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A MODEL FOR ONE-DIMENSIONAL, NONLINEAR VISCOELASTICITY*
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Abstract. The problem

utt = a(0)a(ux)x + a(t — r)a(ux)x dr + /, 0 < x < 1, t > 0,
Jo

u(0, t) = m(1, t) = 0,
u(x, 0) = u0(x), u,(x, 0) = u,{x)

is considered. The essential hypotheses are that a(t) = a„ + A(t), a„ > 0, A £ L'(0, ),
(— l)kaa)(t) > 0, k = 0, 1, 2, a(0) = 0, a'(£) > e > 0. It is shown that the problem
has a unique classical solution for all t if the data are sufficiently small and, if / is suitably
restricted, this solution tends to zero as t tends to infinity. It is shown that the problem
provides a special model for elastic materials which exhibit a memory effect.

1. Introduction. Consider the one-dimensional motion of an elastic bar. Let
x + u(x, t) denote the position at time t of a section which is at position x in the un-
stretched configuration. Then ux is a measure of strain. Nonlinear elasticity assumes
that the stress a(x, t) at the section at time t is given by a(x, t) = <r(ux(x, <))• If the bar
has unit length and unit density in the unstretched configuration and the ends are fixed,
then an appropriate dynamic problem is:

Utt = v{ux)x , 0 < x < 1, t > 0, (1.1)

u(0, t) = w(l, 0 = 0, (1.2)
u(x, 0) = u0(x), ut{x, 0) = Ui(x). (1.3)

It is known [8] that if a is genuinely nonlinear then this problem cannot have a global
smooth solution for any non-zero data. One resolution of this paradox is to give up the
requirement of smooth solutions and seek weak (or shock) solutions. This program is
carried out in [5] for small data. A second idea is to change the underlying constitutive
assumption. One such change is to introduce a "viscosity" term, which means assuming

a(x, t) = <i(ux) + X(ux)uxt , X© > 0. (1.4)

This alters Eq. (1.1) and it is shown in [7] and [10] that the resulting problem always
has a global smooth solution which is asymptotically stable, no matter how large the
data.
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The model we present in this paper is intermediate between the above extremes.
It arises in a natural way from the assumption of a memory effect in the material, as
described below. It yields global solutions which are asymptotically stable but only if
the data are sufficiently small. We conjecture that for this model data which are too
large will produce breakdown.

We believe the situation is analogous to the following very simple one. Consider the
equation u, + uux = 0, — <» <. x < <*>, t > 0 with u(x, 0) = a(l + a:2)-1. This situa-
tion is analogous to (1.1)—(1.3), that is no smooth solution exists but there is a weak
solution. If the equation is changed to u, + uux — \uxr = 0, A > 0, there will be a unique,
global, smooth solution for any a. If, on the other hand, the equation is replaced by
u, + uux + Ku = 0, X > 0, there will be a smooth solution for a small but not for a large.

Let La[v] denote the linear operator

La[v](t) = [ a(t — t)v(t) dr. (1.5)
Jo

We consider the following situation:
Problem (P). Find u(x, t) £ C<2)([0, 1] X [0, <*>)) such that

utl = ^ La[a(ux)r] + f, (E)

u(0, t) = u{ 1, 0 = 0, (B)

u(x, 0) = u0(x), u,(x, 0) = u,(x). (I)

We give conditions on a, a and / which guarantee that, for sufficiently small data, (P) has
a unique solution which tends to zero as t tends to infinity.

Problem (P) is very close to the one considered in [13]. The only significant difference
is in the kernel a. In [13] we had a £ Li(0, °o) while here we have a = a„ + A, a„ > 0,
A £ £i(0, o°). This seemingly minor change requires a major modification of the proof
in [13] and means that (P) applies to a completely different physical situation. The
problem in [13] was shown to have its natural prototype in heat flow. The present problem
relates to elasticity, as we indicate now.

