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1. Introduction. We consider the following problem: there is rainfall over a plane
rectangular ground area (catchment basin) inclined at a slight angle to the horizontal, and
there is infiltration into the ground. The ground is initially dry, the higher end of the
ground remains dry at all times, and the rainfall ceases after time T. At the bottom end of
the rectangle there is a stream or channel into which the ground flow discharges. We will
assume that the rainfall and infiltration rate are time-dependent but their space depend-
ency is only on the distance x from the higher edge of the rectangle. It is clear then that the
streamlines of the overland flow are lines parallel to the inclined sides of the rectangle and
the flow is the same on each streamline. We may ask the following questions: What is the
depth h(x, t) and velocity u{x, t) of the flow? Secondly, it is clear that, starting at time T, a
free boundary x(t) will develop: x{t) is the time history of the water edge as it recedes,
because of downflow and infiltration, from the upper edge of the rectangle. What is x(t)l

An analogous problem can be formulated for a converging catchment basin; this is
part of the inner surface of a cone with a very large angle at the vertex. More precisely, let
segment PQ of length L intersect a horizontal plant at point P. The angle between PQ and
the plane is small. Let P1 be between PQ, PtQ = a. Rotate PQ around the perpendicular to
the plane at P through an angle less than 2ir. Then the surface generated by PXQ is the
basin. Flow is along the generating segments.

The continuity and momentum equations for these problems are easily formulated [1,
chapter 15]; we will obtain the continuity equation for each problem in Sec. 2. It is not
possible, in general, to obtain explicit solutions, so it is a question of what reasonable
simplifications can be made in order to obtain such solutions. There are two such
simplifications. The first is to replace the momentum equation by u = ahm, where m > 0
and a is a friction coefficient which may depend on x. The justification for this equation is
given in [1, chapter 15]; essentially, these terms are dominant, from the point of view of
order of magnitude, in the general momentum equation. The second simplification is to
restrict the rainfall and infiltration to be time-independent but still dependent on x. Under
these conditions explicit solutions can be obtained for both problems, and this is the
purpose of the paper. In Sec. 2 we formulate the problem, in Sec. 3 we consider the case
infiltration term 0, and in Sec. 4 we consider the case infiltration term not 0.

The kinematic wave models studied in this paper have been discussed in a number of
papers (see references). We have extended the results of those papers by allowing spatial
dependency in the rainfall and infiltration rates, in the derivation of the free boundary,
and in the unified approach to the two problems described above. There is a concomitant
increase in the mathematical complication, but that does not prevent the obtaining of
explicit solutions.
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2. Formulation of the problem. We consider first the plane rectangular catchment
basin. Let a- be the distance from the higher edge, 0 < x < a, with x = a the lower edge. Let
q(x, t) be the volume of rainfall per unit area per unit time, /(.*, t) the volume of
infiltration per unit area per unit time, h(x, t) the depth of water, and u(x, t) the velocity,
Flow is along lines perpendicular to a = a. We assume that, for a specified T,

q(x, 0 = 0, t > T, q{.v, t) > f(x, t), 0 < t < T.
We assume that / depends on h in the following sense:

/(a, t) > 0 if h(x, t) > 0; f(x, t) = 0 if h(x, t) = 0.
If dy is perpendicular to dx than, referring to the volume of water on the rectangle dxdy,
we have

inflow: uh dy dt + q dx dy dt,

outflow: (uh + (uh)x dx) dy dt + / dx dy dt,

change in storage: h, dx dy dt,

from which we get the continuity equation

h, = (uh)x = q - f. (2.1)
The momentum equation [1, chapter 15] is

Q = uh = a(x)hn, (2.2)

where n > I and a{x) > 0 measures the surface roughness. From (2.1) and (2.2) we get

ht + (ahn )x = q-f. (2.3)

We assume that h is 0 initially, and also at x = 0 for all t:

h(x, 0) = 0, 0 < x < a, h(0, /) = 0, 0 < t < T. (2.4)
It is physically plausible that there will be a free boundary t = t°{x) such that, in the semi-
infinite strip D = {0 < .v < a, t > 0), h(x, /) = 0 above and on t = t°(x) and h(x, t) > 0
below t = t°(x). t = t°(x) is the time history of the interface between the covered and
uncovered areas of the catchment basin. Thus h is subject to (2.3) in D below t = t°(x), and
satisfies (2.4) and the condition h(x, t°(x)) = 0 for 0 < x < a.

