {z,j be
biorthogonal, i.e. (z, , y,) = 5,, , we find that A* = A, where A* is defined via (x, G^ Ay)
= (A*x, G^y) and GA = ^, = ir z,z,+ G , viz. A is selfadjoint in the inner product
( , Ga). Thus, we place the following norm on L(R')\

| |V| | = sup 11 Vx j |i iii i -i

where ||x|| = (x, GAx)1/2. The adjoints of V in the inner products ( , G.4) and ( , ) are
related via V* = G^'V^G,, .

It follows that 11A|| = max {|^i|} and that

11/(A)11 = max {|/(^4,)l}
and thus we find that

||M(<)|| < exp ( — at)

+ £ (||B(t)11 + £ 11A11 exp (—a(r - r„)) ||B(r„)|| dr0) ||M« - r)|| dr

where a = min = 11A_1||_1.
Now ||B(<)|| turns out to be difficult to estimate, but if we can exhibit a function

b(t), for which b(t) > j|B(<)11, t G [0, a3), then it follows that

||M(<)|| < exp {—at) + ^ (b(T) + ^ |jA|| exp (- a(r — t0))£>(to) dT„J ||M(< - r)\\dr

and we can conclude that

l|M«)|| < m(t)
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where

m(t) = exp (—at) + (b(T) + J ||A|| exp (—a(r — r0))6(r0) d,T^jm(t — r) dr. (5)

Further, if

lim [ (b(r) + f [ ||A|| exp ( —a(r — r„))6(r0) dr0) dr < 1
(-»<» ^0 \ J 0 J 0 '

or, what is equivalent, if

-(1+ 11A11 11 A-111) f b(r)dT< 1,
Jo

we find that

lim m(t) = lim —~—— = 0
<-.» 1 — ff

and we conclude that

lim M(i) = 0.
<—♦00

We observe that M0(i) = exp (At) is the zeroth Picard iterate of Eq. (4); it follows
that

||M(0 — M0(<)|| < m(t) — m0(t)

where m0(t) = exp (at) is the zeroth Picard iterate of Eq. (5). Further, if g < 1 then
m(t) — m0(t) < g/( 1 — g). Estimates of ||M(<) — M0(<)|| are important insofar as
M0 permits a simple characterization of the roles of p, D and K which leads to the
identification of chemically and physically controlled regions of operation.

We now exhibit a function b(t) which majorizes ||B(<)|| and in so doing transforms
the inequality g < 1 into a concrete condition on p, D~1/2 and K sufficient for the
asymptotic stability of Eq. (3). Using

(t) = — p exp (—pr)KT( — Ay/r) drB

we find

||B(<)11 < f'pexp(-pr) ||K|| ||r(-AVr)|| dr;

however, ||T( — A\/0|| is difficult to estimate inasmuch as || || derives from Gx G 9a ,
not from GA G gA , and, in general, gA H gA = 0. We let SAA = sup (x, G^x)/(x, GAx),
where GA G 8a and SAA can be evaluated via

S/ = sup(x, o x,=i (x, Gax) = sup,,.,,.! (y, GA"1/2G^GA"1/2y)

= max {a, : det (a,I - GA'1/2G^GA-,/2) = 0},

and find that

(x, G,x) < S/(x, Gax).
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Wc conclude, therefore, that

||T(-AV0II = sup(x.G„x) = 1 (T(-AV0x, GAT(-\Vt)x)w2
< (SaASaa)W2 sup(IioAX).1 (T(-AVt)x, GaT(-AV0x)'/2.

Now T( — Av70 is selfadjoint in the inner product ( , GA); it follows, therefore, that

sup(I,GA»>-i (T(-AVt)x, GAT(-Wt)x)W2 = max {|T(-A,V0I1 = T(- An»V0 < 1

where Amax = max (A,), and thus that

nn-Avoii < (s,asaa) i/2n-Am».vo.
We define 6(0 via

6(0 = p exp (—pr) | |K11 (SAAS/)W2T(-AmWr) dr

= v 11k11 (s/sAy/2 (r(-Am„vo + ^T(Vpi)),

where evidently b(t) > ||B(<)||, and find that the asymptotic stability condition, g < 1,
becomes

„ - a +1ia11 iiA-'Nxs/s/y iikii 2^'-(u::^))- <L
This inequality defines a range of p values over which suspension systems are asymp-

totically stable, i.e. lim,^„ M(<) = 0, for admissible operators D, K under the further
condition that A and A be svmmetrizable as well as stable.

