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Abstract. Four classes of network problems—conductive, resistive, conductive
boundary value, and resistive boundary value—are considered in this paper. In each
case solution of the network problem is tantamount to determining a zero of a nonlinear
system of equations. Under certain monotonicity assumptions, it is shown that the
nonlinear Gauss-Seidel iterative procedure is globably convergent when applied to these
systems.

1. Introduction. Mathematical models of electrical, hydraulic, and elastic systems,
as well as certain considerations in operations research and the numerical solution of
partial differential equations, give rise to a wide variety of what may be loosely termed
network problems. For a survey and analysis of many of these the reader is referred to
Berge and Ghouila-Houri [1], In this paper we shall study four classes of network prob-
lems. These are formulated in terms of general statements of the Kirchhoff laws, and a
collection of functional relations between the network variables. In electrical, hydraulic,
and elastic network problems these relations are known respectively as Ohm's law,
Darcy's law, and Hooke's law. Here we shall simply call them characteristics.

In Sec. 2 we present some fundamentals of network topology and statements of what
we call conductive, resistive, conductive boundary value, and resistive boundary value
problems. We have chosen circuit theory terminology because this appears to be the most
common area of application of these concepts. The conductive and resistive problems
differ only because of the type of characteristic that is involved. The conductive problem
is associated with what in circuit theory is known as "voltage controlled" resistors while
the resistive problem is associated with "current-controlled" resistors. In the important
special case of strictly isotone characteristics, it is theoretically possible to go from one
problem to the other by replacing the given characteristics by their inverses. However,
in practice this may be difficult or impossible to do. Hence, we have included treatments
of both problems.

The main object of this paper is to provide a theoretical justification for use of the
nonlinear Gauss-Seidel iterative process to solve numerically certain conductive, resis-
tive, conductive boundary value, and resistive boundary value problems. This is done
by establishing its global convergence in these cases. It will turn out that when global
convergence occurs, uniqueness (and of course existence) of the solution is also assured.
To prove these convergence results it is necessary to reformulate the network problems
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as systems of nonlinear equations. This is done in Sec. 3 by utilizing bases of certain
finite-dimensional vector spaces.

Sees. 4 and 5 contain the convergence theorems. These are not obtained ab ovo, but
proceed from more general results on M-functions in Sec. 4 and uniformly monotone
gradient maps in Sec. 5. Isotonicity of the characteristics is an assumption which is
common to all of our theorems. However, strict isotonicity and surjectivity of all charac-
teristics is not required in general. Thus we demonstrate convergence even when some
of the characteristics are bounded, or constant on all or portions of their domains.

Many authors have considered existence and/or uniqueness questions for network
problems, see for example [1-5, 7-9, 13, 17] and the references contained therein. On the
other hand, the computational aspects of network problems do not appear to have been
treated very extensively. In 1952 Diaz and Roberts [6] used a monotonicity argument
to prove that the Gauss-Seidel process converges when applied to the usual 5-point
difference analogue of Laplace's equation. Later Birkhoff and Diaz [2] and Dwyer [9]
extended this proof idea and applied it to certain network problems which in our termi-
nology are conductive boundary value problems. Accordingly, in Sec. 4 we are able to
obtain a generalization of their work.

A different approach was taken by Minty [1, 13] in developing an algorithm for the
solution of conductive and resistive problems when the characteristics are isotone step
junctions. His algorithm is based on the "colored arc lemma" and is finite in the sense
that it finds a solution after a finite number of steps. This is in direct contrast to the
Gauss-Seidel process which generally requires an infinite number of steps for convergence.

Porsching [15] has analyzed the convergence of the Gauss-Seidel process when it is
applied to a class of network problems which are related to the present conductive
boundary value problems. In [15] the characteristics are permitted to have a more general
form than those considered here, but the isotonicity requirements are stricter.

Computational experience has shown that the Gauss-Seidel—or, as it is known to
engineers, the Hardy Cross—method often converges slowTly [12], In this regard the
recent paper [10] may be consulted for a practical technique to accelerate convergence.