The problem of one-dimensional motion of elastic materials with memory has been
discussed at length in a series of papers by Coleman and Gurtin (see, for instance, [2]).
Briefly, the situation is this. The basic assumption in the theory of jading memory for
elastic materials is that the stress a(x, t) is given by a functional of the history uj of
strain; ux'(t) = ux(t — r), r > 0. For each x the history uxl is assumed to be in a history
space H defined by

H = \<p : ip measurable on R+, ||v||h = |^(0)|

+ ([ h(r) |<p(r)\" dr)l/V < oo, p > lj , (1.6)

The function h, called the influence function, is to be non-negative and in L, (0, oo). It
is assumed further that J is continuous on H. An example of such a functional is

5(<p) = <r(<p) + [ dr (1.7)
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If n is of algebraic growth of order p — 1 and b is suitably restricted then this functional
is continuous on H.

We again take the density to be one and we allow an applied force F(x, t) so that
the equation of motion is

u-tt — Ox + F. (1-8)

We assume that the ends of the bar are fixed so that (B) holds. We assume further
that the stress functional has the form (1.7). A well-set problem is to specify the history
of displacement up to time t = 0, that is u(x, t) in t < 0, and have (1.8) hold for t > 0.
This yields

utl = cr(ux)x + Lb[p,(ux)x] + / on t > 0. (1.9)

where

f(x, t) = F(x, t) + f b(t + t) ~ n(ux(x, —t)) dr. (1-10)
J o

Problem (P) results if we specialize by assuming that

M© = <*(Q, (1.11)
where c is a constant. If we set a(t) = 1 + c JV b(r) dr we obtain (E) (see also [15]).

Our model thus requires that a and n be essentially the same but leaves b quite
general. A different specialization is contained in a recent paper by Greenberg [6], He
assumes that a and ux are related by the equation

<*t + 7ji <? = (»i(«J)i + yp a-AUr). (1-12)

In our context this amounts to allowing a and n to be different but assuming that b is a
negative exponential.

If one assumes that the stress is given by a functional of the form (1.7) then relaxa-
tion experiments on materials (see [1]) indicate that one should have <r(0) = /x(0) = 0,
o-'© > 0, //(£) > 0, b < 0, b > 0, b £ £i(0, oo) and

O"© + M© [ b(r) dr > 0. (1.13)

Thus for assumption (1.11) we want a(0) = 0, </(£) > 0, c > 0 and a(t) = a„ + A(t),
where

a„ = 1 + c [ b(r) dr > 0, A(t) = —c f b[r)dr. (1.14)
Jq J t

We have then a > 0, a < 0 and a > 0. These are the only assumptions we use in the
paper except for technical conditions on smoothness and rate of decay of A.

Our conditions on a are the same as those used by Dafermos [4] in the study of linear
viscoelasticity. Dafermos, however, studied three-dimensional situations and obtained
generalized solutions. In [9] London obtains generalized solutions for some similar
nonlinear problems but with very different kinds of conditions on a.

Sec. 2 contains a precise statement of our results and an outline of that portion of
the proof which can be carried over from [13]. The proof in [13] breaks down here, where
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a„ > 0, in the loss of a crucial energy estimate. This difficulty is remedied in Sec. 3
by establishing some new estimates. These, in turn, depend on a delicate result on linear
Volterra operators which is established in Sec. 4. This last is a result of "frequency
domain type" similar to those of [3], [12] and [17].

2. Statement of results and outline of proof. We first list the hypotheses on a.
These are:

a = a,* + A(t), a„ > 0, i £ C<3)[0, oo), (a,)

VAW e £,(0, »), j < 7, k< 3, (a,)

(-1)M,W(0 >0, k = 0,1, 2, A{t) fi 0. (o3)

Remark 2.1. Conditions (a3) arc standard ones in the study of Volterra differential
equations ([9, 14, 17]). The role of the moment conditions (a2) is made clear in Sec. 4.
We suspect these conditions can be weakened.

For <r we require:

a E C<3)(— 00, oo), a(0) = 0, «/(£) > 6 > 0. (a)

The data u0 , uA and / are subject to the following conditions:

u0 e c<3)[o, i], u, e c(2)[o, i], (uo
ut( 0) = Ui( 1) = Ui"{ 0) = Ui"( 1) = 0, i = 0,1, (U2)

Kx, t) e c(2)([o, i] x [o, oo)), (fo
/(0, 0 = /(i, 0 = /„(0, <) = /„(1, 0- (fa)

Remark 2.2. Conditions (t/2) and (F2) permit smooth extensions of u0 , and /
to periodic functions on — oo < x < oo. This in turn allows one to replace (P) by a
pure initial-value problem (see [13]).