We can exhibit a second function b(t) and get a second g which is less sharp but
more simple. In particular,

T(-AmaxV<) < 1;

therefore we can define b(l) via

b2(t) = f p exp (-pr) 11K11 (SXASAA)'/2 drU

= ||K[[ (Si ),/2 exp (-pO

where evidently b2(t) > b(t) > ||B(0||- The corresponding g is

g2 = (1 + 11A11 HA-'IIXVS/)1'2 ||K||i-

If G G S-b n gK ^ 0, we can calculate p0 such that for p > p0 lim,^„ M(<) = 0.
Now G G gyl and GD1/2, — GK £ gA ; therefore if

D 1/2
G^ = G, GA = GD 2 then S/SA = ' max

D 1/2
m i n

whereas if

= G, Ga = -GK then S/SAA = ^ ;
max

t It is not necessary that A be symmetrizable; A normalizable is sufficient.
tt If A is normalizable and stable, bi(l) is the best bound of !!B(()|| that can be produced in a

general analysis.
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further because G £ g_D ^ Qk
is -i   n~1/2 T) ~1/2 I K D

lA-'H 11A11 < T> < max
m i n [' -'-'max v^raax ^min

1/2

and

|K|| = .
It follows that

I k _1 — Ti~ '/2 n _1/2\ i
g2 < l + _ p_1/2 -:min_1/2j(^A^/)1/2 f (6).

1
K^-1 - p~1/2 Dm^~1/2r ■■ V

The right-hand side of (6) is less than 1 for all p > p0 where p01/2, the largest positive
zero of

-Kmi~V + Dm„~uV - (S/S/)1/2(l + §^)z
^ ^max'

+ (V&.A)1/2ff»i»(A.«-I/2 + A.,.-172),

is bounded above by piU2,

Vl = -KmUS/S/y/2(l + max

Thus for all p > Pi we find that M(<) —» 0.

4. Asymptotic stability of Eq. (3) under the condition g_„ gK ^ 0. The stability
condition p > p0 of the foregoing section can be sharpened in the special case of thermo-
dynamically ideal solutions. Such a limitation is physically realizable and provides
physicochemical parameters, D and K, for which the films bounding the particles are
well behaved and for which suspensions of well-behaved particles should themselves
be well behaved. The ideal solutions belong to a larger class of systems, investigated
hereinafter, for which Hgj ^0 and for which the question of the location of the
latent roots of the f-matrix, f(f), may be addressed directly. Thus we let G £ g_D H 8«
and investigate the latent roots of f(f)K-1 = (f2 — p)f(fKT1 — D~1/2) — pi, using
a generalization of a method of Duffin [6] which gives information about the latent
roots of a f-matrix ; U, V, • • •) whenever certain information about its scalar counter-
part g(£; u, v, ■ ■ •) is available.

In what follows we must allow for im(f<) 5^ 0; thus we let £ C, x, £ be a
latent root and a corresponding latent vector of f(f)K-1, where (x; , Gx,) = 1. Thus
f(f,)K_1Xi = 0 so that

(-f(fi)K-,x< , Gx,) = (r.2 - p)ti(ti(~K-x, , Gx,) + (D-,/2x, , Gx,)) + p = 0

and hence f, £ VJZ(x) where

Z(x) = {2: (z2 - p)z(z(—K"'x, Gx) + (D~1/2x, Gx)) + p = 0, (x, Gx) = 1}.

Eq. (3) is asymptotically stable iff re(f;) < 0 or re(f,2) < j> if re(f.) > 0; thus we seek
conditions under which re(z2) < p whenever re(z) > 0 and z £ UZ(x).