2. Network problems. In this section we recall some basic graph theoretic notions
and give general statements of the network problems to be considered. Throughout this
paper we will assume that we are given a finite, connected network 31 with node set V
and directed arc set S. Let

«(C/) = u+(U) U «"(*/)

denote the cut (coboundary) associated with the node set U C V, u+(U) and o>~ (U)
representing respectively the arcs incident from and to U. Let |<S| — m and label the
arcs of 91 from 1 to m. Then, as is well known, each cut can be uniquely associated with
a cut vector

by means of the rule

»(u) = mu), ■■■,*mmT

coi(U) = +1 if arc i £ w+(£/)

= — 1 if arc i £ <•>"(!/)
= 0 if arc i (£ «(£/).
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In an analogous manner each cycle of 3ft,

y = y+ U y~,
may be associated with a cycle vector

H = [fr , fl2 , , Mm]1".

where

Hi = +1 if arc i £ y+

= — 1 if arc i £ y~

= 0 if arc i £ y.

Here y+ is the set of cycle arcs which are oriented in a given sense and y~ is the set of
arcs which are oriented in the opposite sense.

A flow on 91 is a vector

<t> = [0i , ''' > 0ml7

which is orthogonal to every cut vector. That is,

u(U)t4> = 0, V U C V. (2.1)

Similarly, a tension on 31 is a vector

0 = 0,, ••• , sm]T

such that for any cycle vector n,

nT6 = 0. (2.2)

In the context of electrical networks Eqs. (2.1) and (2.2) are statements of Kirchhoff's
current and voltage laws.

For each arc i of 31 we relate the quantities <£, and by means of a conductive charac-
teristic

4>i = Xiifii), (2.3)
or a resistive characteristic

Si = yMi), (2.4)
where the functions a\- , y{ : R1 —> R1, are given. We shall generally identify properties
of the functions .r,(<) or ?/,(<) with arc i. Thus, when we speak of a continuous or isotone
arc, we mean that the corresponding function is continuous or isotone.

We now state two problems.
Conductive Problem: Find a flow 0 and a tension 6 such that (2.3) is satisfied for

i = 1, ■ • • , m.
Resistive Problem: Find a flow <#> and a tension 6 such that (2.4) is satisfied for

i = 1, ■ • • , vi.
Let \V\ = n and let the nodes of 31 be labeled from 1 to n. Then it is not difficult to

show that d is a tension if and only if there exists a set of scalars {, • ■ ■ , p„}, called
a node state, such that for any arc i

0. = Vi ~ Vk , (2-5)
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where j is the initial node and k the terminal node of arc i. The scalar p, , which is unique
up to an added constant, is called the state value at node j, and many practical problems
are formulated in terms of these values.

Specifically let Vh be a non-void set of boundary nodes of V and let p* be an assigned
state value for j £ Vb . Then we have the following two problems:

Conductive Boundary Value Problem: Find a tension 6 and a vector <£ £ It'" such
that (2.3) is satisfied, p* is a state value at node j £ Vb corresponding to 6, and a>(U) 7<j> =
0 if U C V - V„ .

Resistive Boundary Value Problem: Find a tension d and a vector 4> £ R'" such that
(2.4) is satisfied, p* is a state value at node j £ Vb corresponding to d, and a>(U)T<t> = 0
if u c v - .

Note that the vector <t> in the conductive and resistive boundary value problems is
not necessarily a flow on 31 since the orthogonality condition holds only for a restricted
class of cuts. However, these two problems can be reformulated exclusively in terms of
a flow and a tension on an augmented network.

For the conductive boundary value problem let us construct the network 31' from 91
by adding one new node, say node n + 1, and |Ffc| new arcs, say arcs m + 1,- • •, m + |Fb|
where each new arc is incident from a different node of Fb to the new node. If arc i
connects node j £ Vb to the new node, we define the resistive characteristic

e, = Pi*. (2.6)

By introducing the node cut vectors w(j), and the fact that any cut vector «(£/) has the
representation

u(U) = Z"Q), (2-7)
i€U

it is a straightforward exercise to show that the conductive boundary value problem is
equivalent to the

Augmented Conductive Problem: Find a flow and tension on 31' such that (2.3) is
satisfied on arcs 1, • • • , m and (2.6) is satisfied on arcs m + 1, • • • , m + \Vb\ .