We also need some boundedness and growth conditions on /. Let us introduce some
notation. We write:

(2.1)

\v\{T) = sup \p(x,T)\, H = sup |w(x)|;
0<*<1 0< x<1

((p, q)){T) = f p(x, T)q(x, T) dx, ||p||2 (T) = ((p, p))(T);
^0

((v,w))= [ v{x)w{x)dx, | |f 112 = ((v, v));

™(((p> q)))r = f q))(t) dt; rilbllD2 =
Jo

(((V,<D)Y = °(((P, q))Y-, IMIT = "UNIT-
We require that:

|/| (0 G L,(o, oo), (F3)

'|||/i|ir E im(0, oo), i < 4. (F4)

.AW £/te above hypotheses are to hold throughout the paper. In addition we ivill assume,
without loss of generality, that a(0) = 1.
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We need the following quantities:

dv = £ z k(,,i; d, = (i/ko+i:'iii/iii') • (2.2)
i - 0 i = 0 \ j = 0 ' L 00 (0,00)

Theorem I. There exists a D such that if Dv + DF < D then
(i) (P) has a unique solution u;
(ii) \u\ (t), \u,(t)\, M0| 0 as t-> <*.
Remark 2.3. Theorem I can be extended to give approach to steady state. Suppose

j(x, t) = f0(x) + F(x, t) where F satisfies the conditions above. By (a) there exists a
unique function u{x) such that

= — a„_1/o ; «(0) = w(l) = 0. (2.3)

Then one can show that (P) still has a solution u which has the form u = u + v where
v satisfies (ii) of Theorem I. The condition o„ > 0 is crucial to the stability results.
If a„ = 0 then (i) of Theorem I is still true but (ii) is not. This can be seen by considering
the linear case.

We give an outline of the proof of Theorem I. We first review the procedure of [13].
Eq. (E) can be solved for a(ujx in the form

utt + ^ Lk[ur] - <j{ux)x = / + Lk[j] + k(t)u,i(x) = G(x, t) (2.4)

for a function fc. This equation can be written

utt + k(0)u, - <j{ux)x = E, (2.5)

where

E(x, t) = G(x, t) — k(0)u(x, t) + k(t)u0(x) + Lk[u(x, -)](0- (2-6)

If E were known, (2.5), (B) and I would be a nonlinear hyperbolic problem for
u. The homogeneous version (E = 0) was considered by Nishida [16] and the inho-
mogeneous version in [13], The important thing to observe is that (2.5), (2.6). (B)
and (I) represents a linear perturbation of Nishida's situation. It is not difficult to
establish a local existence and uniqueness theorem for this problem, but in order to
obtain global results, one needs an a priori estimate. The precise result, to be established
in the next section, is the following.

Theorem II. Suppose A;(0) > 0 and a satisfies the inequalities

k(MG)l < k = 0,1,2 for all £. (<x,)
Then there exists a D0 > 0, 5 > 0 and C > 0 such that if

Du + DF <D0, (2.7)

then any solution of (P) on [0, T] which satisfies

\ux| (T), \uxt| (T) < 8 (2.8)

also satisfies the inequalities

r* IMI2 (D, Tm ||Ml||2 (T), Tm \\ut\\2 (T), Tm ||Mi!||2 (:T), Tm ||Mll||2 (T),

-iiNir, iikiir, iikiir, iik.nr, iik,nr<c, m<±-, (2.9)
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d' + 'u
dx dl' (T) < C i + j <2. (2.10)

C depends only on (Dv + DF) and C —» 0 as Dv + DF —> 0.
Remark 2.4. The case m — 4 is a minimal result. If in (a2) we have tz+NAt'k) £

L,(0, =°), then Theorem II holds for m < N. In particular, if A(t) = 0 (exp {—fit))
then Theorem II holds for any m.

