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ULTRASPHERICAL POLYNOMIALS APPLIED TO NONLINEAR VIBRATIONS
OF CONTINUOUS MEDIA*

By P. T. BLOTTER (Utah State University)
and D. H. Y. YEN (Michigan State University)

Introduction. In several recent papers [1-5] a method for treating discrete non-
linear vibration problems has been developed. By linearizing the nonlinear forces using
a set of ultraspherical polynomials over the interval in which the motion takes place,
approximate nonlinear amplitude-frequency relations with fair accuracy are obtained
from the solutions of the resulting linear systems. Some more general linearizations
have also been reported [6, 7]. The method is restricted essentially to systems which
have one degree of freedom or may be characterized by a single amplitude [8].

In this note, the method of ultraspherical polynomials is extended to systems
governed by nonlinear partial differential equations to obtain approximate nonlinear
amplitude-frequency relations in the neighborhood of the linear eigenvibrations. It is
assumed that the systems depend on one space variable and time, and the nonlinear
terms in the equations depend on the displacement and its spatial derivatives but not
on time explicitly. An obvious difficulty immediately arises when one attempts to follow
the method developed for discrete systems because the amplitude of motion is a function
of the space variable and not known in advance. To overcome this difficulty some appro-
priate "mode of deflection" must be assumed. In cases where a linear mode is known,
it is taken to be the mode of deflection; otherwise some suitable approximation to the
linear mode must be made. Next, an amplitude parameter is introduced so that the
amplitude of motion is given by the product of the amplitude parameter and the normal-
ized linear mode. Using ultraspherical polynomials, the nonlinear terms are replaced
by terms that are linear in the displacement and linear partial differential equations
result. With the given homogeneous boundary conditions one is led to solve linear
eigenvalue problems. The determination of the eigenvalues leads to the desired amplitude-
frequency relations.

The method. The governing equations in dimensionless form are taken as

Lxu -f- co2W(, -f- N xu = 0 (1)

where Lx is a linear differential operator of order 2n, u is a function of the space variable
x and time t, u is a frequency parameter, and Nxu is a nonlinear function of u and its
spatial derivatives such that

uNxu > 0 (2)

for all u. For simplicity it is also assumed that Nxu is odd in u and its spatial derivatives.

* Received July 5, 1973; revised version received March 5, 1975.
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The displacement u satisfies the time-independent homogeneous boundary conditions

Dtu(0, 0 = 0, i = 1, 2, ■ • • , p, ^
Diu(l, 0 = 0, i = p + 1, • • ■ , 2n

where D, are linear differential operators of order <2n in x. Henceforth it is assumed
that the time-reduced linear equation

LXV - tfV = 0 (4)

with V = V(x) subject to
Z)(F(0) = 0, i = 1, 2, • • ■ , p, ^

DxV{1) = 0, % = p + 1, ,2n

forms a properly posed self-adjoint boundary value problem. It is also assumed that
Lx is positive definite and the eigenfunctions l\(x), corresponding to an infinite, discrete
set of positive eigenvalues O,2 that increase monotonically to infinity, are orthonormal
in the sense

/'Jo
V,{x)V,{x) dx = (6)

and are complete in the usual sense of eigenfunction expansions [9].
In order to solve (1) the nonlinear term Nxu is approximated by a function that

is linear in u. To achieve this one expands Nxu in a series of ultraspherical polynomials
and then truncates the series after the linear term. The ultraspherical polynomials
Pnx(v) are orthogonal over the interval (—1, 1) with respect to the weighting function
(1 — y2)x_1/2 and may be obtained from Rodrique's formula [10] as

Pn\v) = Bn\ 1 - vTX+W2(jJ( 1 - v2y+x-i/2 (7)

where n and X, n being a nonnegative integer and X > —1/2, are respectively the degree
and the index of the polynomials. The normalization constant is given by

X _ (-l)T(X + 1/2)r(n + 2X)
Bn 2"n! r(2X)T(n + X + 1/2) ' * ^ °'

rx (— l)"2"n! , n
B" - (2»)! ' X " °-

(8)

Let Vi(x) be a linear eigenfunction and A be an amplitude parameter. To study
nonlinear vibrations that are close to the ith linear vibration, let us expand Nxu, at
some x where F,(a:) ^ 0, "formally" as

Nxu = t,CnPn\u/AV.) (9)
n = 0

where the Cn = C'Jx, X, A, i) are given by

fAV' Nxul 1 - (u/AVi)2]*-1"P.\u/AVi) du
^ = J-=f£r   (10)

/ [1 - (u/A V,yrw2[Pn\u/A F,)]2 du
J-AVi
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Note that the expansion in (9) is valid only for \u/AVi\ < 1. This restriction, however,
can be removed by truncating the series in (9) after n = 1, evaluating C0 and C, , and
casting the result in a slightly different form. Let us assume that Nxu depends only
on u. As N xu is odd in u, one obtains immediately C0 = 0. Now assume that Nxu depends
also on ux , uxx , ■ ■ ■ or even on integrals with integrands that are nonlinear in u, ux ,
uxx , • • ■ . One first constructs an odd polynomial in u that approximates N^u by making
use of the assumption u ~ AV<(x) cos t. Thus, for example,