In the same way we can show the equivalence of the resistive boundary value problem
with the following

Augmented Resistive Problem: Find a flow and tension on 31' such that (2.4) is
satisfied on arcs 1, ■ • • , m and (2.6) is satisfied on arcs m + 1, • • ■ , m + |Ft| .

Finally, we note that an augmented resistive problem is simply a resistive problem
on 31', but an augmented conductive problem is not a conductive problem on 31' because
the characteristics (2.3) and (2.6) are of mixed type. In the next section we examine
these problems relative to bases of cuts and cycles.

3. Bases of cuts and cycles. Let and M denote respectively the spans of cut and
cycle vectors of 31. Then it is well known that 12 and M are orthogonal subspaces of Rm
and dim fi = n — 1, dim M = m — n + 1. Consequently, if o>i = 1, • • • , n — 1, and

i = 1, • • ■ , m — n + 1, are bases for 0 and M, then <f> is a flow on 31 if and only if
there are scalars 7j , ■ • • , y,„_„+i such that

m —n + 1

4> = X 7.V, (3-1)
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and 8 is a tension on 91 if and only if there are scalars • , 5„_j such that
n— 1

6 = £ (3.2)
i = 1

It follows that relative to the basis {w*}, solution of a conductive problem is equivalent
to determination of scalars 8, , j = 1, • • • , n — 1 which satisfy the cut equations,

«"*(!: «,■«') = o, »• = i, •••,»-1, (3.3)

where x(6) = [xi(0i), • • • , xm(dm)]T. Furthermore, relative to the basis {//}, solution of a
resistive problem is equivalent to determination of scalars y,- , j = 1, • • ■ , m — n + 1
which satisfy the cycle equations

(m—n+1 \

X 7iM'j = 0, i = 1, • • • , m - n + 1 (3.4)

where y(<t>) = [yMi), ■■■ , ym(.<t>m)]T.
Clearly the actual form that either the cut or cycle equations assume depends on the

particular basis chosen in the representations (3.3) and (3.4). Some of these forms are
better suited for analysis than others. Indeed, in Sees. 4 and 5 we shall utilize particular
bases to establish a globally convergent iterative algorithm—the nonlinear Gauss-Seidel
method—for the cut and cycle equations.

The cut and cycle equations are mathematical formulations of conductive, resistive
and augmented resistive problems. It remains to deduce a corresponding formulation
for an augmented conductive problem. In this case let il' be the span of cut vectors of the
augmented network 31' and let u", i — 1, • • ■ , n be a basis for 0'. We write

ft   r /* / i -| T
CO — LUX ) ' * • | Wm+ I V» |J ,

and

<t>' = [<t>l'l J <t>m+\Vb\'] ■

Solution of the augmented conductive problem is then equivalent to determination of
scalars bk , k = 1, • • • , n and <p/, j = m + 1, • • • , rn + |Fi,| which satisfy the mixed
equations,

m / n \ m + I V b I

!>/'*,•(£ W*) + E = 0, l = 1, ,n (3.5a)
7=1 >& = 1 ' i =m +1

n

X) &kW,'* = Pi*, i = m + 1, ■ ■ ■ , m + \Vb\. (3.5b)
k= 1

In (3.5b), as in (2.6), it is assumed that arc i connects node j £ Vb to node n + 1.

4. M-functions. Having formulated the cut, cycle and mixed equations, we now
investigate conditions under which these equations have unique solutions and for which
a globally convergent iterative method exists. In this section we shall do this by relating
the equations to a general class of nonlinear mappings called M-functions.