Because G £ C\ gK , we conclude, Vx £ Cr, that (K~'x, Gx) and (D~I/2x, Gx)
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are real and further, if (x, Gx) = 1, that

0 < -AW' < (-K-'x, Gx) < -K^1

and
0 < D^W2 < (D~I/2x, Gx) < A„m"'/2

where Kmia = min {A,}, etc. We let

a = z(-K"1 x,Gx)1/2,

a = p( — K'x, Gx) > 0,

0 = (-K-'x, Gx)_I/2(D_I/2x, Gx) > 0,

where, for (x, Gx) = 1, a £ [ami„ , fw], 0 £ [&»!„ , 0m.*] and where amin = -Kmi~lp,
in = A„ax~1/2(-A'mox)'/2, etC.

We observe that 2 £ Z(x) iff 5 £ 8(x) = {«•" P(hi a- 0) = (i* -«)$($ + 0) +« = 0;
(x, Gx) = lj; further, re(z2) < p whenever re(2) > 0 and z £ UZ(x) iff re(j2) < a
whenever re(j) > 0 and 5 £ U^(x). It follows that conditions under which re(s2) < a
if re(3) > 0 and P($; a, 0) = 0 V (a, 0) E K,io , amax] X [/3min , 0maI] are sufficient for
asymptotic stability of Eq. (3) inasmuch as W 3(x) C {3: P(i; a, 0) = 0, (a, 0) £
[ami- , am»x] X [/?„,in i Ana*]) • Thus for given values of p, D, K we have reduced the in-
vestigation of the 4r zeros det(f(f)) to the investigation of the 4 zeros F(j; a, 0) wherein
the coefficients a, 0 are indeterminate and range over a rectangle of the a — 0 plane.

Now P(j; a, 0) arises naturally if r = 1. In that context the values of a and 0 are
determinate, given p, D, K, and a region of the a — 0 plane can be identified wherein
re(j2) < a if re(j) > 0 and P(j; a, 0) = 0.

This information on P(j; a, 0) is summarized in Fig. 1 and is given in detail by
DeGance [3]. It follows that a sufficient condition for the asymptotic stability of Eq. (3),
given p, D and K, subject to g-z> H ^ 0, is that the rectangle of allowable (a, 0)
lie within the shaded region of Fig. 1 which is the proven region of asymptotic stability
for parametric p, D, K in the case r = 1.

If for r = 1 we conjecture asymptotic stability over the entire positive quadrant
of the a — 0 plane, we conclude, for all r, asymptotic stability for all p, D, K such
that r\ 9a- ̂  0.

5. Positivity. We let x £ RN, admit singular operators to the class of physically
allowable D, K £ L(R'*") and reexamine the question of physicochemical stability.

We say that x is positive, x > 0, iff x( > 0, i = 1, • • • , N; further x is a physically
allowable state vector iff x > 0 and y*l. 1A x{ = 1. Insofar as x is physically allowable,
it is bounded and constraints arise on the operators D and K descriptive of particulate
and/or suspension processes. Evidently such constraints are related to stability; in
particular, we give the constraints on D I/2K that arise in connection with the stability
of a catalyst particle plunged into an initially uniform reservoir of infinite extent,
viz. Eq. (2).

We investigate a class of problems related to the vector renewal equation; in par-
ticular, we observe that if x(t) = M(<)x(0), where x(0) > 0, then x(<) > 0, x<(0 =

z.-(0) iff M(<) £ M. We obtain conclusions which generalize the classic theorem,
exp (Vt) £ M iff V £ $0 , and its extension, exp (Vt) £ P iff V £ $ (Bellman [1]).
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Fig. 1. Proven region of asymptotic stability for r = 1.