Using the same notation for the converging basin, we consider the volume of water on
the area (L — x) dO dx:

inflow: uh(L - x) dd dt + q(L — x) dx dd dt,

outflow: {uh(L — x) + [uh(L — .v)].r dx) dd dt + f(L — x) dx dO dt,

change in storage: h,{L - x) dx dd dt.

The continuity equation is, therefore,
uh

ht + (uh)x = q - f + x (2.5)

From (2.5) and (2.2) we get

(yhn
ht + (ahn)x = <?-/+    (2.6)
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Again we have the boundary and initial conditions (2.4), and the free boundary t = t°{x).
We will obtain the explicit solutions of problems (2.3)-(2.4) and (2.6)-(2.4) when q and

/ depend only on .v. We consider the case f(x) = 0 in Sec. 3 and the case f{x) ^ 0 in Sec. 4.

3. Infiltration term 0. In this case (2.3) is

h, + (ahn)x = q(x). (3.1)

Taking x as parameter, the characteristic curves are given by

dt _ 1 dh _ q(x) — a'(x)hn
dx na(x)h" 1' dx na(x)hn (3.2)

The solution of (3.1)—(2.4) is the surface formed by the characteristics passing through 0 <
.v < a on the .v-axis and 0 < / < T on the /-axis. Thus we add to (3.2) the initial conditions

t(x0) = 0, h(x 0) = 0, (3.3)

or

f(0) = t0, h( 0) = 0. (3.4)

The solution of (3.2)—(3.3) is, indicating dependence on x0 ,

t = t(x, x0), h = h(x, x0),

and the solution of (3.2)—(3.4) is

t = t(x, t0), h = h(x, to).

The curve t = t(x, 0) may (case B) or may not (case A) intersect t = T in D. It will be
seen, from (3.6) below, that these two cases are distinguished according as

T =

where

f  —  (3 5)Jo na(t)I/np(Z)"l-1>"1' K '

P(x) = f q{Z)d£
J0

does (case B) or does not (case A) have a root between 0 and a. Since the right side of (3.5)
is an increasing function of x, (3.5) has no root or exactly one root in 0 < x < a. If F(x) is
the right side of (3.5) then F{a) < T implies case A and F(a) > T implies case B.

In case A, D is divided into three regions Du D2, and Z)3; these are the intersections
with D of, respectively, jt > 7}, {t(x, 0) < t < 7], and {0 < t < t(x, 0)}. In D2

h(x, t0) =
P(x)
.«(x).

l/n

, t{x, to) = to + fX  —  (3 6)Jo na({)1/np(Z)(n-l>/n [ '

Here 0 < t0 < T. The curves t = t(x, tB) do not intersect in D2, tx(x, t0) > 0, and tto(x, t0) =
1. In D2

In D3
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Hx,*.)- "**>-**•>'
a(x)

<(x,X0)=f «

(3.7)

na(zrn[p(ii) - p(x0)r-»">
In (3.7) 0 < ,v0 ̂  a. By partial integration we get, from (3.7),

/(-v, x0) =
p(x) - p(.Y„)

a(A')
- ' </{.

q(x) JXo ' a(Z)1/nq(£)

We will have tXo(x, xa) < 0 provided

— —< 0,
dx a1,nq

or equivalently

£(aq")>0. (3.8)

We note that (3.8) includes the case a(x) and q(x) both constant. Thus, under condition
(3.8), tXa(x, _y0) < 0. Also tx{x, .v0) > 0. The curves t = t(x, .v0) therefore do not intersect in
Z)3, and (3.7) defines h(x, t) in D3.

To obtain the solution in D1 we set q(x) = 0 in (3.2) and impose initial conditions

p(x0*

-a(x o*

_ IMV)

t(x0*) = T, h(x0*)= , 0<xo*<fl.