Once Theorem II is established one can complete the proof of Theorem I exactly
as in [13]. First let ?(£) be a function satisfying (a) and (trj) and agreeing with <r for
|£| < A/- We pick D„ in (2.7) less than D„ and solve (P) for a. We make the data so
small that (2.7) is satisfied, (2.8) is satisfied initially and C in (2.10) is less than min (DJ, 5).
Then (P) (with a) has a local solution which continues to satisfy (2.8). Hence we can
continue to arbitrary [0, T], By (2.10) we will have |w,| < Dn1-, hence <r(ux) = s(ux)
and we will have a solution of (P).

The decay results (ii) of Theorem I are established as follows. For functions satisfying
(B) we have [«| (T) < Hw^l (T), |m,| (T) < ||mx(|| (T) and \ur\ (T) < ||w„|| (T). Thus
the second and fourth of the inequalities (2.9) yield the first two results of (ii). The
third will be established if we can show that ||«,,|| (T) —> 0 as T —> co. This last fact,
however, follows from (2.5), (2.6), (2.9) and the following property of k which is given
in Lemma 3.1:

kU) E L,(0, ») j <2. (2.11)

The proof of Theorem I is thus reduced to that of Theorem II, and this is accom-
plished in the next two sections.

3. Energy estimates. In this section we give the proof of Theorem II except for a
lemma to be proved in the next section. We observe first that it suffices to establish
the estimates (2.9). If one has these estimates then one deduces that f0T \u\ (t) dt < C
and hence from (2.4), (2.6) and (F3), /0r l^l (0 dt < C1, C and C1 independent of T.
The estimates (2.10) then follow exactly as in [13] from arguments involving Riemann
invariants.

The estimates (2.9) are established by induction on m, again as in [13]. The main
ideas are contained in the case m = 0 and we treat this in detail. We begin as in [13]
by multiplying (2.4) by u, and integrating from x = 0 to x — 1 and t = 0 to t — T.
This yields, by (c),

j ikir (T) +1 ikircn + ,ft^Kd

<iikii2+ f r "'^de^ + iikiiniMir. (3-D
*'0 J(\

Lemma 3.1. The function k of (2.4) satisfies:
(i) k(0) > 0

(ii) t'kM G L,(0, «); j < 4, n = 0, 1, 2,

dii) (((», | /,[.])))' > 0.
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The proof of this lemma is a minor modification of the one in [13]. The conclusion,
however, is essentially different from the previous one. In [13], where o„ = 0, we had
k = + K, > 0 and K satisfying (ii). This had the effect of strengthening (iii) to

(((v,ftL*[v])))T >«(||MHT)2 (3.2)

for some a > 0. It is clear that (3.2) and (3.1) yield a bound for |||m,|||t. In the present
case this estimate is lost and all the complications which follow are designed to com-
pensate.

In the subsequent calculations we will use C to denote a generic constant which is
independent of T and can be made small with the data and K to denote absolute con-
stants. Eqs. (3.1), (2.4), (Ft) and Lemma 3.1 (iii) yield, then,

Ik|| (T), |M| (T) < C(l + HMD. (3.3)
Our next step, also from [13], is to multiply (2.4) by u and integrate. By (<r), Lemma

3.1 and |||M|||r < ||kll|T this yields

| (I I kill3)2 < *(Nklliy + ((«,«1))(r) + ((«»,«>)) + 11 MIT ilieilf. (3.4)

In [13] where we had a bound for 11|w,111r, and hence for |kll {T) and |k|| (T), we
could use (3.4) to bound jlklll''- Here we need a complicated intermediate step.

Eq. (E) can be solved in a different way for <r(ux)x , namely,

utt + Lr[u,,] - <t(uz)x - |8 / <r(ux)x dr = / + Lr\j], (3.5)
Jo

or

u>t11 + J^I/rkr] - <y{ux)xt - p<r(ux)x = ft + r(0)f + Lf[f] = H, (3.6)

for any 13 > 0 and some function r depending on /3. The proof of the following result
is lengthy and is given in Sec. 4.

