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1. Introduction. The flow between porous discs has recently been studied by
several authors. As in the case of porous pipes and porous channels, the Navier-Stokes
equations reduce to a set of nonlinear ordinary differential equations. Dorfman [1],
Elkouh [2, 3, 4] and Naranyana [6] obtained solutions only for small cross-flow Reynolds
numbers. Rasmussen [7] found analytic solutions for large Reynolds numbers in the
case of two nonrotating porous discs. In this paper we shall study the case of two rotating
porous discs. The rate of rotation is assumed to be comparable to the cross flow, i.e.
/3 = ilL/W = 0(1). Analytic solutions will be found for both small and large Reynolds
numbers. The results will be compared to those from numerical integration.

2. Formulation. Fig. 1 shows two coaxial porous discs situated at 2 = ± L and
rotating with the same angular velocity Q. Fluid is withdrawn from both discs with
velocity W (injection if W is negative). We shall assume the gap with 2L is small com-
pared to the diameter of the discs so that end effects can be neglected. The flow field
is symmetric about the z = 0 plane and about the z axis.

The incompressible axisymmetric Navier-Stokes equations in cylindrical polar
coordinates are

uur + wuz — v2 /r = —Pr/p + v(V2u — u/r2), (2.1)

uvT + wv, + uv/r = v(W2v — v/r2), (2.2)

uwr + ww, = —p2/p + i>V2w, (2.3)

(ru)T + rwz = 0, (2.4)

where
,2 9, 1 d , d

= t 2 H— 7 h „ 2 (2-5)dr r or oz

and u, v, w are velocity components in the directions r, 0, z respectively. The boundary
conditions are

at z = ± L u = 0, v = rO, w = ±W. (2.6)

Utilizing the symmetry of the problem, we set

u = rj'(r])W/L, v = rg(v)W/L, w = -2f(v)W, (2.7)
p = — pr2AW2 / (2L2) + pP(v), (2.8)
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Fig. 1. The coordinate system.

where -q = z/L and A is a constant to be determined. Eqs. (2.1)-(2.4) become

(/')2 - 2//" - g2 = /I + /"' (2.9)

or, after differentiating once,

-2(//'" + <,</') = i/"", (2.10)

2(/'<? - fg') = | ff", (2.11)

P(v) = -2/2lT - 2.TF/VL + B. (2.12)

Here R = WL/v is the cross-flow Reynolds number. The constant B is determined,
say, from the pressure at the edge of the discs. The boundary conditions are

/'(I) = /(0) = /"(0) = 0, 1(1) = -h (2.13)

g'(0) = 0, 0(1) = 12 L/W = /3. (2.14)

Eqs. (2.10)—(2.11), a set of nonlinear ordinary differential equations, are to be solved
with the boundary conditions Eqs. (2.13)-(2.14). After j(ri) is obtained, the constant
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A is determined by setting

A = —2/(l)/"(l) - p2 - |/'"(I)- (2.15)

We shall assume p = 0(1).

3. Small Reynolds number. We expand the dependent variables in terms of the
small parameter R:

Kv) — <Po + Rfi + R2<P2 + • • • (3.1)

g(v) = Xo + Bxi + R2X2 + ■ • • (3.2)

Eqs. (2.10)-(2.11) yield

W" = o, Xo" = o, (3.3)

<Pi"" = —2(>Po<Po"' + XoXoO) Xi" = 2(<p0'xo — <PoXo'), (3.4)

W" = — 2(*J<W' + <Pi<Po" + XoXi + XiXoO)

x2" = 2(^/xo + Vo'Xi — <P\Xa — VaXi) ■ (3.5)

The boundary conditions are

^o'(l) = MO) = W(0) = 0, *„(1) = -h
Xo'(0) = 0, Xo(l) = P, (3.6)

*,(1) = *.'( 1) = Pn(0) = «5„"(0) = x/(0) = x»d) = 0, n * 0. (3.7)