Then in D,

h(.v, x0*) | , ,L a(.v)

t(x, x0*) =/'+- [p(jco*)]-'"-1,/b P a(£)"1/n dt (3.9)
n JXl;

It is clear from (3.9) that tXo»(x, x0*) < 0, so the curves t = t(x, x0*) do not intersect in Dx.
For fixed x t(x, ,v0*) is defined on the interval 0 < x0* ^ -Y and maps that interval in a one to
one manner on t > T. Thus (3.9) defines h(x, t) on D{T) = {0 < x < a, t > T). Since, for
fixed .y, ? —> co is equivalent to x0* —> 0, we get h(x, t) —> 0 as / —> °°. From (3.9) we get

h(X,t)= (tJryln-l> +
where

Hx) =
fX «(?)"1/n^

J0 -

n1,,n~va(xy

We note also from (3.9) that h(x, t) > 0 in D(T) and that, for fixed t, h{x, t) —> 0 as .y —> 0.
Thus the free boundary /°(.v) coincides with the /-axis above t = T.
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From the above discussion we see that the behavior of h(x, t) for fixed x is as follows: if
(.v, t) E: D3 , then, since

(3.101
t*0(x, X„)

h,(x, t) > 0. If (x, t) G D2 then h,(x, t) = 0. If (x, t) G Dl then, since (3.10) applies with x0
replaced by x0*, ht(x, t) < 0.

We consider now case B. Let x* be the root of (3.5). Let Dn be the part of D above t =
T and t = t(x, 0), Z)12 the region bounded by t = «7\ t = t(x, 0), and x = a, D2 the region
bounded by t = T, t = t(x, 0), and x = 0, and D3 the part of D below / = ?(x, 0) and t = T.
The solution in Dn is given by (3.9), where 0 < x0* < x*, the solution in D2 is given by
(3.6), and the solution in D3 is given by (3.7). To obtain the solution in D12 , let x0* be
defined by T = t(x0*, x0), where t(x, x0) is given by (3.7):

T =

We get, in D12 ,

L° na^Vr[p(nd- p(x0)r-™n' X*~Xo(3-":

h(x, x0) =
P{X0*) ~ p(x0) \l,n

a(x)

t(x - xo) = T + £ [p(x0*) - p(xo)]-'n-XUn fX a(Z)-1'" da. (3.12)
X 0*

We prove now that tXo(x, x0) < 0; this implies that the curves t = t(x, x0) do not intersect in
D12, and therefore (3.12) defines h(x, t). A partial integration of (3.11) yields

T= W*) -P(xo)]1,n _ fx: r (n ... ( )]l/a d 1
a(x0*y>nq(x0*) Jx0 P(Xo)] dSaWnq(Z)dS- (313)

Differentiating (3.13) with respect to x0, we get

[p(x0*) -p(x0)]
a(x0*)v"q(x0*)

dx ^
q(x0*)^-q(x „)

dx o

+ £•' wi) - | *. ai4)
From (3.14) and (3.8) we get

k* ^ // V ^

~ > 0, q(x0*) - q(x0) > 0,

and therefore
dxo ' dxo

d dx *
[pU'o*) - iP(-^o)] = q(xo*) - q(xo) > 0,

_d_
dx o

r a(t) vndli< 0.
J X*

Thus fIo(x, x0) < 0.
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The behavior of h(x, t) for fixed x in case B is the same as in case A if 0 < x < x*: thus
ht(x, t) > 0 if (x, t) £ D3, ht(x, t) = 0 if (x, t) £ D2, and /?t(x,;) < 0 if (jc, t) £ £>„ . If x*
< x < a then the same inequalities apply in D3 and Dn , but in D12 we have h,(x, 0^0
(since hX[i(x, x0) > 0 and tXo(x, x0) < 0).

We consider now (2.6)-(2.4) when / = 0. Then

((L - x)h)t + ((I - x)ahn)x = (L - x)q(x). (3.15)

rf

(L - x)h(x) = h(x\ (L - x) q(x) = q(x), = «(•*)- (3-16)

then (3.15) is the same as (3.1). Thus the entire discussion above applies to (3.15)—(2.4),
with the appropriate modification of the various expressions for the solutions. Here we
have

p(x) = [ q(£)(L - £) d£.
J 0

We note, however, that condition (3.8) becomes

a(x)(L — x(q)x)" > 0. (3.17)

This is unsatisfactory since it excludes the case a(x) and q(x) both constant. The situation
in D2 U (case A) and in D2 U Dn (case B) is unaffected since (3.17) is not required in
order that the curves t(x, t0) and t(x, x0*) not intersect. In D3 we have, in both cases,

t(x, x0) = f
J X

If v = (L - $)/(L - *„),

t(x, A'0) = f
J (L

1 In
„ ««(£)

L - x o

L - f
_/>(£) - P(Xo).