Lemma 3.2. For any @ > 0 the function r in (3.5) satisfies:
(i) r(0) > 0

(ii) r = (J3/am) + R, t'Rin) G ^i(0, °°), j < 4, n = 0, 1, 2.
Moreover there exist positive constants /3, q, a such that q/3 < I and

v,ftLr[v])))T - (((!», LMW > (1 + «)(\M\y- (3.7)

Remark 3.1. Eq. (3.6) is similar to one in the paper [6] of Greenberg. It was that
equation which suggested the procedure to follow.

We propose to obtain a new energy estimate by multiplying (3.6) by qu„ + u, and
integrating. Here q and /3 are as in Lemma 3.2. We set

W[u] = Utu + ^Lrk,]. (3.8)
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Then one can verify the following formula:

(((qult + ut , W[u])))T = J ||Wll||2 (T) - f |0)||2

+ ((«, ,«„))(D - ((«!,«„(•, 0))) + Ikll2 (20 - IKII2

+ ((u, , LR[urr]))(T) + q(l^(utt , ~ Lr[wTT]))

- (((«,, , Lfi[Wrr])))T - (||k«||D2. (3.9)

We also introduce the operator

Q[u] = cr(ux)xl + P<r(ux)x , (3.10)

and obtain the formula

-(((<*«„ + u, , Q[U])))T = | ((„'(«,), 0)(20 - 2 ((o-'(^0'), (M|')2))

+ qfi((<r(ux), uxt))(T) - qf}([a(ui), «/)) + /3 f f <?(£) d£ dx
Jo Jo

- P [ [ cr(Q di, dx + ((([(1 - q$)<j'{ux) - WMuxt], Uxt2)))T■ (3.11)
«'o Jo

Since g/3 < 1, we can choose 5 so small that

(1 — g/3)e — = r > 0, (3.12)

where a is from (<r,). Then if (2.8) is satisfied we have

((([(1 - qp)a'(ux) - W'(ux)uxl], uxt2)))T > r(||k,||f)2. (3.13)

We are now ready to multiply (3.6) by qutl + u, and integrate. From (3.9), (3.11),
(3.13) and (a) this yields**

| ||Ml(112 (T) + ((«, ,utt))(T) + ((«, , LR[urr]))(T) + adlk.HD*

+ TjT I k« 112 (20 + qP((<r(ux), ux,))(T) + t(| | k<111')2

< C+ (q llk.lir + IlkllD 111" I IT- (3.14)
We estimate the left side. By (3.3), Lemma 4.2 and (o-J we have

((«, , utt))(T) < C |k, 11 (20(1 + | lk«IF)'
((«,, lr[utt])){t) < c iik.llT (! + Ilk<lID,
®8((a(u,),Mx,))(r) < c Ik, 11 (20(1 + | Ik. IIH- (3.15)

It follows that for sufficiently small data the left side of (3.14) is bounded below by

** Recall that C stands for any constant which is small with the data.
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f IMI2 (2') + f Ik.ll2 (T) + f(||M||T + rdik.iiD2 - c. (3.16)
We have ||kll|r < |||mi1|||t. Hence, by (Ft), we can choose the data so small that the
right side of (3.14) is bounded by

c + i (iik.iirr + ^iik.iir)2. (3.i7)
Now (3.14) implies that (3.16) is less than or equal to (3.17). Thus we conclude that

IKII (D, Ik.ll (t), Ilklir, llk.nr < c. (3.18)
The inequalities (3.3) and ||u|| (T) < |kll (T), together with (3.18), yield the bounded-
ness of ||u|| (T), ||u,|| (T) and |kll (T). From (3.18) and 11|w<111r < ||k(|||r we conclude
that ||klir is bounded and then, finally, (3.4) yields the boundedness of |||itx|||r and
hence of |||u|||r. This concludes the verification of (2.8) for m = 0.

