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Abstract. The Green's function G(P, P') associated with a clamped plate of arbitrary
shape is considered, when P' is at a distance 0(e) from a regular point 0 of the boundary.
First an outer expansion of G is described, valid when P is not near P'. Then an inner
expansion of G is constructed when both P and P' are near 0. The leading term of the
inner expansion is just the Green's function G, for the halfplane bounded by the tangent
to the boundary at 0, and e~2G differs from e~2G, by 0(e). The first two terms of the
inner expansion agree with the first two terms of the expansion of Gc , the Green's
function for the interior of the osculating circle of the boundary at 0, if the boundary
is convex at 0. If it is concave, Gc is the Green's function for the exterior of the osculating
circle. Moreover, t~2G differs from e'2Gc by 0(e2). A two-term inner expansion is ex-
plicitly given.

1. Introduction. Let (x, y) be rectangular Cartesian coordinates and let D be a
domain of the (x, ?/)-plane. Suppose that 0 is a regular point of the boundary dD of D.
We locate the origin of the coordinates at 0 in such a way that the z-axis is tangent
to dD and the y-axis points toward the interior of D. For x sufficiently small 3D has
the Taylor expansion

y-b{x)= ±^x. (l.i)
n _ 2 At I

We shall use the radius of curvature of dD at 0 as a length scale so that b2 = ±1.
Suppose that G(x, y, x', y') is a function defined on D, satisfying the equations

V4G = 5(x - x')8(y - y'), (x, y) 6 D, (1.2)

G = dnG = 0, (x, y) E dD, (1.3)

where d„ is taken along the outward normal n to dD.
If D is the semi-infinite plane y > 0, the associated Green's function G, obtained

by Michell [1] is

a. - 4I<* - *')■ + (y - VT] in + 2w'' (L4)

* Received September 12, 1973; revised version received October 15, 1974. The author is indebted to
Professor J. B. Keller whose idea initiated his investigation into problems of this nature.
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If D is the interior of the unit circle x2 + (y — l)2 = 1, then the Green's function Gc+
obtained by Michell [1] is

Gc+ = i{l - fx'2 + (y' - 1)2])|1 - [x2 + (y - l)2]}

+ £[(a; - x')2 + (y - y')2] In [(a; - x')2 + (y - y')2]z~2 (1.5)

where

z2 = (x- x')2 + (y + y')2 - 2y(x'2 + y'2) - 2y'(x2 + y2) + (x'2 + y'2){x2 + y2).

(1.6)

The Green's function Gc~ for the exterior of the unit circle x + (y + l)2 = 1 was
obtained by Symonds [2], More general but related problems were investigated by
Dundurs and Lee [3] and Amon and Dundurs [4],

For a general domain D, the Green's function G cannot be obtained explicitly in
a closed form. Let G(P, P') be the Green's function. Then G(P, P') may be interpreted
as the deflection at P of a plate subjected to a unit load applied at P'. Our objective
is to determine G(P, P'), when the unit load is placed near the boundary point 0. Let
t denote the distance OP'. We shall determine G asymptotically in terms of the param-
eter e as e —> 0. Inner and outer expansions will be constructed and matched. Moreover,
the first three terms of the inner expansion can be obtained explicitly. Only the first
two terms, however, are calculated. The result is

e~2(?(c£, erj, «£', ft]') ~ £[(£ — ij')2 + (v — V02] In ^ 2rlV'

1h iVft" + V'2) + vv'\e + v) , n( is n ~- e462  - -7s 2 , ~7~—7s-2 h 0(t ) (1.7)
(£ ~ £ ) + iv + V )

where b2 = ±1, depending on whether D is convex or concave at 0. It can be checked that

<?(«£, tn, «£', «?') — (?.(«£, ey, «£', «?') ~ 0(e3), (1.8)

<?(«$, (v, f?0 — G^ieZ, tit, ft', ey') ~ 0(t4). (1.9)

For the purposes of bringing out the underlying idea and illustrating the method
of finding (1.7), we consider a simpler problem, namely, the problem of determining
G(x, y, e) = G(x, y, 0, e) as e —» 0. The function G(x, y, e) may be defined by

G(x, y, «) = [z2 + {y - £)2] In [z2 + (y - e)2]I/2 + H(x, y, e) (1.10)

where H is a regular bihormonic function satisfying the boundary condition that G,
together with its normal derivative, vanishes on dD.

