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1. Introduction. Martin [1] developed a new approach in the study of plane viscous
flows of incompressible fluids. Following Martin [1], Nath and Chandna [2] studied
plane viscous magnetohydrodynamic flows and derived the fundamental equations
governing the flow in a new form, using streamlines and magnetic lines as the coordinate
curves in a curvilinear system. These authors established the following results in case
of orthogonal flows:

(i) if the streamlines are straight lines but not parallel, then they must be concurrent;
(ii) if the streamlines are involutes of a curve, then the streamlines must be concentric

circles.
The above approach is valid if magnetic lines and streamlines do not coincide and

thereby excludes aligned flows from consideration. Throughout this paper we study
plane, steady flows of a viscous incompressible fluid of infinite electrical conductivity
for which the magnetic field vector lies in the flow plane and makes a constant angle
8 with the velocity vector, including the case of aligned flows. We introduce curvilinear
coordinates <t>, \p in the physical plane in which the coordinate lines \p = constant are
the streamlines and the lines </> = constant are left arbitrary. For instance, orthogonal
trajectories of streamlines, or in the case of non-aligned flow, magnetic lines can be
taken as the lines <f> = constant. For the flows under study we establish the following:

(i) If the streamlines are straight lines then they must be concurrent or parallel.
(ii) If the streamlines are involutes of a curve, then they must be concentric circles.
(iii) If the streamlines i = constant and their orthogonal trajectories 0 = constant

generate an isometric net, then the streamlines are restricted to parallel straight lines,
concurrent lines, concentric circles or logarithmic spirals if 6 ^ t/2. This result was
first established by Hamel [3] and later proved using new approach by Martin [1] for
non-MHD flows.

2. Flow equations. The steady, plane flow of a viscous, incompressible fluid of
infinite electrical conductivity is governed by the following system of equations:

dii , du

dpu/dx + dpv/dy = 0, (1)

dp (d2u . d2u\ TT(dH2 dH
T~ = ~ Mn2[ J ,>1" s +• W + i - HP + w - - W ■ (2)

«.(» £ + »?)+?- + fi] + - %) , (3)dx dy/ dy \dx dy 1 \ dx dy
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uH2 - vHt = k, (4)

dlljdx + dH2/dlJ = 0, (5)

where u, v are the velocity components, , H2 the components of magnetic field vector
H, p the pressure function, 17 the constant coefficient of viscosity, p the constant density, p.
the constant magnetic permeability and k an arbitrary constant which is zero for the
aligned flows and non-zero in the case of non-aligned flows.

We define the following functions:

dv du „ _ dH 2 dll j
dx dy ' dx dy '

It = |pq2 + p,

wherein q = (u~ + y2)1/J.
In terms of these functions, the system of equations (l)-(5) is replaced by the fol-

lowing system:

dpu/dx + dpv/dy = 0, (7)
r](du/dy) — pa>v + p.QH2 = —(dh/dx), (8)

7](d<jj/dx) — putu + p.QH 1 = dh/dy, (9)

uH2 - vHx = 7c, (10)

dH 1 /dx + dH2/dy = 0, (11)
dv/dx — du/dy = co, (12)

dH2/dx - dHJdy = Q (13)

of seven equations in seven unknowns u, v, H, , H2 , co, Q and h as functions of x, y. The
advantage of this system over the original system is that the order of partial differential
equations has decreased from two to one.

Eq. (7) implies the existence of a stream function \p(x, y) such that

d\f//dx = —pv, d\f//dy = pu (14)

and \p(x, y) = constant defines the; family of streamlines. Let us take <t>{x, y) = constant
to be some arbitrary family of curves such that it generates with \p(x, y) = constant
a curvilinear net (<p, \p) in the physical plane.

Let

x = x(<t>, ip), y = y{<t>, <p) (15)

define the curvilinear net in (x, ?/)-plane and let the squared element of arc length along
any curve be

where

ds~ = ^P)d<f>~ + 2F(<f>, \p)d(f>d\p + \p)d<p~ (16)

* - (*)"+ (g)' " - (s)($ +
0 = (w) + (if)
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Eq. (15) can be solved to obtain

<t> = <p(x, y), i = \p(x, y)

such that

— = _ / ^ _ j d/y _ r 30 n7s
30 a?/ ' 30 dy ' dcf, 3/ ' 30 dx 1 j

provided that 0 < |J| < <», where J is the transformation Jacobian, and

y = SX;30/ \30/\30.