The remaining portion of the induction proof is tedious but reasonably straight-
forward and is similar to one in [13]. The idea is to perform the same three steps as above
but multiplying by C as well. A typical calculation is the following:

rji m

-"(((«,,, <uXd))T = y

- iC(((*"k), UIt3))Y) - | (-'(((cr'k), (3.19)

If we assume that the estimates (2.9) hold for m — 1, then the last term in (3.19) is
bounded by C. We have also

-(((«„ , w[uW = y ^ +"((("'" Jt ir[w"])))T ~ f ^3-2°)

The last term on the right is bounded by the induction hypothesis. For the second term
on the right we can use the following result from [13]:

| Lrk,])))T = (((r/2utl , | Lr[rm/2u„])))7 + A, (3.21)

where
7/1—1

|A| < Kmm\\\utt\\\T Z'llk.lir, (3-22)
i =o

for some constant Km . (This formula holds if t'r G Li(0, =») for j < m and this is the
case here by Lemma 4.2.) The sum in (3.22) is bounded by the induction hypothesis so
that R is bounded by C(m|||w(1|||T).

If one uses formulas of the type (3.19) and (3.20), together with the fact that quad-
ratic terms dominate linear terms, one finds that the truth of (2.9) for m — 1 implies
its truth for m and the proof is complete.

4. Proof of Lemma 2.2. It can be seen from (3.5) and (E) that the function r is
to be such that the solution f of the equation

t + Ld[f] = <p (4.1)
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satisfies

f(0 + /3 f f(r) (It = ^(0 + Lr[<f](0- (4-2)
^0

If we formally take Laplace transforms of (4.1) and (4.2) we find

r"00 = (l + f)sa (s) V s/

where r and a are the transforms of r and a. We study the properties of the function
r given by (4.3).

Conditions (a,) and (o2) imply that

a'(s) = a^s'1 + ^4~(s), A~ £ C<7)(Re s > 0), (4.4)

with A analytic in Re s > 0. (One sees now the role of the moment conditions (a2);
differentiating a corresponds to transforming powers of t times a.)

It follows from Theorem 4.1 of [14] and Theorem 2.2 of [11] that conditions (a3) imply

Re A (it/) >0 —oo<)j<+ooJ (4.5)

-i)Im« iii]) >0 — ■*> < ?/ < + °o. (4.6)

From these equations and the maximum principle for harmonic functions, it is easy to
see that so (s) 5^ 0 in Re s > 0, s ^ 0 and hence that r (s) is defined for these s values.
A little closer analysis, using (4.4), shows that in fact

r'(s) = ~ + R" G C<6)(Re s > 0). (4.7)

Conditions (a^ and (a2) and integration by parts yield the estimates

a (s) = a(0)s-1 + a(0)s~2 + a(0)s-3 + o(s~3), (4.8)

as s —» in Re s > 0. From (4.3) we obtain, then,

r (s) = r„(/3)s_1 + r,((3)s"2 + o(s~2) as s -» °o , (4.9)

where

r„(/3) = 0 - a CO) > 0, r, (ft) = d(0)2 — a{ 0) — 0d( 0). (4.10)
One now constructs r by taking the inverse transform, that is,

K0 = - + ~ r + "° e°'R"(s) ds = £- + R(t). (4.11)
a„ ZTTl Jy-ioo da

The properties of r can be used to show that the integral is independent of 7 in 7 > 0
and defines a continuous function R of t with r(0) = r0(/3). Moreover, one can show
that r satisfies (4.2). The behavior of R for large t can be determined by taking 7 = 0
in (4.11) and using the Riemann-Lebesgue lemma. This estimate can be improved
by integrating by parts in (4.11). Conditions (aj and (o2) can be used to show that the
estimates (4.9) can be differentiated and then six integrations by parts in (4.11) and
the Riemann-Lebesque lemma yield the estimate

R(t) = Oif") as t->co. (4.12)
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Finally we observe that the transforms of R and R are sR — R(Q) and s2R — sR (0) —
R(0) respectively and the whole analysis can be applied to these as well to show that
R andi? also satisfy (4.12).

The analysis above follows closely procedures in [12] and [13] and yields immediately
conclusions (i) and (ii) of Lemma 3.2. Conclusion (iii) is harder and we turn to it now.