Let e' G R" denote the ith unit coordinate vector, t = 1, •■•,». A function F :R" —+
Rn, F = [/1 , • • • , /„]1 is off-diagonally antitone if ^,,(0 : R1 R\ lA.;(0 = /. (x + ie') is
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antitone for all x £ R" and i ^ j, i, j = 1, • • • , n. It is inverse isotone under component-
wise partial ordering if Fx < Fy implies that x < y. Finally, F is an M-function if it is
inverse isotone and off-diagonally antitone. As shown by Rheinboldt [16], if F is a con-
tinuous surjective M-function, then the system of equations

Fx = z (4.1)

has a unique solution x* for any z £ Rn, and moreover the (nonlinear) Gauss-Seidel
iterates {a;*} given by:

Solve fi(x it+l, • • • , x, , xi + lk, • • • , x„) = Zi , for x, , (4.2)

Set Xik+1 = Xi , i = 1, • • • , n, k = 0, 1, • • • ,

are well defined and converge to x* for any starting vector x° £ R".
We shall make use of the following special case of a theorem of Rheinboldt [16, pg. 301]

which gives sufficient conditions for F to be a surjective M-function.
Theorem 4.1: Let F : Rn —* R" be continuous and off-diagonally antitone. Suppose

that for any x £ Rn, the functions

q<(t) = X) iMO. i = 1, ,n, (4.3)
; = 1

are isotone. Assume further that for every t'(O), 1 < i(0) < n, there is a sequence jt'(l),
i(2), • • • , i(p)\ C {1, • ■ • , nj such that ^,(*),.(*+i)(0, k = 0, • • ■ , p — 1 is strictly
antitone and surjective and g,(P)(<) is strictly isotone and surjective. Then F is a con-
tinuous surjective M-function.

To relate Theorem 4.1 to network equations we require the following definitions. We
shall say that an arc is bijective if it is strictly isotone ans surjective. Two nodes will be
said to be bijectively connected if they are connected by a path of bijective arcs and two
nodes will be termed (bijectively connected) neighbors if they are the extremities of
some (bijective) arc.

We now consider the cut equations and prove the following.
Theorem 4.2: Let 91 have n nodes, m arcs and continuous isotone conductive arcs.

If every two nodes of 31 are bijectively connected, then the function

(e «*>(«:))F : R-1 -> R"~\ /,-(«) = <o(;)M D SMk)) , j= 1, •••,«- 1, (4.4)

is a continuous, surjective M-function.
Proof: For the function defined by (4.4) we have

m

tn(t) = H UiO>i(Ci + wj, I = 1, • • • , n - 1,
t = 1

where
n— 1

C< = E
A: = 1

is independent of t. If j ^ I. then it follows from the definition of the node cut vectors
juO')) that

= Z) ««0>.(c.) + X <0i(j)Zi(c< - e>i(j)t), (4.5)
t G «(|) — u(I) »G«(,)n«(0
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and therefore F is off-diagonally antitone since the arcs are isotone. Moreover, if any arc
i £ <j(j) C\ o>(i) is bijective, then (t) is strictly antitone and surjective. Since every
node j(0) is bijectively connected to node n, it follows that there is a node j(p) which is a
bijectively connected neighbor of node n and a sequence {j(l),■ ■ •, j(p) j C {1, • - •, n — 1}
such that ^,<it).i(*+i>(0> fc = 0, • • ■ , p — 1 is strictly antitone and surjective.

Now by (2.7),

?i(0 = tn(t) = It ( Z + ".(00
i=l »=1 Nf-i /

m

= — Yj Ui(n)Xi(Ci + co.(00
i = l

= — X) u,(n)a\(c,) + X) u,(l)x,(c, + wS)t), I = 1, ••• ,n — 1.
iGu(n)-ud) t€w(n)r\u(I)

Hence qt (t) is isotone and if node i is a bijectively connected neighbor of node n, then
qiit) is strictly isotone and surjective. Therefore, all of the hypotheses of Theorem 4.1
are satisfied and so F is a continuous, surjective A/-function. Q.E.D.

We note that if F is the function defined by (4.4), then the equations F5 = 0 are
the cut equations relative to a basis of node cut vectors. However, any two bases of 0
are related by a nonsingular matrix transformation. This gives us the following result
on the solvability of the cut equations.