We shall occasionally use polar coordinates (r, 0). We shall also introduce boundary
layer variables (£, 17, p, 6) and intermediate variables (a, v, X, 0). The three sets of variables
are related by the equations

(x, y, r) = e1/2(o-, v, X) = eft, n, p). (1.11)

In terms of the boundary layer variables, dD defined by (1.1) has the expansion

„ = /3ft, e) a i b(4) = ± f+1- (1.12)



NEAR-BOUNDARY EXPANSION 41

Our method of analysis is that used by Wu and Keller [5] to obtain the corresponding
results for Laplace's equation.

2. Outer expansion. The problem satisfied by G(x, y, t) is defined by (1.10). Since
G(P, P') is analytic in P' except at P, G(x, y, t) is analytic in e. Therefore

'G(x,y,e)~ZhG*(*>y)- (2-1)€
« = 1

We shall call (2.1) the outer expansion of G(x, y, <•). The function GJx, y) is biharmonic
and vanishes, together with its normal derivative, on dD except at the point 0. Near
the point 0,

Gn(x, y) = O(r-), r 0. (2.2)

Because G„ is analytic, we conclude from (2.2) that

Gn(x, y) = £ Jnm(6)rm, (2.3)
m = — n

where

Jn~(0) = AJSm{e) + B.JCm(0) + AJSM + B.jCm(0). (2.4)
and

Cm(6) = cos md — cos (m — 2)6, m ^ 1, (2.5)

Cm(0) = cos md + cos (m — 2)6, n ^ 1, (2.6)

Sm(6) = (m — 2) sin md — m sin (m — 2)6, m ^ 0, 1, 2 (2.7)

§m(6) = (m — 2) sin md + m sin (m — 2)6, m ^ 0, 1,2 (2.8)

Ci(6) = cos 6, Si(6) = sin 6, Ci(6) = 6 cos 6, S,(6) = 6 sin 6, (2.9)

So(0) = S2(6) = sin 29, S0(6) = S0(e) = 6. (2.10)

We note that J„m(d)rm are biharmonic functions. Moreover, the functions Cm{6) and
Sm(6) defined by (2.5) and (2.7) vanish, together with their derivatives, for 6 = 0 and ir.

The constants A', B', A' and B' appearing in (2.4) are so far undetermined. We
shall show that some of the constants can be determined by matching. The rest can
be determined by solving a series of well-defined boundary-value problems.

For the purpose of matching, we need to know the inner expansion of the outer
expansion. First we use (2.3) and (2.1) to obtain the expansion of t~2G(x, y, t) for r
small. It is

r2G(x, y, e) ~ i: £ E J.m(0)rm. (2.11)
s = l ^ • m = — a

Next we set (x, y, r) = e1/2(<r, v, X) in (2.11). Then, upon rearranging the series, we get
k 1

— 2/-~i( 1/2 1/2 \ V Ar/2 V 1e G(e (j, c v, e) ~ 2^ e 2^ ~
— n\ \An<k-2n &k-2n($)

+ B,t.k-JCk-2M + An.k_2n'Sk-2n{6) + £n.*-2„'C*-2„(0)]X*~2". (2.12)

This is the inner expansion of the outer expansion.
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3. Inner expansion. We consider the case x and y are 0(e). It follows from (1.10)
that we may seek G in the form

t~2G(t£, rq, t) ~ £[£2 + (v — l)2] In [£2 + (v — l)2] + T7 v)- (3-1)
n = 0

We shall refer to (3.1) as the inner expansion. The functions hn are regular and bi-
harmonic. The boundary conditions G = dG/dn = 0 must be satisfied on 3D defined
by (1.12). We have

e"2G(e£, ti], e) |,./)<{..> ~ 0 (3.2)

T" €~2g(^> *V, «) ~ 0 (3.3)dn

where

a( ) _ L ■ e)2j-'/2fr( ) 3<3(f, e) _ ao
dn I d£ J \ d£ d£ df] I . f )

(3-4)