Letting <* denote the local angle of inclination of the tangent to the coordinate line 0 =
constant, directed in the sense of increasing 0, we have, from differential geometry, the
following results [4]:

,/ = ±W, W = (EG - F2)'/2,

g = Vi? cos a, VA'sina,
a</> d</>

dx F J dy F . J x
30 ~~ y/E C0S " ~ V^8111"' 30 ~~ y/E Sm a VECOSa' ^

3a=^r2 3a J 2
30 £ 30 E 12 '

where

F 2 = —f — /<' — 4- 27'' — — E2ff2 \ 30 30 30/

T„> = =L(E^-Fd4
(19)

2 IF V 30 30/

The three functions E, F, G of 0, 0 satisfy the Gauss equation:

/v =

where /v is the Gaussian curvature.

IF |_30 U' 1 / 30 U 12 /. (20)

We shall now study only those flows in which the magnetic field vector H makes a
constant angle 6 with the velocity vector V. Aligned flows are treated as special cases of
such flows.

In the case of non-aligned flows with non-zero constant angle (V, H) = d, (10) implies
that

Hq sin 6 = k, k ^ 0 (21)

where H = |H|.
In the case of aligned flows, we have

H = /V
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where / is some arbitrary scalar function. In view of (7) and (11), we find that / is constant
along each individual streamline, i.e.

V-grad / = 0.

Consequently, in case of aligned flows, we have

H = \m\ q. (21)'
Next, we transform the flow equations into a new form with </>, ip as independent variables.

3. New form for the fundamental equations. Equations of continuity and vorticity:
Martin [1] has shown that the equation of continuity (7) implies that the fluid flows
along the streamlines towards higher or lower parameter values of 4> accordingly as J
is positive or negative and that

Wpq = \/E, u + iv = ~~r exp (ia). (22)
pj

He has also proven that

=j- r- (-p]V Ld<p \W
A (E
df W/J (23)

Solenoidal condition on H: H makes an angle 9 + a or # + a - tt with the rc-axis
according as fluid flows along the streamlines towards higher or lower parameter values
</> and so we have

Hi = ± Ii cos (9 + a), H2 = ± H sin (Q + a) (24)

where the positive or negative sign is taken according as J is positive or negative.
Using (17) in (11), it follows that

= 0.dH i djj dHt dlj\ (dH? dx dH2 dx
d(j> dtp d\p dcf>) \ d(f> dip d\p d<t>.

Employing (18) and (24) in this equation, we have

(./ cos Q — F sin 6) + ~r E sin 6 — H y, V n 2(F cos 6 + J sin
dtp a ip l'j

+ // j, Tr/E cos 0 = 0. (25)
11J

The junction Q \ By the definition of Q and (17) we have

!dH2 dy dH, dy\ /<9//, dx dH, dx
\ d<f> d\p d\p dtp) \ dcp d\p dtp dep.

Using (18) and (24) in this equation, we get

Ve WQ = (F cos e + J sin 6) - ~ E cos 6
d(f) o\y

— H Tn2(F sin 6 — J cos 6) + H y, Tl22E sin 6. (26)
J J Hj
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Momentum equations: Using (17) and (18) in (8), we have

dw djr du dx
d<f> d\p d\p d(f>_ + sin (* + «)= (27)

Likewise, (9) takes the form

dco dy^
"U d\p

<h j d y
d\p d<p_

dx i wnu / q | v ( dh dx dh djA , .
CO — + IxWQH COS (0 + a) = I — — 7 + T7'T7/' (2^)d<j) \ dtp d\p d\p dtp

Multiplying (27) by dy/d<p and (28) by dx/d<t> and adding, we get

+ jiWQHVE cos 9 = -F ~ + E f-- (29)d(p 0(p o \f/

Likewise, multiplying (27) by dy/d\p and (28) by dx/dip and adding, we have

nJ %-«r + ,1 YQH{-yE COS 6 + -^Si„ ») - -a % + ?%■ (30)

Summing up, we have:

Theorem 1: If the streamlines \p = constant and an arbitrarily chosen family of
curves <p = constant generate a curvilinear net (<£, <p) in the physical plane of fluid flow
under study, the system of seven partial differential equations (7)-(13) involving seven
unknowns u, v, H, , H2 , u, Q and h is replaced by the new system

i)J Eu + nWQHVE cos 6 = E~ - F~,
d(p o\y o<p

T dcc TI7/-1 jT( F | J . \ „ dh ,, d/i_ _ Fw + cos 0 + ^,Sm = F - - 0-

3 /H7 „ a /ifFV -n hrr, = 0,d+ \E / d<£ U' *12 / w piu

^ («/ cos d — F sin 0) + ~r E sin 0
<79 d\y

d_ (F \ _ d (E_ V
La<#> w/ di \w).