Corollary 4.3: Under the hypotheses of Theorem 4.2 the cut equations (3.3)
have a unique solution. Furthermore, relative to any basis of node cut vectors, the
iterates of the Gauss-Seidel process (4.2) converge to the solution for any starting vector.

We now turn to the mixed equations (3.5).
Theorem 4.4: Let 91 have m arcs, n nodes, boundary node set Vh = {p+1, ••• ,n},

and continuous isotone conductive arcs. If every node of V — Vb is bijectively connected
to a boundary node, then the function

F : R" —> R", /,(6) = w(j)Tx( £ 5*u(fc) + £ p.Vk)) , 3 = 1, • ■ • > (4.6)
Vc = l A = *-l /

is a continuous surjective M-f unction.
Proof: As in the case of Theorem 4.2, the proof consists of verifying that the hypoth-

eses of Theorem 4.1 are satisfied. For j ^ I, j, I = 1, • • • , v the functions \f/it (t) are again
given by (4.5) except that now

v n

Ci = X &kUi(k) + X Pk*0>i(k).
k=l k=v+1

Therefore F is off-diagonally antitone. Furthermore,

9i(0 = Z) + wS)t)
i = l \j=l '

m

= - I>,(Ft)*,(c, + co,(00

= - X u,(F<,)z.(c,-) + x ut(1)Xi(Ci +CO,(00» 1 = 1> ••• >v>
• €tt(F6)-tt(I) t€u(Vi)nu(n

and the isotonicity of (t) follows. Finally, the hypotheses imply that every node of
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V — Vb is bijectively connected to a node which is itself a bijectively connected neighbor
of some boundary node. Thus the remaining hypotheses of Theorem 4.1 are seen to hold.

Q.E.D.
Theorem 4.4 serves as the basis for the following solvability result concerning the

mixed equations.
Corollary 4.5: Assume that the hypotheses of Theorem 4.4 hold, and let F be

defined by (4.6). Then the equations Fb = 0 have a unique solution b* which is the limit
of the iterates of the Gauss-Seidel process (4.2) for any starting vector. Under the same
hypotheses the mixed equations have a unique solution and relative to the basis of node
cut vectors jco'(j) j this solution is: bk = bk*, k = 1, • • • , v, 5k = pk*, lc = v + l,- ■ ■, n,
and <(>,' = — u(j)Tx(52k-in bku(k)), i = m + 1, • ■ • , m + |F4| , where arc i connects
node j £ Vb to node n + 1.

Prooj: Relative to the basis jw'(j)} , = 1n and boundary node set Vb = {v + 1, ■ ■ ■ ,n]
Eqs. (3.5b) reduce to 8k = pk*, k = v + 1, ••• ,n. But then Fb = 0 represents the first
v equations of (3.5a) and these have the solution b*. The remaining n — v (i.e. |F»|)
equations become w(j)T bku(k)) + <£,' = 0, i = m + 1, • • • , m + |Fb| , where
arc i connects node j £ Vb to node n + 1. Finally, the solution relative to any other
basis is obtained from this solution by a linear transformation. Q.E.D.

Birkhoff and Diaz [2] and Dwyer [9] have considered boundary value problems in
which the earlier condition

<o(E/)V = 0, U C V — Vb
is replaced by the condition

o>(j)T<t> = g^Vi), j E V - Vb , (4.7)
where g^t) is a continuous antitone function. These seemingly more general problems
may be reduced to a conductive boundary value problem as follows. We construct an
augmented network 91+ from 91 by adding one new boundary node, and [F — Fk| new
arcs each of which connects a different node of F — Vb to the new node. If arc i connects
node ; £ F — Vb to this node, then we define the conductive characteristic for that
arc as

4>i = -g,(0.)-
Also, we assign the new boundary node a state value of zero. It is not difficult to see that
solution of a boundary value problem which employs (4.7) on 91 is equivalent to solution
of a conductive boundary value problem on 91+ . Furthermore, it is evident that if the
hypotheses of Theorem 4.4 hold on 91, then they also hold on 9l+ . Hence an obvious
analogue of Corollary 4.5 holds for the mixed equations of 91+', and as such it represents
a generalization of results of Birkhoff and Diaz and Dwyer on the convergence of the
Gauss-Seidel iterates.