(l—x)/(L — x0) na(L ~ (L - x0)ri)Un

and if c = (L — £)/(L — x0),

n - l Wn

dl

(L - x0)v
[•L-:l.-x0<r,

q(!j)(L - £) da
J Xn

i n- 1 )/n
dv-

t(x, JC0) = [
J I /

a - xo)1'"
L-xmL-xj na(L - (L - x0)tj)' f q(L - a(L - x0))o

J r
da

(n - l )/n

dv.

In order that tXo(x, x0) < 0 in D3 it is sufficient that fxJx0, x, ??) < 0, where

f(xo ,X,T}) =

If z = L — (L — x0)ri.

[L - .v0)
a(L ~ (L - x0 )rj)_

J q(L — a(L - x0))a da

L — x0 L — z
a(L - (L - x0)t]) Tja(z)

Therefore ((L - x)/a(x))' < 0 implies
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8 L — x o
8x0 a(L - (L - x0 )v)

Also q'(x) > 0 implies

< 0.

_8_
8x0

f q(L — a(L — x0))a da > 0.
J n

Thus ((L - x)/a(x))' < 0 and q'(x) > 0 imply fXo(x0 ,x,t])< 0, and therefore either (3.17)
or

o and ,'(,)> 0 (3.18)

implies tXo(x, x0) < 0. Condition (3.18) is satisfied when a(x) and q(x) are both constant.
Under conditions (3.17) or (3.18) the curves t = t(x, x0) do not intersect in Z)3 .

In regard to D12 the curves t = t{x, x0) do not intersect under condition (3.17),
according to our earlier discussion. We show that the same is true under condition (3.18).
We have, in D[2 ,

/** (L - fy"-'1'" T rxo*
/(X, ,o) = 7- + * L£o mL -«) as

r*o* (I - tyn-ivn r ftT=l. hjfa-u.
These equations become, on introducing rj and a as above,

L - x0

-in-D/n

dl

t( X, x0) = T + 1 fn Ja-

nT =

\L-X)nL-xj La(L ~ (L - X0)v)

■dt] |' j q(L - (L - x0)v)v dr)

r I" l-xo r r
Jz La(L - (L - X0)j?) J Li q(L — (L — x0)<j)<j da

-(n- 1 )/n
7f-D/n

where z = (L — x0*)/(L — x0). From the second equation it is clear that dz/dx0 < 0. Then,
from the first equation, txpc, jc0) < 0.

The expressions for the solution of (3.15)—(2.4) may be obtained from the solution of
(3.1)—(2.4) by using (3.16).

4. Infiltration term not 0. We consider first

ht + (ahn)x = q{x) - /(*), (4.1)

together with (2.4). The characteristic curves are

dt _ 1 dh _ q(x) - f(x) - a'(x)hn
dx na(x)hnl' dx na(x)hn~l

and the initial conditions are (3.3) or (3.4). We now have three cases depending on the
relative disposition of t = t°(x), t = T, and t = t(x, 0):

A. t°(x) > T > t(x, 0), 0 < x < a.
B, . t°(x) > T and t"(x) > t(x, 0), but t = T and t = t(x, 0) intersect at x*, i.e., T = t(x*,

0) and 0 < x* < a.
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B2 . t°(x) > T, but t = T and t = t(x, 0) intersect at x = x* and t = t°(x) and t = t(x,
x*) (t = t(x, x*) is the prolongation t = t{x, 0) to the right of x = x*) intersect at x = x,
1.e., t°(x) = t(x, x*) and 0 < x < a.

These cases can be distinguished prior to the solution of (4.1)—(2.4). We have case A
when

T = f  —  (4 3)J„ na(£)l",W,-l''n' K '

where

r(x)= [X (q(Z) ~ M)) d!;,
Jo

does not have a root between 0 and a: otherwise we are in case B, or B2 . This is clear from
(4.5) below. The prior distinction between B, and B2 will appear in the discussion below.
As in the discussion in Sec. 3, if G(x) is the right side of (4.3) then G(a) < T implies case A
and G(a) > T implies B, or B2 .