(31)

— II j- Tii2(F cos 0 + J sin 0) + H — Tl2'E cos 0 = 0,

y/E WQ = (F cos 0 + J sin 0) — E cos 0
dtp a \p

— H y, Tn\F sin 0 — J cos 0) + H y, T]22E sin 0)
11/ lis

of six partial differential equations in seven unknowns E, F, G, w, Q, H and h. Given a
solution

E = E(<{>, 1p), F = F(<p, \p), G = G(<t>, yp), h = h(4>, \p)

w = "(</>! i), H = H{<t>, 1p), Q = Q(<j>, ip)
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of the system (31), we can find x, y as functions of 0, \p from

2 = / 'E d<t> + (F + iJ) d*)

where

« = / I {r,,2 cl<t> + r122 di\. (32)

E, F, G, h, co, Ii and Q may now be obtained as functions of x, y and thus H, , //2 , u, v
and p are obtained as functions of x, y from:

//, + ill, = (~j-J exp [i(0 + «)],

Ve e
u + iv = —— exp (la), ]) — Ii —f ^ >' 2pW

The system (31) is an underdetermined system as there are seven unknowns and
only six equations. It can be made a determinate system in several ways. We consider
one of the methods of making above system determinate. In this method the orthogonal
trajectories of the streamlines \p = constant are chosen as coordinate lines 0 = constant.
In this case F = 0 and the momentum equations (29), (30) become

v ̂  ^ " + nQHy/(i cos 6 = ~ ,

./ dco J dh

Using the integrability condition d2h/d<f>d\p = d~h/d\pd<p, we get

d IJ dco\ d (J du
J)<f> \I'J (50/ d\p \fi d\p

<?co
<90

m Vg) cos 6 + di {QH Vg) sin e. = 0, (33)

Therefore, we state:

Corollary 1: If streamlines ip = constant and their orthogonal trajectories 0 =
constant are taken as (0, tp) net in the physical plane, the fluid flow under study is re-
presented by the system

r* (i<
'L50 \ e i
■ „ , „ dco\ d (J <9co

77 'T' 30/ Ihp \G di.
dco~64> + ^

I 'ii1!) I A /_ 1
dip \(EG)W~ d\p/ 30 \(EG)W~ d<p.

= 0,

(34)
— ~ (~)
PW dxp \W/ '
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T a , 7, • adH , i tt ■ dE J dGJ cos e — + E Sin 0 —- + \H sm 6 — + §# ^ cos 0 — = 0,
d<£ dy dip Cr d<t>

/ . dH „ 5// . TT dE . tt J ■ „ dGVE WQ = J sin 9 — — E cos 6 — - cos 6 - sm 0 —-
00 ai// oy u aq>

of five partial differential equations in five unknowns E, G, to, H and Q.

4. Straight streamlines. In this section we inquire what plane flow patterns arc
possible when the streamlines are straight lines. For electrically non-conducting viscous
flows this result has been studied by Martin [1], and streamline pattern is either parallel
or concurrent lines. Nath and Chandna [2] extended this result to electrically conducting
fluids for orthogonal flows.

Now we investigate the same problem for constantly inclined velocity and magnetic
fields. In order to approach the answer, we assume that the streamlines are non-parallel
straight lines enveloping a curve C. Taking the tangent lines to C and their orthogonal
trajectories (the involutes of C) as a system of orthogonal curvilinear coordinates, the
squared element of arc length is given by [4]

ds2 = dt? + ({ - a)K\h2 (35)

where o- denotes the arc length, k the curvature of C and | the parameter constant along
each individual involute. If v denotes the angle of elevation of the tangent line to C, we
have dv/da = k and (35) becomes

ds2 = df + (£ — a)dv2 where a = a(v). (36)

In this coordinate system the coordinate curves f = constant and v = constant are
respectively the involutes of C and the tangent lines of C.