In order to apply the M-function theory to the cycle equations (3.4), we need an
additional restriction on 91, namely, that it be a planar network. Let 91 have n nodes
and m arcs. It follows that 91 can be embedded in the plane in such a way so as to divide
it into m — n + 1 simply connected bounded regions and one unbounded region. Further-
more, the cycle vectors corresponding to the cycles created by the arcs which constitute
the boundaries of the bounded regions form a basis for M (see, for example, Berge and
Ghouila-Houri [1, p. 135]).

To fix these ideas let Ri , • • • , Rm-n+1 denote the bounded regions and /?„,_„+2 the
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unbounded region. We will say that two of these regions are (bijectively connected)
neighbors if their boundaries have at least one (bijective) arc in common. The regions
RiW and i?,(p) are bijectively connected if there is a sequence jz(l), • • • , i(p — 1)) C
{1, • • • , m — n + 2} such that RiW and Rilk+,, , k = 0, • • • , p — 1, are bijectively
connected neighbors. Now let y', j = 1, • • • , rn — n + 2, denote the cycle associated
with the boundary of region R, where the given orientation of the arcs of y' is in accord-
ance with the positive sense of the boundary of R, . The corresponding cycle vectors
{n') will be termed contours.

Theorem 4.6: Let 31 have continuous isotone resistive arcs and contours ju'}. If
every two regions are bijectively connected, then the function

(rw —n 4-1 \

Z y*) j = l,
k = 1 /

m — n + 1, (4.8)

is a continuous surjective M-function.
Proof: We construct 91*, the dual network of 91, by associating node j of 91* with

Rj , j = 1, m — n 2 and connecting nodes j and k of 91* by arc i of 91* if the
boundaries of Rj and Rk have arc i of 91 in common. Arc i of 91* is chosen to be incinent
from node j to node k if arc i of 91 is a member of y'+. Otherwise it is incident from node k
to node j. Thus the dual 91* has m — n + 2 nodes, m arcs, and u(j) of 91* is precisely
n' of 91. For each arc i of 91* we define the conductive characteristic 0, = yAfii), where
6i = 2/i (</>;) is the corresponding resistive characteristic for arc i of 91. This yields a
conductive problem on 91*. Since 91* has continuous isotone conductive arcs and since
every two nodes of 91* are bijectively connected, the proof now reduces to that of
Theorem 4.2 with (4.8) in place of (4.4). Q.E.D.

As in the previous cases, we have the following corollary which we state without proof.
Cohollary 4.7: If 91 is a planar network with continuous isotone resistive arcs,

and if every two regions of 91 are bijectively connected, then the cycle equations (3.4)
have a unique solution. Furthermore, relative to the basis of contours n', j — 1, • • • ,
m — n + 1, the iterates of the Gauss-Seidel process (4.2) converge to the solution for
any starting vector.

The M-function result of Theorem 4.6 required that 91 be planar. This is in contrast
to Theorem 4.2 where nonplanar 91 were allowed. If the arcs are resistive and isotone
but 91 is nonplanar, then it will not be possible in general to select a basis of cycle vectors
{ m' } such that the function (4.8) is an M-function. This is because the off-diagonal
antitonicity of F can not be guaranteed. This in turn is a consequence of MacLane's
result [11] that a necessary (and sufficient) condition for 91 to be planar is that it contain
a basis of cycles such that every arc appears at most twice in the basis. Thus if 91 is
nonplanar, then any basis of cycle vectors will be such that for some index i the ith
component will be nonzero in at least three vectors. Necessarily, two of these components
will have the same sign. Consequently there will exist indices j and I, j ^ I, such that
one of the terms appearing in the sum that defines /,-(?) in (4.8) will be of the form
Tj/iOK'Yj + 7i) + ± yk) where u = ±1. Hence if ?/,(£) grows sufficiently fast,
then the function (t) can not be antitone.