After some algebra, the solutions are

^o = | (y* — 3i7), xo = P, (3.8)

= ll20 (~"7 + 21"5 ~ 39"3 + 19,?)' (3'9)

Xi = g (l4 — 6rj2 + 5)> (3.10)

=1 (=£ » j. I • 177 7 , 17 5 J43. » 137 \
560 \440 v + 6 v 140 V + 10 v 1848 v 385 V 'ip2

Jj_ 7 _ l_ 5 _13_
^ \840 V 40 v + 280

X2

1)3 ~ Ho") ' (3'n)

J ~3 8 , _1_ . Ill 4 _ 253 2 3183^ , .
\2240 n + 80v 3360 v 560 v + 6720/ ( ' '

When P = 0, the solution for /(17) reduces to those obtained by Elkouli [2] who studied
the small Reynolds number flow between two non-rotating porous discs.

4. Large-suction Reynolds number. In this case R is large and positive. Eqs.
(2.10)-(2.11) show a boundary layer exists on i| = ±1. We shall use the method of
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matched asymptotic expansions. Let R l/e » 1 and we expand, for the interior flow,

/ = Fo(v) + + ■ ■ ■ , (4.1)

9 = + • • • , (4.2)
The zeroth-order equations are

W + G0G0' = 0, (4.3)

F0'G0 - FuGo' = 0, (4.4)

The boundary conditions are

Fo(0) = F„"(0) = G„'(0) = 0, F0(l) = -§. (4.5)

The only solution is

F0 = -h, G0 = 0. (4.6)

This shows that although both discs are rotating in the same sense, the interior is pri-
marily not rotating. For the boundary layer at 77 = 1 we set

v = 1 - «€, (4.7)

/ = — i + e/itt) + ■ • • j (4.8)

9 = 9o(£) + «£7i© + • • • • (4.9)

Eqs. (2.10)—(2.11) yield

(4.10)

-flfo' = ffo". (4.11)

Together with the boundary conditions /,(0) = //(0) = 0, <7o(0) = fi and matching the
outer solution, we find

/. = *[«-! + exp (-0], (4.12)

g0 = fi exp (—£). (4..13)

Similarly the higher-order solutions are

Fi = -v/2, Gi = 0, (4.14)

g, = «(l + J) exp (-£), (4.15)

A uniformly valid composite solution is thus obtained:

1 = ~2 + I ("^ + GXP (-0) + 0(l5) ' (4'16)

g = fi exp (-£) + ^ 0^1 + exp (-£) + oQ^- (4.17)

5. Large-injection Reynolds number. If R is large and negative, we expect the
boundary layer to be at the center plane 17 = 0. We set R = — l/e ^ —1. An expansion
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similar to Eqs. (4.1)-(4.2) yields Eqs. (4.3)-(4.4), albeit with different boundary
conditions:

F„(0) = Fo'(l) = 0 G0(l) = /3, F0(l) = -1/2. (5.1)

The solutions are unique:

„ — (1 — cos 2/3jj — tan 2/3 sin 2(h)) . .
Fo = 2(1 - sec 2/3) ' (5'2)

„ /3(1 — cos 2/3r; — tan 2/3 sin 2/3j;) . ,
tro — 00\ ■ \O.S)(1 — sec 2/3)

As /3 —> 0, F0 reduces to the quadratic found by Rasmussen [7] for non-rotating discs:

lim F0 = |?j2 — ?). (5.4)
/s-o

The singularity at the boundary layer is much weaker than the suction case, since
the discontinuity is in the derivative of G0 and the second derivative of F„ . We set

V = Ve (5-5)

/ = V* foif) + • ■ • , (5.6)
9 = V< g0it) + ■■■ ■ (5-7)

The governing equations become

2/0/0"' = /o"", (5.8)

2(/o'f/o - Uo'fo) = -ffo". (5.9)