We now investigate the flows for which

<t> = </>(£)> i (37)
Using (37) in (16), we get

ds2 = E<t>'2d? + 2Fcfr'+'dtdv + GV'dS. (38)

Comparing (38) with (36), we obtain

E = , F = 0, G = [-77^Li (y) _ (39)
1

few
We assume that J > 0.

Using (39) and introducing £, v as new variables in the Gauss equation (20), we find
that it is automatically satisfied. Substituting E, F, G from (39) into (34), we have

d (t \dw.(e ~ a) , d
+ VJv

da)
-(£ — <f) dv_

M ~ - <r)] COS e + M I (QH) sin 0 = 0, (40)

1L
p(£ — <f) dv \£ — <J

(41)
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f)H c)H
—— (£ — a) cos 6 + —— sin 6 + H cos 0 = 0, (42)
d£ ov

c)H
tt — <r)Q = ~^r tt — <r) sin 6 - — cos 6 + H sin 6 . (43)d£ ov

Eqs. (40)-(43) are valid for both aligned and non-aligned flows. However, for the non-
aligned case qH sin 6 = k 9* 0, as given in (21), is the additional restriction. This restric-
tion is not valid for aligned flows and, therefore, we use (40) to (43) with 8 = 0 for such
flows.

First we consider the non-aligned flows. Using (21), (41), (42) and (43) in (40), we
obtain the condition

15r)<r'3\p' + (£ — + lOria'a" \p'] + (£ — cr)2[9r]\f/' a' + 4t^a" \p"

+ 6r]<jr\p'" + + 3iA'V] + (£ — <r)3[4:r]\p" + vi'"] +

+ (l ~ff)B £h v2 + {t- th v* s °- (44)
Since £, v are independent variables, for the relation (44) to hold identically, it must
hold on the curve C which appears as | = a (v), and consequently

15?i<r'3\l/' = 0.

This implies that a' = 0 as \p' cannot vanish identically. Therefore, the radius of curva-
ture R(= (j'(v)) of C vanishes identically and streamlines are concurrent lines. Now we
consider aligned flows. Eqs. (40)-(43) reduce to the following form:

d tt \dutt - *) + vi
1 dw

_(£ — <r) dv_

1

Tt + " Tt ~ ^ = °> ^45)

ptt - <0 dv
r

£ ~ a. (46)

£ [//(I " cr)] = 0, (47)
ok

tt - v)Q = -dH/dv. (48)

Eq. (47) implies that

H = F(v)/{i - <r) (49)

where F(v) is an arbitrary function of v. From (45), (46), (48) and (49), we get

15770-'V + tt - <t)(15t;<7'V + 1(Win

+ tt — a)2[9r]a'ip' + 4 T]a" \p" + + r\a'" \p' + 3or'i/''2 — 3fxa'F2(v)]

+ tt — <t)3[4t7i/'" + + 2ip'\f/" — 2/ijF(i')F'(i')] = 0.
By the same argument as used earlier, </ = 0 and so the radius of curvature of C is
zero and streamlines are concurrent. Summing up, we have:

Theorem 2: If the streamlines in steady, plane flow of a viscous incompressible
fluid of finite electrical conductivity are straight lines, they must be concurrent or parallel.



THE FLOW OF A VISCOUS MHD FLUID 295

5. Flows in which streamlines are involutes of a curve C. In this section we in-
vestigate flows in which streamlines \p = constant are involutes of a curve C. Martin
[1] studied such steady, plane flows of viscous incompressible fluids and found that
streamlines must be concentric circles. Nath and Chandna [2] extended this result to
orthogonal magnetohydrodynamic flows.

As in Sec. 4, we take the curvilinear coordinate system (£, v) where coordinate curves
£ = constant and v = constant are the involutes and tangent lines of C respectively.
We now seek those flows for which

<t> = i (5°)

The squared element of arc length is

ds'' = + (£ — cr)dv\ (51)

Using (50) in (16) and comparing with (51), we get

f = 0' (52)

We assume </=(£— <r)> 0. The Gauss equation is again automatically satisfied.
With the introduction of E, F, G from (52) in (34), we obtain

(QH) cos 6 + j- {QHG - cr) j sin 9 = 0, (53)

1 d

+ m| | (QH) COS e + | Wit - a)! sin

p(£ — c) di [(* - °W\, (54)