(11)
ux ~ AVi' cos t ~ (F//F,)w, uxx ~ AVcos t ~ (V/'/V<)u, ■ ■ ■

[' u2 dx ~ A2 cos2 t [' (V/)2 dx ~ [' (V,')2 dx, ■■■ ,
Jo Jo ' t *0

and again C0 = 0.
To obtain a closed-form expression for C, , let us write

NXU~ it a2k+iu2k+1 (12)
k = 0

where a2k+1 may depend on Vi(x), Vi'(x), ■■■ . Substituting (12) into (10) and for
n = 1, one obtains

c, = j:^t+1y2k+l(AVr+1/2\, x ^ 0,
k = 0

C. = Ea»+,7»*+1(A7.-)"+1, X = 0,
(13)

where

Now with

_ r(fc + 3/2)r(x + 2)
724+1 r(3/2)r(fc + x + 2) { }

PiX(u/AVi) = 2\u/AVi , X 5^ 0,

PiXu/AVt) = u/AVi , X = 0
Eq. (9) in truncated form becomes

(15)

Nxu ~ C.P^u/A 7.) = E a2,+l724+1(^ F,)2tM (16)
t = 0

which is valid for all X > —1/2. The restriction |u/AF,| < 1 is removed.
The case where V Ax) = 0 at some x may be regarded as a limiting case of the analysis

above by letting AV, —> 0. It is easily shown that (16) remains valid as AV, tends
to zero and at a point where Vt = 0, Nxu is simply given by a,u.

With the aid of (16), defined for all x, 0 < x < I, Eq. (1) becomes
oo

Lxu + u2ult + ^2 a2t+172t+1[^lF.(x)]2tM = 0 (17)
* = 0

which is linear in u. Seeking a 2tt time-periodic solution and expanding the spatial part
of the solution in terms of the linear eigenfunctions, one writes



NOTES 109

u(x, t) = ^ ^-iF,(x)^ cos t- (18)

Substitution of (18) into (17) then yields

E MQ* - "2)F,(z) + i a2k+1y2k+l[AVt(x)]2{i A,v,(x)) = 0. (19)
1 = 1 A: = 0 \|-1 /

Multiplying (19) with Vp(x) and integrating with respect to x from 0 to I and using (6),
one obtains

av(q; - co2) + f if: «»+17»+i[av^aorfi; ̂ f^If^) dX = o, (20)
Jo U = o \ = 1 ')

from which co2 and Ap will be determined below.
At this point it should be remarked that the approximations made thus far have

been for the purpose of obtaining nonlinear solutions in the neighborhood of an ith
linear eigenvibration. The approximations are to be understood in an "asymptotic"
sence that they become more and more accurate as A tends to zero. In consistency
with this observation, one expects that u(x, t) tends to AVi(x) cos t when the non-
linearity is absent. Now setting p = i, A , = A and keeping only the A A' ,■ (x) term in
the series 2;-i" ^l,F,(x), one obtains

= fi,2+ Et2k + iA2k f a,k^vtu+\x)dxf
k = 0 JO

= 1,2,--, (21)

which gives the square of the ith nonlinear frequency as a function of the amplitude
parameter A. In a similar manner one may also determine all 4,, p ^ i, from (20).

Application. Frequency-amplitude relations for vibrating strings, beams, membranes
and plates that contain nonlinear restoring forces have been obtained in [11] using the
method described above. One example system is considered here as an illustration.

When axial tension is included, the dimensional equation of motion for free vibration
of a uniform beam with immovable end supports may be written as [12]

EIUXXXX - (F0 + F)UXX + PUTT = 0 (22)

where Fn is the initial tension and F is the induced tension. F is approximated as

ESF = 21 [' (Ux)2 dX (23)
•'O

where S is the cross-sectional area and other symbols have their usual meaning. Upon
introducing the dimensionless quantities

u = U/l, t = iT, P = Fal2/ElT , ^4)

X = (j/T)X, CO2 = (P1*/EIte = Sl2/2irl,

one obtains, from (22), the following dimensionless equation:

uxxxx — PuXI — tf M2 dxuxx + u2u,t = 0 (25)
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which is in the form of (1) if one sets

I = 71-, L, = —4 - /3 —2 , iV> = — tuxx J (uxf dx. (26)

Let us consider vibrations in the first mode. By (11) and (12) one has

N,u = a3u3 (27)

where

a3 = -eTV'(x) f [7/(x)]2 fe/[Fx(x)]3. (28)
^0

The amplitude-frequency relation now follows directly from (21) as

= Q,2 - tA273 [ V^V/'ix) dx f [V/ix)]2 dx (29)
^0 *>0

where

3
T3-2(\ + 2)' (30)

If one defines the maximum amplitude of vibration as

A* = IA |F,U (31)

then the amplitude term tA2 in (29) can be expressed in a more descriptive manner
for experimental work as a ratio of A * and the radius of gyration r for a beam of length
ir as

eA2 = | v, UJ (32)

From Eqs. (29) and (32), along with the linear eigenfunctions [13], the frequency-
amplitude relation for a simply supported beam follows as

3(^)2 (33)w2 = nr + 0.250073

for the clamped-hinged beam

a)2 = Q2 + 0.298773^) (34)

and for the clamped-clamped beam

co2 = fi,2 + 0.309l73(^-) • (35)

In Fig. 1, the frequency ratio oj/Q, is plotted against (A*/r) for clamped-clamped,
clamped-supported and simply-supported beams. Two different values for X, X = 0
(Tchebycheff polynomials of the first kind) and X = 1/2 (Legendre polynomials),
are used. The results here show that the nonlinear frequencies increase with increasing
amplitudes. This is to be expected as the nonlinearity included here possesses hard
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Fig. 1. Amplitude-frequency curves for beams with immovable supports.

spring characteristics as it provides additional constraints to the system. It is also
interesting to note that the results here for X = 0 agree exactly with those of Evensen
[14] using the perturbation method.
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