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Abstract. A simple algorithm, developed for a least-weight structural optimization
problem, is used to force the selection of the same n components of the vectors A' and F,
containing b elements (b > n) so that the objective function L max,,,,, {|A*|, |7|j is
minimized subject to n equality constraints on each vector, AX = b, , A Y = b2 . The
method has an obvious advantage over integer programming or branch-and-bound
techniques that would, in this case, seek the best selection of n out of b elements which
satisfy the constraints.

1. Introduction. The following problem, herein referred to as Problem A, arises
in the design of least-weight pin-joined trusses [4]:

Problem A:

minimize W0 = ^ L, max !|fV|, |f\2|}, i £ B (1)
i = l 1,2

subject to NF' = [NT , £4 | = P', T W R = BJ (2)

NF5 = [#r , = P2 T C\ R, = 0

and /'V = f<\- = 0, k <= R (3)

where the set B contains b elements and consists of two disjoint subsets to be found:
R of (at least) r elements and T of (at most) n elements. The unknown vectors F1 and F"
and the given vector L contain b elements each; the matrix N (b X n) and the -element
vectors P1 and P2 are also given.

The b elements of the set B correspond to the bars of a truss, which are assumed to
develop forces Fl and F2 under two independent loadings P1 and P2 with components
corresponding to the n displacement components of the truss joints. The forces and the
loads are related by means of n equilibrium equations under each set of loads as shown
in Eqs. (2). Superscripts denote loading conditions. In general b > n is a condition re-
quired for stability, so that r (= b — n) force components must be independently specified
in order that the remaining n components can be evaluated. The truss has thus r degrees
of freedom and is termed "indeterminate" to the rth degree, where

r = b — n > 0. (4)
* Received March 28, 1975.
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It is therefore possible to partition the forces F to a set of r "redundants" (R) and a
complementary "tree" set (T) of n members such that

F,1'* = Nr~\P1'2 ~ NkFk1'2) (5)

which follows directly from Eqs. (2). Whenever Eq. (4) holds as an equality (r = 0)
and no set R can be selected or equivalently F,t = 0, the second term in the parentheses
of Eq. (5) vanishes and F T is directly determined from the given loads using N r which
is (n X n) and hence invertible in general. Such a truss is termed "statically determinate",
since the equilibrium equations (statics) are sufficient to determine its forces. After the
forces are evaluated the cross-sectional areas of the members are computed. Assuming
that the stresses are not to exceed some fraction of the most severe of Fl and F2 (regard-
less of signs), the term max12 (|F,'|, |F,2| | is proportional to the cross-section of the ith
element, so that each product L, max,,2 !|^V|, |^\2|} in Eq. (1), where L, is the length
of the bar, is proportional to its volume or weight.

Problem A expressed in words using the above terminology can thus be stated as
follows: find the least-weight statically determinate truss with given geometry (N)
under two given loading conditions (P1 and P'). Equivalent formulations in Sec. 3
suggest solutions using integer programming or branch-and-bound [5] techniques.
These serve to highlight a simple algorithm which avoid the difficulties and limitations
of such techniques and is central to this paper. In a previous work [1] Problem A, with
the constraint of Eq. (3) relaxed, was shown to decompose into two simpler linear pro-
gramming [3] problems. This decomposition is briefly presented in Sec. 2. The algorithm
developed in Sec. 4 starts at the point where the decomposed optimal solutions have
been obtained. Since upon introducing Eq. (3) these are no longer feasible, they are used
as a lower bound and are modified step by step until the desired optimum is reached.

2. The decomposed problem. Consider the following problem, referred to as
Problem B:

Problem B:

minimize W = ^2 Lt max |f,2|j i (E B (1)
1 ,2

subject to NF' = Pl and NF2 = P2. (2)

Except for the absence of the constraint in Eq. (3), Problems A and B are identical.
It follows that the optimal solution of Problem B, W, is the smallest value that W,t of
Problem A will reach. Furthermore, the solution of the latter is a subset of the former.
Since these facts are used to develop the algorithm in Sec. 4, the solution of Problems B,
given in [1], will be briefly described.

Using the identity

max \ \x\, \y\) = | |.r + y\ + % \x - y\

the vectors Fs, FD, Ps, PD defined as

ps = hp1 + p2); pn = up' - n-, (6)
Vs = i(F1 + F2)] F" = i(F' - F2)
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can be substituted in Eq. (1) and Eq. (2), yielding

Problem Bt :

minimize W = £ L, |/<\s[ + £ L, [F,°| = 17s + If" (7)

subject to A7'"s = Ps and NFD = P". (8)

Problem B, , in which the superscripts S and D stand for "sum" and "difference", can
be decomposed into two independent problems, each of which corresponds to weight
minimization under a single load Ps and PD:

The decomposed problem:

"sum" problem minimize IFS = £ L,
(9)

subject to NFS = Ps

"difference" problem minimize W" = ^ !^°l>
(10)

subject to NFD = P".