The boundary conditions are

/o(0) = /„"(0) = 0, /„(») -» -Cf, (5.10)

ff'(0) = 0, ff„(»)-»2,8Cf, (5.11)
where

_ > 0. (5.12)
1 — cos 2/3

These are obtained by expressing the interior solution in terms of the boundary layer
variable f. The solutions are

u = -Cf, (5.13)

g„ = 2/3 J^2Cf ̂ exp (-Cf2) df + exp (-Cf2)J- (5.14)

The composite solution is then

-(1 - cos2/3tj - tan 2/3 sin 2/3r)) , ^ 1 /c1cN
f = (1 - sec 2/3) + ° (V-~K)' (5'15)

»- w " cos(fI'y-> <-<*■> + <»•"»
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6. Numerical integration. An exact solution to the Navier-Stokes equations is
obtained if we can integrate Eqs. (2.10, 2.11, 2.13, 2.14) numerically. This is, however,
a difficult two-point boundary-value problem. Instead of using a three-parameter
shooting method, we shall use a scheme first utilized by Terrill [9] who studied the
porous flow in a channel. Let

t] = yt, (6.1)

"- Ig ■ ' - $•
The governing equations and boundary conditions become

p,», + FF„, + GG, = Qj (6.3)
G" + FG' - GF' = 0, (6.4)

F'( 1/y) = F( 0) = F"( 0) = G'(O) = 0, (6.5)
F{l/y) = -Ry, G{ 1/y) = 2 0Ry2. (6.6)

Starting with a guessed F'(0), F"'{0) and G(0), whose values are guided by the approxi-
mate formulae from the previous sections, we integrate Eqs. (6.3), (6.4) by the variable-
step Runge-Kutta algorithm until F'(£) reaches zero, say at £ = £*. Then we set 7 = l/£*,
R = —F(£*)/y, /3 = G(£*)/(2Ry2). Whereas the values of R and /3 are determined a
posteriori, one integration is sufficient to solve the nonlinear problem.

7. Discussion. Table 1 shows the results from the numerical integration compared
to those from the small Reynolds number expansion (Eqs. (3.1, 3.2)) and those from the
large Reynolds number expansions (Eqs. (4.16, 4.17, 5.15, 5.16)). It is seen that the
small Reynolds number expansion is good when |/2| < 1 for j(-q) while g{r;) is less accurate

Table 1. Comparison of starting values from numerical integration with those from approximate
methods.

/'(0) /"'(0) 0(0)
R jS numerical approximate numerical approximate numerical approximate

(Eq. (4.16)) (Eq. (4.16)) (Eq. (4.17))
20.345 3.6648 -0.54398 -0.5245 0.00698 0.000 -0.00108 0.000
8.5679 0.00000 -0.60236 -0.5583 0.24870 0.000 -0.00000 0.000
4.0866 0.65478 -0.67462 0.69747 -0.16865

(Eq. (3.1)) (Eq. (3.1)) (Eq. (3.2))
1.0021 0.04101 -0.73198 -0.73232 1.28873 1.29272 0.14639 0.08622
0.31438 1.17726 -0.73988 -0.74150 1.37682 1.39640 1.47976 1.46370
0.13151 0.68501 -0.74754 -0.74757 1.46991 1.47030 0.74754 0.74693
0.044253 0.72837 -0.74922 -0.74922 1.49045 1.49046 0.74922 0.74920

-0.033438 0.015323 -0.75056 -0.75056 1.50698 1.50698 0.01501 0.01501
-0.58530 0.20341 -0.75951 -0.75939 1.62068 1.61921 0.15190 0.16201
-1.23220 0.25527 -0.76899 -0.76770 1.74881 1.73377 0.15379 0.24227
-4.39563 0.43440 -0.79913 2.24572 0.15982

(Eq. (5.15)) (Eq. (5.15)) (Eq. (5.16))
-11.8240 1.14699 -0.69147 -0.517 0.45228 0.000 0.27659 0.270
-39.0691 0.98224 -0.70736 -0.655 0.00156 0.000 0.14147 0.143



SYMMETRIC VISCOUS FLOW 35

for the same range. The asymptotic large Reynolds number expansion is good if |/2| is
above twenty or thirty. Numerical integration should be used for the intermediate
values.