We make use of the following lemma:
Lemma B. Let F(t) and U(0 E P, F £ C[0, T], U £ 2[0, T] and let X satisfy

X(0 = F(0 + [' U(* - r)X(r) dr, t £ [0, T})

then X(<) <E P, X G C[0, T).
The proof follows on construction of X (cf. Bellman and Cooke [2] for the proof of the

scalar version of Lemma B).
We would like to have the conclusions of Lemma B for kernel operators U(<) not

limited to P. In particular, U (t) E $0 is more expressive of elementary chemical relations
than is U(<) £ P; thus, for U(i) £ $0 , where $0 , P C $0 H P = 0, what follows
can be interpreted as a generalization of Lemma B, under certain limitations on the
/-dependence of U.

The integral equations descriptive of the systems introduced in Sec. 1 take the form

x(0 = x(0) + f Jc(U, t — t)Vx(t) dr]
Jo

hereinafter we investigate the special case

x(t) = x(0) + [' k(t - t)Vx(t) dr. (7)
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Now in the eigenbasis of V, Eq. (7) reduces to N scalar equations for the coefficients
of x; however, the condition x > 0 is not readily translated into conditions on the co-
efficients of x in a basis other than {e,|. Thus we cannot make direct use of the scalar
version of Lemma B, and we write x(<) = M(7)x(0) where

M(0 = I + [ lc(t — x)VM(r) dr. (8)

We investigate Eq. (8) under the condition that k{t) > 0, t £ (0, T] and prove
first that if M(/) £ M then V £ 4>0 . The generalization that if M(<) £ P then V £ $
is immediate.

If M (0 £ M, then

u+M(0 = u+, u =

It follows from Eq. (8) that

f k(t - r)u+VM(r) dr = 0\ t £ [0, T\
Jo

and thus that

u+VM(<) = 0\ t £ [0, T]

inasmuch as kit) > 0, t £ (0, T]. Now M(0) = I; hence M(<) is nonsingular for t £ [0, e];
thus u+V = 0+ so that if V £ $ then V £ $0 .

We let ||V|| = 53^,* Y,i-" Kil. observe that ||UV|| < ||U|| ||V|| (cf. Bellman [1]),
and construct M(<) in the neighborhood of t = 0. We choose T so that

f /c(r)V dr = [T fc(r)
KO Jo

dr llVlj = 1

and observe that

6(0 = \\f kir)V drI I Jo
< 1, t £ [0, T).

Thus the sequence of Picard iterates of Eq. (8) converges uniformly to M(<) on every
subinterval of [0, T), i.e.

M(0 = I + [ kir) drW + f kit - r) [ fc(r0) dr0 drV2 + ■■■
J 0 J 0 Jo

where convergence is uniform on [0, T), and

M(0 - (i + fo kir) drV < , tE 10, T)
1 — e

(cf. Miller [11]).
If we suppose that at least one non-diagonal element of V is negative, viz. vti =

— 5 < 0, i 7* j, then it follows that
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0 < m{i(t) + S J Jfc(r) dr = — J k(r) | < M(0 — ̂1 + J 7c(r) c?tV^

<- 1 - 6

Thus we conclude that
Jf« 2

Zc(r) dr < ~— , t £ (0, T)
o 1 — e

and thus, on using the definition of e, that

f'fc(r) dr 11V112
0 < 5 < ——   , tG [0, T)

1 - f k(r) dr ||V||
Jo

which is a contradiction for t —> 0. Thus the supposition that a nondiagonal element
of V is negative is false and we conclude that if M(()G^ then V£$ and hence V £ $0 •

We now give a limited converse. In particular, we let V £ $0 and identify a class
of positive functions k £ 8[0, T], T < °°, such that M(<) £ M, t > 0.

We let

m(t; k,v) = 1 + / k(t — T)vm(T; k, v) dr
Jo

and observe that M(<) = m(<; k, V), viz.,

fc, V) = I + [ k(t — T)Vm(T; k, V) dr
Jo

where m(t) k, v), and thus m(<; k, V), exists, is unique and its Laplace transformation
exists. Thus on letting m(s; k, V) be the Laplace transformation of m(t; k, V), etc.,
we find that

m(s; k, V) = s"'I + f(s)Vm(s; k, V)

which, on using V = (V — diag (V)) + diag (V), where diag (V) = diag (»n , • • • , vNN),
becomes

m(s; lc, V) = diag"1 (s(I - f(s)V)) + diag"1 (--f(>^)(V - diag (V))m(s; 7c, V).