The optimal solution of Problem B, if', can thus be obtained as the sum of the two
solutions of the decomposed problem:

W = If" + W". (11)

Similarly, the optimal forces F1 and F2 may be obtained using
Fl = Fs + FD, F2 = Fs - F° (12)

which is true by definition (Eq. (6)).
It should be noted that the above results, reviewed from [1], were obtained using

linear programming methods by Hemp [6] and, without using these methods, by Nagtegaal
and Prager [7, 8].

The optimal structures in the "sum" and "difference" problem are both statically
determinate. This is a well-known result in structure design. It can also be reached using
the formal theory of linear programming [2], Since there are n equality constraints, it
follows from Eq. (4) that (at least) r = b — n bars must have vanishing forces in the
basic optimal solution as they correspond to nonbasic variables.

Let S and D be the n-bar sets which form the optimal bases and hence have non-zero
forces Fs and F" respectively; the optimal truss of Problem B can be obtained by forming
the union of these sets:

S\J D = B. (13a)

Here it should be remarked that a certain bar may have vanishing forces in both Eqs. (9)
and (10), i.e., for some bar L, PLS = PL" = 0. It is assumed that such a bar will be elim-
inated from the original set, the dimensionality of the problem will be reduced and the
set B can be redefined still as having b bars, where b has been properly adjusted. The
overlap set SD of S and I) is defined as the set containing nonvanishing forces in either
Eq. (9) or Eq. (10):

SD = Sr\D (13b)
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Similarly, the complementary r-bar sets of vanishing forces will be designated by >S'0 and
E0 . It follows that

s yj s„ = b, s r\ s0 = 0 (13c)
D\J D0 = B, D n D0 = 0. (13d)

The above relationships among the sets are illustrated in Fig. 1. Physically, the optimal
b-bar solution ir of Problem B contains:

a. a set SD of (n — r) bars common to both optimal solutions of the decomposed
problems, f\" ^ 0, FtD ^ 0, i G SD;

b. a set S0 of r bars with vanishing forces under Ps, F,s = 0, F" 0, j E S0 ;
c. a set D0 of r bars with vanishing forces under PD, Fks ^ 0, F," = 0, I £ J), .

The above results become significant in the next sections.

3. Branch-and-bound and integer programming formulations. Restating the
objective in Problem A, the best partition of the set B into the disjoint sets R and T,
defined in the introduction, is to be found such that FTl and FT2 computed from Eq. (5)
with Fr = FR2 = 0 as required by Eq. (3) yield the desired minimum W0 oiW0 .

Using branch-and-bound methods [5], an efficient technique could probably be found
to exhaust all the possibilities of selecting the r elements of R from the b (= n + r)
elements of B, which amount to bl/rl n\. Such a technique, with its dimensionality
drawback, would be further complicated by the fact that not every selection of r members
qualifies as a set of redundants for reasons of structural stability.

Perhaps because integer programming [5] does not offer any formal known technique
to solve such a problem, the formulation of Problem A as an IP problem is interesting
by itself:

b

minimize Wn = ^ 5, max {|/^t 11, |F,2|J
i=l 1,2

subject to Ntj SiFi12 = P/2 j = 1,2, ••• , n (14)
b

and ^2 where 5, = I or 0.

Fig. 1. The disjoint subsets of B.
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When we use the decomposition shown in Sec. 2, Eqs. (14) become

minimize TFo5 = T"! L, SiS |f;S| subject to A7,-,- 8,SF,S = P*; (15)
minimize W0D = V. L,: S,D |-FiD| subject to Ar,, &,"F,D = P,D, (16)

where j = 1,2, ■ • • , n, i £ B, and
S,5 = S", where <5,'s and 5,c are 1 or 0. (17)

It is remarkable that Eqs. (15) and (16) represent the same objective function and same
type of constraint with a modified vector of constants, as shown for simplicity below:

minimize L |X| subject to AX = b, , (15a)
minimize L |F| subject to AY = b2 . (16a)

The additional constraint, Eq. (17), requires the n elements of X and Y in the bases
to have identical indices, thus forcing the same determinate w-bar set to be selected in
each case.