Eq. (3.7) is equivalent to the inequality

M[v : T] = q f v(t) ~Lr[v](t) dt - f v(t)LR[v](t) dt > (1 + a) [ v\t) dt. (4.13)
J o Clt Jo Jo

We verify (4.13) for v's such that v £ C<2)[0, T], v(0) = 0. Since these are dense in L2[0, T],
(4.13) will then be true for all v £ L2[0, T], For the special vs we set vT(t) = v(t), 0 <
t < T, vT(t) = 0 for t < 0 or t > T. Then vT has a Fourier transform vT~ £ L2(— 00, °°).
Formula (2.9) of [11] and Lemma 4.3 of [14] then yield the representation

M[v : T] = — [ ( — qv Im r {iii) — Re R (ir;)) |i>r~(j;)|2 drj. (4.14)
7r «/o

We note that Re R {iri) = Re r (itj). Thus it follows from (4.14) and Parseval's theorem
that (3.7) will be implied by the following result.

Proposition 4.1. There exist positive constants q, 13, a such that qf3 < I and

— qij Im r (iri) — Re r (iri) > 1 + a. (4.15)

Proof: We have, by (4.3),

— qr) Im r (iri) — Re r (iri) — Re (irjq — l)r (iri) = T(g, /3, tj) + 1, (4.16)

where

r(9, v) = (a, (ivf + di (iv)2)~'^[q + ^2)ar (iy) + ~a, (tr;)|- (4.17)

Here we have written a (iri) — ar(iv) + ia{(irj). Eq. (4.15) then requires r(g, 0, v) > a
for all 17.

We write (4.17) in the form

r(q, 0, v) = <p(vh(q, P, v), (4-18)
where

<f(v) = ^ (ar'tivf + a~(irif)~\ (4.19)
V

y(q,e,,)-0 (4.20,
ai (l7l) Vai (lV)

We show first that there exists > 0 such that

if(ri) > for all 17. (4.21)

Eq. (4.6) shows that <p(rj) > 0 for all y and since <p is a continuous function, it suffices
to establish (4.21) for large 77. But it follows immediately from (4.8) that <p(rj) —> (l/a(0))
as r] —» 00. Hence (4.21) holds.

We have thus reduced Proposition (4.1) to showing that 7 is bounded below by a
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positive constant. We write

m(v) = ; n(n) = A m(v), (4.22)
a{ (t 77) v

so that Y(g, 13, 77) = g/3 — m(n)q — n{rj)(i — 1. From (4.4) and (4.8) we have

m(v) 0, n(v) —> — —as 77 —> 0, (4.23)

m{t]) —> a(0), 71(77) -^0 as 77 —» . (4.24)

We consider the curves 7(g, (3, 77) =0 in the q — /3 plane, 9 > 0. These can be written

' - «. = ') * ^

We have

- - I3y = -y ~ ^ • (4.26)
g g(g - *1(77))

From (4.22), (4.5) and (4.6) we see that m(ri) < 0 and 71(77) < 0 for all 77; hence (1/g) —
ff-, > 0 for all 77. We establish a stronger result. Given I and q, Q, 0 < q < Q < <*>, we
claim that there exists an «(g, Q) > 0 such that,

- — f3r > f for all q, q < q < Q and all 77. (4.27)

If this were not true then we could find sequences qk —s► g, g < g < Q, 77* —* with
(1/?*) ~ 0-,(?* , 1*) —► 0. But from (4.23), (4.24) and (4.26), (1/g*) — I3y(qk , 77*) —>
— a(0)/g2 > 0, a contradiction.

We now proceed as follows. Choose 0 < q < Q < 00 and take c < t(g, Q). Then
choose g and /3 such that

? < g < Q, qP < 1, (1/5) - /3 < «/2. (4.28)
By (4.27) we have, then,

/3>i-|>/3T+i-|> /?T(g, 77) for any 77. (4.29)

But by (4.20) we have dy/d/3 = q — n(ri) > 0 and thus (4.29) implies

y(q, P, v) > y(q, Pyv) = 0 for any 77. (4.30)

Eq. (4.30) shows that 7(g, /3, 77) is positive for all 77. Once again it is a continuous
function of 77 so if we can show that it has a positive limit as 77 —» °o it will necessarily
have a positive lower bound. But from (4.20) and (4.22) we have 7(g, 13, 77) —> g/3 -j-
ei(0)g > 0 as 77 —> °°. This concludes the proof of Proposition 4.1 and hence of Lemma 3.2.
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