Substituting (3.1) into (3.2), expanding for small e and equating to zero the co-
efficient of each power of «, we obtain

h.((, 0) = -f.(Q - £ —, (s _ m), (3.5)

where

/.© = + [0(«, «) - l]2} In If + m, «) - l]2i 1,-0 , (3.6)

hk,(Q = d.'Mf, 0(£, e)J |..o • (3.7)
Applying the same operation on (3.3), we get

s j 7 ym

V,® = + g(a lgfwl!/■».--)«)

+ S {§ (s - k)(k\-m)\m\ *<-«•"*—~ fc! (s - fcjj >'<-*> •<*©} t3'8)
where the notation

P.t.(0 = 5,"[a£P(?,„) U(£,„] (3.9)
i5.,.© = u) lw<£..)] l.-o (3.10)

applies to / and /fm . Eqs. (3.5) and (3.8) determine the values of h, and h,,„ on the
£-axis, in terms of the hm with m < s. By determining regular biharmonic functions
satisfying (3.5) and (3.8), starting with s = 0, the h, can be found successively.

Setting s = 0 in (3.5) and (3.8), we get

Aoft.0) ~ -*({* + 1) In ft' + l), (3-11)
ho.vit;, 0) = In (J2 + 1) + 1. (3.12)

An image analysis leads to the choice

ho(£, v) = — s[£2 + (v ~ I)2] In [£2 + (v + I)2] + 2i? + A0(ti, i;) (3.13)
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where A0 is an arbitrary biharmonic function satisfying the conditions A0 = A0i„ = 0
on the £-axis. However, since the outer expansion is 0(e3), the term e A „ cannot be
matched with the outer expansion. Thus A0 = 0. Then (3.1) becomes

e~2G(ei;, 0 ~ W + (v ~ 1)1 In ^ ~ + 2, + 0(e). (3.14)

Aside from the term 0(e), this is the Green's function for the half plane t] > 0, bounded
by the tangent to 32) at 0.

We need the solution of a fundamental problem for the determination of hn for n > 1.
Let a>(£, r/) be a biharmonic function defined on the half-plane tj > 0. On the edge rj = 0,
Co satisfies the conditions

0) = w0(£), ".,(1,0) = ui(£) (3.15)

where w0 and «i are given functions satisfying the conditions

lim-UoG), r«i(0 = 0. (3.16)
K K

Using G, for G in (1.4) and making appropriate substitutions, we get

tt n I f / 2iA,0ft')  vWA0 \ ro 17v
w(*'7,3 - * L t[« - o2 + v2f+ (a - fr + A * • (3 7)

This is the solution of a semi-infinite cantilever plate subjected to edge displacement
and rotation.

For s = 1, (3.5) and (3.8) yield

MS, 0) = -m - M0 = 0, (3.18)
^i.i(£> o) = —(/,,i + Ao,i,i) + (/.£i + h0,(i)b2ti

_ ml
f + 1 (3.19)

where b2 = ±1. Using (3.17) we obtain

htf, „) = -4&2 + A&, v) (3.20)

where At has the same property as Aa and must again vanish because e3Ai(£, rj) cannot
be matched with the outer expansion. Now (3.1) becomes

e~2G(e$, (7J, e) ~ |[£2 + (ij — l)2] In ^ + 21)

-<4t't, + (f++l)') + 0('')- <3'21)
If 62 = +1, this agrees to O(e) with the expansion G* given by (1.5). If b2 = — 1,
it agrees to O(e) with the expansion of G~ for the exterior of the circle x2 + (y + 1)" = 1.

For s > 1, h, is just

h.ft, v) = -JP + A-& ") (3-22)W Ll(£ - U + 17 J (t - U + v J
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where -f indicates that the integral is to be integrated as a distribution because the
integrand may be unbounded at |£'| = . The function A, again is regular biharmonic
and satisfies the conditions

A.& 0) = 0) = 0. (3.23)
It must also satisfy the condition

A.& v) = Oip'-1) as P-.» (3.24)

so that e°+2A,(£, rj) can be matched with the outer expansion. It follows from (3.23)
and (3.24) that

4.(C, v) = E tC,mcm{6) + S.mSm(0)]pm, (3-25)
m = 2

where C,m , S,m are constants and S,2 = 0. The sum in (3.25) is taken from ?n = 2
because no biharmonic function of the form /(0)p can be found to satisfy the required
conditions. An immediate consequence is that A2 = 0. This suggests that h2 can be
calculated explicitly. The calculation, however, is not given here.