~ cos 6 + ~ (£ — a) sin d + H sin 6 = 0, (55)
OV dl;

r)H c)N
(£ — <r) Q= sin 6 — — (£ — <r) cos 0 — H cos 6. (56)

OV oi;

Eqs. (53)-(56) are valid for non-aligned as well as aligned flows. First we consider the
non-aligned flows. Using (21), (46), (55) and (56) in (53), we obtain the condition

3??i/<V2 + -q\p'(r"(£ — a) + — fVOft — o-)" — — &)*

+ - cr)5 = 0. (57)

For the relation (57) to hold identically, it must hold on the curve C given by £ = o(v)
and consequently u' = 0 since \p' cannot vanish identically. This implies that radius of
curvature of C vanishes identically and C reduces to a point. The streamlines are con-
centric circles with this point as centre.

In case of aligned flows (55) becomes

dH/dv = 0,

implying that H = F(£), where F is an arbitrary function of £. From (53), in this case
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we obtain the condition

3 T)i'a'2 + #V'(£ — a) + (rji' — a'i'1 + nF(£)</2)(£ — a)2 — #"(£ — <r)3

+ 2„*"'ft - <7) 4 + „*"•'($ - <r)5 = 0. (58)

By the same argument as used earlier, we see that </ = 0 and streamlines are concentric
circles. Therefore, we have:

Theorem 3: If the streamlines in the fluid flow under study are involutes of some
curve C, then C must be a point and the streamlines are circles concentric at this point.

6. Isometric net. In this section we study those flows in which streamlines and
their orthogonal trajectories coincide with the curves in an isometric net [4], Martin
[1] has studied this problem for non-MHD flows.

Let

z = x + iy = 2(f) (59)

be an analytic function of f = £ + i<r. The curves £ = constant, a = constant in the
2-plane (physical plane) form an isometric net. We want to determine all flows for which

<t> = </>(£), i (6°)
the functions </>(£)> \p(a) being at our disposal.

The squared element of arc length in this (£, a) net is

ds2 = A(£, c)[dt + da2] (61)

X = |2'(f)|2. Using (60) in (16) and comparing with (61), we get

1 ~ [•>'©!'' 1 »'«]'' ( '

Substituting for E, F, G from (62) and using (60) to introduce £, a as independent vari-
ables in the Gauss equation (20), we get

-<h> ($ + &') -0 (63)
where I = In X, which merely confirms that In X is a harmonic function.

Noting that d(x, y)/d(£, a) = X, from (60), we have

J = d(x, y)/d(4>, \p) = (64)

Using (62), (64) in (32), we get

2 = J exp (§/ + ia) dt;

where

a = If (-dl , , dl ,

choosing J > 0. If m denotes a harmonic function conjugate to I, then a = a0 + m/2
where a„ is an arbitrary constant and 2 is given by
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z = J exp (i(l + im)) d£. (65)

Substituting for E, F, G from (62) in system (34), we obtain

= 0, (66)d co d"co
»\t.2 I 2. oa . - r - + m (Qff Vx) cos 0 + f (Qff \A) sin ̂

00"

= (67)

dff . ,dff . i „ . dl , 1TJ adl . Q.— COS 0 + — sin 0 + 5// sill 0 — + fff cos 0 — = 0, (68)
d£ dcr da- d£

VxQ = ^ sin 0 — ~ cos 0 — \H cos 0 ~ + ^ff sin 0 —• (69)
d£ da" do- d£

We consider the aligned and non-aligned flows separately. In the case of the aligned
flows, (68) becomes

(dH/do + meim = 0
which implies that

VXff = F(a) (70)

where F{a) is an arbitrary function of a. On elimination of co, Q and ff from (66), we obtain

§ + {if ~ 2~f i + \{*' f ww)I+ T;' =0 <711
provided that co 0.