Figs. 2, 3, 4 show the normalized velocity distributions /(?j), /'(??) and g{ti) for various
cross-flow Reynolds numbers and rotation using numerical integration. The boundary
layer character for large Reynolds numbers is evident. There is very little change in
the normal velocity profiles while the radial velocity profile /'(??) shows more
variation for positive (suction) Reynolds numbers. Of some interest is the azimuthal
velocity profile g( 17). Depending on R and 0, the interior may rotate slower or faster
than the discs. For intermediate and large positive R, g(ij) changes sign. For instance,
we see from Fig. 4 that when R = 4.0866, /3 = 0.65478 the rotation is retrograde in the
interior —.57 < 77 < .57 and prograde near the discs.

The present study considers two discs rotating with the same angular velocity in
the same sense. If suction or injection is not present (R = 0), the interior rotates rigidly

-f

Fig. 2. Normal velocity distribution: A: R = 20.345, (3 = 3.6648; B: R = 4.0866, (i = 0.65478; C:
R = 0.033438, 0 = 0.015323; D: R = -39.0691, 0 = 0.98224.
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Fig. 3. Radial velocity distribution: A: R = 20.345, 0 = 3.6648; B: R = 4.0866, 0 = 0.65478; C:
R = 0.033438, 0 = 0.015323; D: R = -39.0691, 0 = 0.98224.

with the same angular velocity. Since this problem can be regarded as porous flow in
a rotating system, why not formulate our equations in a rotating frame. The reason
for not doing so lies in the difficulty of numerical integration. As we recall, the numerical
integration was started midway between the discs, where all known boundary conditions
are zero. We integrated out to the disc and accepted whatever values of suction R
and rotation /3 result. In a rotating frame the above integration scheme does not work
and the tedious shooting method must be used.

In this analysis /3 = ilL/ W is assumed to be of order unity, i.e. suction is as important
as rotation. Actually suction must be present in order for the flow to differ from rigid
rotation. Also, two discs are required in order for suction to have a non-trivial effect
on interior rotation. The motion therefore is not driven primarily by rotation, as in
the case of single porous discs studied by Stuart [8] and Kuiken [5].

The assumption /3 = 0(1) of course includes the case when 0 <K 0(1). In particular,
when j3 = 0 we recover the non-rotating solutions obtained by Elkouh [2] and Rasmussen
[7], For low Reynolds numbers, the radial velocities <p0 and <pi are identical with Elkouh's.
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Fig. 4. Azimuthal velocity distribution: A: R = 20.345, /3 = 3.6648; B: R = 4.0866, /3 = 0.65478;
C: R = 1.0021, 13 = 0.04101; D: R = 0.13151, 0 = 0.68501; E: R = -4.39563, 0 = 0.43440; F: R =
-39.0691, 0 = 0.98224.

The correction due to rotation in <p2 is of order R2(32. Therefore our solution for small
Reynolds numbers breaks down when /3 = 0(1/R) or larger.

For large suction Reynolds numbers rotation does not affect the radial velocity
to the order considered, and the solution is identical with Rasmussen's. The azimuthal
velocity, of order /3, was not found by Rasmussen. On the other hand, for large injection
Reynolds numbers rotation has a primary effect on both radial and azimuthal velocities.
The solution differs entirely from Rasmussen's, although his result could be recovered
by taking the proper limits.

When /3 is much larger than 0(1) the problem becomes a perturbation on rigid
rotation and a rotating frame of reference should be used. Although both analysis and
numerical integration become more complicated, interesting phenomena studied here
such as the reversal of interior rotation of the fluid do not occur.
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