4. A simplex-in-reverse algorithm. In this section an algorithm based on modifying
the simplex [3] optimal solution of Problem B is developed to solve Problem A. W, the
optimal 6-element solution of the former, is used as the greatest lower bound of W0 ,
which is any feasible solution of the latter containing only n elements. Since W0 = min W0
is sought, it can be obtained by minimizing the difference W0 — 11'. This fact will be
used as a criterion for eliminating r members out of the given b.

Consider the two final linear programming simplex tableaux corresponding to the
optimal basic solutions Ws and W" of the decomposed problem (Eqs. (9) and (10)).
Fig. 2 shows them after rearrangement in sets which were defined in Sec. 2. Thus, each
tableau contains three disjoint subsets (Fig. 1) S0 , SD and D0 . For convenience, these
subsets are referred to as follows:

in the "sum" tableau »S'0 = S, , SD = S2 , D0 = S3 ,

in the "difference" tableau D0 = DY , SD = D2 , S0 = D3 . (18)

o
c?5 or
CD >

w

s0 D0
Sl S2

SD

# 0

* 0

Ws

co a:< <m >~W
S0 SD

~Dj Dz D3

#0

#0

w

"sum" "difference1

Fig. 2. The final simplex "decomposed" tableaux.
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Thus <S2 VJ S3 and D2 VJ 1)3 correspond to S and D respectively and contain the basic
variables, while S, and D, correspond to S0 and D0 and contain the nonbasic (zero)
variables.

The two tableaus are merged, as shown in Fig. 3, to become the initial tableau for
the procedure specified below. It should be remarked that the initial tableau represents
an unfeasible solution for Problem A since it contains r = b — n extra elements.

4.1 The algorithm.
1. (a) Select a member as £ S3 as a candidate for leaving the basis in the "sum"

tableau.
(b) Select, as a candidate to enter the basis, the member /3s £ S, that produces

the least increase AW0S when entering the basis, thus replacing a'\
2. Repeat step 1 on the "difference" tableau, tentatively selecting aD = 0s £ D3

to leave and /3d £ D, to enter, thus producing AW,/'.
3. Compare AllV and AW,'' and change basis according to step 1 if AW0S <

AlF0°, otherwise change basis according to step 2.
4. Compare the sets Si and D, after rearranging the variables as a result of step 3.

If Si D, go to step 1, otherwise stop.

4.2 Discussion.
1. Since Si and Dt are mutually exclusive, and since by definition D3 = Si and S3 =

]), , a member a leaving D3 (or S3) becomes immediately a member of D, (or S0, so
that Si and Dt both contain a after a single iteration. Similarly, since S2 = D2 = SD,
13, which is exclusive to either S or D, becomes common to both following the exchange
and hence augments the set SD. This implies that after a single iteration a member a is
eliminated while another, /3, becomes common to both bases.

2. The change of basis in step 3 corresponds to moving from a vertex i in the con-
straints hypersurface, which can be shown to be convex, to the next closest vertex j
such that (Woj — W0i) is minimum. In particular, after the first iteration the weight
Wqx closest to W is attained. Thus, the objective function W0 keeps increasing while
ascending a minimal amount relative to the initial position. In this sense the algorithm
resembles the simplex method preformed in reverse .

3. The procedure is repeated until r bars selected from either Si or Dt are eliminated
so that all the n remaining elements are in the common set SD, thus leaving S3 and D3
empty. Since the vertex reached then is the closest to W with n bars, it is the desired
optimal solution W0 .

4. Note that whenever the basis changes according to step 1, /3,s need not be considered
further for elimination. Similarly, step 2 implies that as should remain in the basis and
/3d should not be eliminated. This indicates that it is sufficient to perform the algorithm
only r times and that this can be done considering either St (or I),) for entering or S2
(or D2) for leaving.

5. Finally, it should be noted that it is possible to show that members of the set SD
(the initial and obviously the one in any iteration) are not good candidates for elimina-
tion, although this is intuitively obvious. The proof hinges on the fact that variation
of SD variables corresponds to motion along the hyperplanes and not the edges of the
hypersurface of constraints. This in effect limits the search for the leaving variable
considerably, as shown in the shaded area in Fig. 3.
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Fig. 3. The initial "simplex-in-reverse" tableau.

5. Conclusions. The algorithm presented in Sec. 4 avoids the limitations of integer
programming and branch-and-bounds procedures. The initial tableaus may be conven-
iently generated by library simplex routines and the procedure described very easily
programmed. From the structural point of view, it has yet a further advantage. An
optimal statically indeterminate truss, with decreasing degrees of freedom from r (TF) to
zero (W0), is generated as a by-product at every iteration.
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