5. Uniformly monotone networks. To obtain a convergence theorem for the cycle
equations when 91 is not necessarily planar, as well as further results for the cut equations,
we introduce the idea of a uniformly monotone network.
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We will say that arc i is unijormly isotone if the function x,(t) or y,(t) associated
with its characteristic is differentiable and dxi{t)/dt > c or dy,(t)/dt > c for some con-
stant c > 0 and all t £ R\ Let 91 have n nodes and m arcs. With each basis
for M, n', j = 1, • • • , m — n + 1, we associate a corresponding cycle matrix

Kr 1 2 m-n + ln= Lm , M , ■ • • » M J-

This matrix necessarily has at least one (m — n + 1) X (m — n + 1) submatrix which
is nonsingular. If 31 has continuously differentiable, isotone, resistive arcs, and a cycle
matrix K such that the arcs corresponding to the rows of some (m — n+1) X (m — /i+l)
nonsingular submatrix of K are uniformly isotone, then 91 will be said to be R-unijormly
monotone. Analogously, if 91 has continuously differentiable, isotone, conductive arcs and
there is a basis {co'} for 9. such that the arcs corresponding to the rows of some
(ft — 1) X (ft — 1) submatrix of the cut matrix A - [to1, co2, ■ • • , co"-1] are uniformly
isotone, then 91 will be termed C-untformly monotone.

Uniformly monotone networks are related to the so-called uniformly monotone
gradient maps. There are a number of convergence theorems for such mappings. We shall
utilize the following one which is proven in Ortega and Rheinboldt [14, p. 516].

Theorem 5.1: Assume that F : Rn —> R" is continuously differentiable, that the
Jacobian matrix F'(x) is symmetric for all x £ R'\ and that there is a constant c > 0
such that for all x, h £ R'1

hTF'(x)h > c hTh.

Then for any starting vector the Gauss-Seidel iterates (4.2) converge to the unique
solution of Fx = 0.

The next theorem on fi-uniformly monotone networks is essentially a corollary of this.
Theorem 5.2: If 91 is /^-uniformly monotone, then the cycle equations have a

unique solution. Furthermore, there exists a basis for M such that relative to this basis
the iterates of the Gauss-Seidel process (4.2) converge to the solution for any starting
vector.

Proof: By hypothesis, there is a cycle matrix K with rn — n + 1 linearly independent
rows each of which corresponds to a uniformly isotone arc. With no loss of generality
we can assume that these are the first m — n + 1 rows of K. Hence we can partition K as

K = K,

K2_

where K, is nonsingular and arcs 1, • • • , m + n — 1 are uniformly isotone. Now consider
the continuously differentiable map

(m—n+1 \

Z 7,M'j , i = 1, ••• ,m -n+ 1.

One easily verifies F'(y) = KrD(y)K, where

_ rjiao- (dyi(<t>l) dym(<t>m)\ , _ "y' i 7,-1Uyy) aiag ^ ^ , • • • , ^ J , <f>k / ^ TiM* > y vi.
; = i

-n+1The matrix F' is obviously symmetric for all 7 £ Rm n+ . Furthermore, if h £ Rn
and we write
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"1

D = D1 0

.0 D
where Di and D2 are diagonal matrices of orders m — n + 1 and n + 1 respectively, then

hTF'(y)h = (Kih) TD1(K1h) + (K2h)TD2(K2h).

It follows from the isotonicity hypotheses that there is a constant c > 0 such that

hTF'(y)h > c(Kih)T(Kih) = c hTK1TIC1h.

However, the matrix K^Ki is positive definite so that if X > 0 denotes its smallest
eigenvalue, then hTF'(y)h > (c\)hTh. This demonstrates that all of the hypotheses of
Theorem 5.1 hold and proves the convergence part of the theorem as well as existence
and uniqueness of a solution relative to a certain basis. General existence and uniqueness
follow from the invertible relationship between this and any other basis. Q.E.D.

There is an analogous theorem for C-uniformly monotone networks which we state
without proof.

Theorem 5.3: If 91 is C-uniformly monotone, then the cut equations have a unique
solution. Furthermore, there exists a basis for U such that relative to this basis the iterates
of the Gauss-Seidel process (4.2) converge to the solution for any starting vector.
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