If we set

3£ ' da

5 _ c _ £:lu — 1" 1 C — / " >v y

« = ~ , j8 = -v- , a = I pf - -77 /<»/<»
(72)

a + ?'/3 is an analytic function of f and (71) becomes

a2 + 02 - 2aa - 26/3 + c = 0 (73)

where a = a(<r), b = b(a), c — c(a).
Martin [1] has shown that as a consequence of (73) a, /3 must be constant. In view

of this we take a, (3 to be constants a0 , in (72) and obtain

I = a0£ — /3o<7 + Vo, m = /30£ + a0cr + 50

where c0 , 5o denote arbitrary constants.
From (65), we get

= C J exp (4 f) df
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where A = \ (a„ + ?'/?„) and C = exp (|(^„ + i50)), so that

z = Z(t -j- Cf if ^4=0

= z„ + -j exp (/If) if ,4^0

(74)

where z0 is an arbitrary constant.
Since the streamlines are the transforms of the lines a = constant, they are restricted

to (i) parallel lines if A =0, (ii) concurrent lines if a„ 5^ 0, /3„ = 0, (iii) concentric circles
if a0 = 0, /80 ̂  0, (iv) logarithmic spirals if a„ ^ 0, /3„ ̂  0.

Now considering the case of non-aligned flows, from (66)-(69) and making use of
(21), we get

-r - - w — - \2 — = (). (75)w da v v w v dt n sin2 e t'3 d£ y '

From (21), (62) and (68), we get

W/i') = cot e(dl/d£) + (dlido) (76)

which, 011 differentiation with respect to £, gives

(d2l/dtfa) + cot d(d2l/d^) = 0.

Noting that I is a harmonic function, we get

d_
da

si di— — cot 6 —M da.
= 0. (77)

From (76) and (77), we conclude that

~ cos 6 + sin 6 = A a + B
da

dl. dl , . ,,— sin e — — cos e = -At + c
d!j da

(78)

and

1p' = a exp [(5 Aa' + Ba) cosec 0], a 9^ 0, (79)

A, B, C being arbitrary constants.

As a result of (78), we obtain

I = | A sin da2 + A cos d£a — % A sin 0£2 + (B cos 6 + C sin 0)£

+ (B sin d — C cos 6) a + D, (80)

and

m = § A cos 6a2 — A sin 6£a — \ A cos — (B sin d — C cos 0)£

+ (B cos 0 + C sin d)a + D2 (81)

where D, , D2 are arbitrary constants. From (75), (79) and (80), we get
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(Ac + B)3 + (— At; + C)2(A<x + B) — 2[(A<r + B)2 cosec 9 + /l](4a-sin 9 A% cos 9

+ B sin 9 — C cos 9) + (Ac + B)[(Aa + B)2 cosec 8 -\- 3A] cosec 0 + - a(Aa + B)
v

■ {Aa cos 6 — A£ sin 6 + B cos 9 + C sin 9) exp [{\Ao2 + Ba) cosec 9\
> 2

H—3^-2 a (Act + B)(Ait cos 9 — A£ sin 9 + B cos 9 + C sin 9)a ?j sin 9 '

•exp [A(sin 6 — f cosec 9)a2 — A£ sin d + 2A£a cos 9

+ 2(B cos 9 + C sin 9)% + (2B sin 9 - 2C cos 9 - 3B cosec 9)a + 2Dt] = 0. (82)

For the relation (82) to hold identically, A = 0 and either

B = 0 or B cos 9 + C sin 0 = 0.

From (65), we get

z = z0 + D{

if B = 0, C = 0

2D
3ST) 6XP (~| (B Kil' 6 ~ C C08 6)t~° i(B sin 9 — C cos 8)

if B cos 9 + C sin 9 = 0 and B sin 6 — C cos 9^0

= Zn + a T.- a\ exP (2" (S'n ^ * cos
2D

C(sin 9 + i cos 9)

if B = 0 and C ^ 0.

where D = exp (§(£>, + iD2)) and za is an arbitrary constant.
As the streamlines are the transforms of the lines u = constant, they are restricted

to (i) parallel lines if B = C = 0, (ii) concurrent lines if B = 0, C ^ 0, and 9 = ± t/2,
(iii) concentric circles if B sin 9 — C cos 9^0 and B cos 9 + C sin 9 = 0, (iv) logarithmic
spirals if 9 5^ ± ir/2 and B = 0, C 5^ 0.

Summing up, we have:

Theorem 4. If the streamlines and their orthogonal trajectories coincide with the
curves in isometric net then the streamlines are restricted to (i) parallel straight lines,
(ii) concurrent lines, (iii) concentric circles, (iv) logarithmic spirals if 9 ^ ± ir/2.

In particular, in case of orthogonal flows we have:

Corollary: If the streamlines and magnetic lines coincide with the curves in an
isometric net, then the streamlines must be (i) parallel straight lines, (ii) concurrent
lines or (iii) concentric circles.
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