We now let

f(s)

r(s; k, v) = f(s)(l - f(s»~

and observe that

r{t; k, v) = k{t) + / k(t — t)w(t; k, v) dr;
Jo

thus, on using m(s; i>,-, , fc) = s '(1 — f(s)i\,) we find, on calculating the inverse
Laplace transformation of Eq. (8), that

m(t; fc, V) = m(i; fc, diag (V)) + [ r(r; fc, diag (V))(V — diag (V))m(< — t; k, V) dr.
Jo
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If V G $ it follows that V — diag (V) G P; thus we conclude, using Lemma B,
that if V G $ and if m(t] k, v) > 0, r(t; lc, v) > 0, then M(0 = m{t) k, V) G P. Further,
if k G C(1)[0, T] then

r(t; k, v) = m(t; k, v)k(0) + f m(t — r; k, v)k(1)(r) dr;
Jo

it follows, therefore, that r(t; k,v) >0 if m(t; k, v) >0 and if fc<n (t) > 0, k(0) > 0.
Thus if k > 0 G C("[0, 7'] and if m(t\ k, v) > 0 and k(1)(t) > 0 we can conclude

that if V G $ then M(<) = m(t; k, V) G P, t G [0, T], It follows immediately that if
V G then M(<) G M. Finally we observe that mil-, k, V) — m(t\ k, diag (V)) G P,
t G [0, T), cf. Eq. (8).

We draw two conclusions from the foregoing that are important in spatially non-
uniform chemically active systems, viz., a planar catalyst surface plunged into an
initially uniform reservoir of infinite extent, (cf. Eq. (2)). We show that T{ — W"t) G M
iff V G and the corollary that erfc ( —Vv71) G M if V, — V2 G <J?o •

We let M(t) = m{t; k, V) = T( — W\/t), where T(x) = exp (x2) erfc (x) > 0,
x G ( — 00), and observe that

T(-Wi) = I + f , 77 1 TT/2 VT(-VVr) rfr
Jo V1T(I — T)

and therefore, that

It follows that if r(t; 1 /(Trt)I/2, v) > 0, v G (— 00, 0) then T(—V\/1) G M iff V G $0 •
On using Eq. (7.1.13) of [7] we find that

T(-vVt) < 2{Wty'2 + (in't + 4)

and therefore that

, < vT(-vVt) < 0
(■wt)

from which it follows that r(t; \/(irt)1/2, v) > 0. Further if V, —V2 G $0 then erfc ( —VV't)
G il/ because erfc (—V\/<) = exp ( — V2t)T(—V\/<), exp ( — V~t) G -M iff —V" G $0
and a product of Markoff factors is itself Markoff.

Now the solution of Eq. (2) is

y(t) = r(-D_1/2K\/<)y(0)

and for systems so represented the minimal condition of physical faithfulness is that
T( — D~1/2K\/0 G i G [0, °°). We conclude, therefore, that physically allowable
{D, K} must satisfy the condition D~1/2K G in addition to whatever conditions
must be placed on D and K separately, principally K G $0, but also S-c°, Sk" nonempty
where

g_D° = {G = G+ > 0: GD = (GD)+ > 0|.
We remark firstly that the condition D"1/2K G $0 is a stability condition which
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implies |arg (A,)| > |rr; it complements the stability condition |arg (A,)| > Jir which
follows from Eq. (2) on imposing the condition that ||y(<)|| remain bounded for t £ [0, <»).

We remark secondly that insofar as Eq. (2) arises on linearization of a nonlinear
theory, we may not rightly presume T{ — D~1/2K\/<) £ M if the linearization is to
account for small excursions from a reference state far from the boundary of state
space; there we may presume only \i+T( — D~1/2K\//.) = u+. Nonetheless all of the
foregoing is pertinent for small excursions from reference states on or near the boundary
of the state space, i.e. on or near the hyperplanes xt = 0, i = 1, • • • , N, and places
conditions on the operators arising therein.
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