The constants Csm and S,m are so far undertermined. It is the purpose of matching
to determine them. For this purpose we need to know the outer expansion of the inner
expansion. To find the behavior of the inner expansion for large p, we use (3.22) together
with h„ and h, given by (3.13) and (3.20). Then we can prove inductively that

h.(i, V) = 0(p8-1), P->», S > 1, (3.26)

and

A.(f,u)~ £ p-»®, 8>1- (3.27)
m = — oo

Furthermore

+ (V - l)2] In + (if - l)2] + A„({, V) ~ £ hMp". (3.28)
m = — oo

The fact that h, is harmonic together with (3.25) implies that

= (Asm + Sam)Sm(6) + (B.m + C,m)Cm(6) + A.jsm(0) + B,mCm(e) (3.29)

where S,2 = 0, and S,m = C,m = 0 unless s > 2 and 2 < m < s — 1. The constants
A,m , Bsm , A,m and B,m arc determined by the integral in (3.22).

We now use (3.27) and (3.28) to obtain the expansion of «_2(?(e£, ejj, e) for p large.
It is

f'G(£, eV, e) ~ £ £ £/sm(0)p"\ (3.30)
8=0 O • TO=-CO

Next we set (J, r;, p) = e~1/2(o-, v, X) in (3.30). Then upon rearranging the series, we get

e~2G(t/2<r, t/2v, e) ~ £ «*'2 £ + Sn,2n-k)S2n-k(0)
k = 1 n = 0

+ (B«.2n-t + Cn,2n-k)C2n_k(6) + An,2n-k^2n-k{S) + Bn , 2„_*C2„-*( 0) ] X^"* . (3.31)

We note that (3.31) satisfies asymptotically the boundary condition 011 v = 13(a, t'~)
for all values of Cmn and <S"m„ , which are still undetermined.
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4. Matching. To match the inner and outer expansions, we note that the left
sides of (2.12) and (3.31) are the same. Therefore the right sides must be asymptotically
equal. This yields

^I or ^v-a.Q I { Apq or Bva\ i P — 0) Q ^ V (4*1)

(p - q)\ or = J} \Ava or Bcq), p > 0, q < 1, (4.2)

(p ^ qy A*-*.* = (^ + SPQ), p > 2, 2 < g < p — 1, (4.3)
1 ^ (Bpq + CJ, p > 2, 2 < q < p - 1. (4.4)

(Pp!
The constants 4, B, A and 5 are known, and hence (4.1) and (4.2) yield the corresponding
A', B', A' and B'. It remains to be shown that the constants A' and B' associated with
(4.3) and (4.4) can be determined from the outer expansion. Then CVQ and Sva can be
found from (4.3) and (4.4) to complete the inner expansion.

The function Gn defined by (2.3) can be written as

Gn(x, y) = Kn(x, y) + Hn(x, y) (4.5)
where

Kn(x, y) = Z Jnm{6)rm, Hn= £ JnMrm (4.6)
m=—» m=0

and Jnm is defined by (2.4). We note that the coefficients involved in Kn are completely
determined by (4.1) and (4.2).

Let R„(x, y) be a regular biharmonic function defined by
VX = o, (X, y) E D, (4.7)

Rn = —Kn, dnRn = —dnKn , (x, y) E dD, r^O. (4.8)

The functions Rn , n > 1, are well defined and can be determined by solving the series
of boundary-value problems defined by (4.7) and (4.8). The following lemma enables
us to determine the unknown coefficients involved in Hn in terms of the coefficients
in the expansions of R„ .

Lemma. Rn(x, y) = Hn(x, y).
Proof. This follows by setting Gn = Kn + Rn and noting that Gn , together with

its normal derivative, vanishes on dD.
With this lemma, the left-hand sides of (4.3) and (4.4) are completely determined.

The coefficients Cva and Sva can now be found.
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