In case A there are three domains £>, , D2 , and D3 : D2 and D3 are as in case A, Sec.
2, and D1 is the part of D between t = T and I = t°(x). The solution of (4.2)-(3.4) in D2 is

h(x, t0) =
ijx)

La(x)
\/n fx Jt

, t(x,t0)= to + 1  L na{£)llnrWl-X)ln' ° ~ ~ T' (4'4)

The curves t(x, t0) do not intersect in D2 , tx(x, t0) > 0, tXo(x, t0) = 1, and

r(x)
a(x)_

h(x, t) =

In D3

,, ^ r(x) - r(x0)

° I ^5)' "W?) - " "• (4.5)
As in Sec. 3 we impose the condition

[a(x)(<7(x) - f(x))«] > 0 (4.6)

in order that tXci(x, x0) < 0. (4.6) holds if a, q, and / are constant. Then the curves t = t(x,
x0) do not intersect in D3, and (4.5) defines h(x, t) in D3. The solution in Dx is obtained by
solving (4.2) with q(x) = 0, subject to the conditions

t(x0*) = T, h(x o*) =

The solution in is

r(x o*)
-a(xo*)-

p(xo*) - s(x)
a(x)h(x,x o*) =

'{X' Xo*) = T+ \x. «a«)1/,l[p(*„*){-J«)]",-,,/'" (4'7)
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where

*(*)= r/«)</{
J 0

and 0 < x0* ^ a. (4.7) is valid so long asp(x0*) — .s(x) > 0; thus the free boundary t°(x) is
obtained by solving for x0* in p(x0*) — -y(x) = 0 and inserting in t = t(x, x0*)- We have
then

t0{x) T + n li{xvwn[s(x) - mYa-v/n' (4,8)

where ip(x) is the root of

f'mdl (4.9)J 0 J 0

Since q(x) > f(x) there is always a unique root \p(x) < x of (4.9) when 0 < x < a, \p(x) is an
increasing function of x and \p(0) = 0. It is clear from (4.7) that tX(s*{x, x0*) < 0. Then the
curves t = t(x, x0*) do not intersect in Du and therefore (4.7) defines h{x, t) in D^. The
behavior of h(x, t) for fixed x is as in Sec. 3: h,(x, t) < 0 if (x, t)(D3, ht(x, t) = 0 if {x,t)eD2,
ht(x, t) > 0 if (x, t)eD,.

Case B, or B2 occur when (4.3) has a root x*, 0 < x* < a. To distinguish between B,
and B2 we obtain t = t{x, x*), the prolongation of t = t(x, 0) above t = T and to the right
of x = x*, by setting x0* = x* in (4.7). We are in case B! if h(x, x*) > 0 for x* < jc < a, and
we are in case B2 if h(x, x*) = 0, x* < x < a, and h{x, x*)> 0 when x* < x < x. Thus

f mdt > fmdt
J 0 Jo

for x* < x < a implies case Bi, and the existence of i, x* < x < a, such that
X *

f q(S)dt= fXmdtJ 0 J 0

implies case B2.
In case B! there are four domains Dlu Z)12, Z)2, and D3: D2 , D3 , and Di2 are as in case B

of Sec. 3, and Dn is the region bounded by t = /°(x), t = T, t = t{x, x*), and x = a. The
free boundary t°(x) is given by (4.8). The solution in Dn is given by (4.7), with 0 < x0* <
x*. The solution in D2 is given by (4.4), and the solution in Z)3 is given by (4.5). In Z)12

L «(x)

t(x, x0) = T+ f
J X

a(x)

_JL (4.10)
o* na(£)1/n \p(x0*) ~ r(x„) - j(|)]l"-1)/n'

where
T - f 0  —  (411)



444 B. SHERMAN

Analogous to the discussion in Sec. 3, we have tXo(x, x0) < 0 in Z)12 if we impose condition
(4.6). Thus (4.10) defines h{x% t) in Di2 • The behavior of h(x, t) for 0 < < x* , and also
when x* < x < a and (x, t)tDu or (x, t)tD3 , is as in case A. When (*, t)eD12 it can be seen
from (4.10) that hXo(x, x0) > 0, so ht(x, t) < 0.

The discussion for the case B2 is the same as for the case Bl In case B2 the upper
boundary of Dn consists partly of t(x, x*) and partly of t°(x)[ we need an explicit
determination of the latter when x > x. This is obtained from (4.10) and (4.11); from
(4.10) we get

p(x0*) - r(x0) - s(x) = 0. (4.12)

Then

t°(X) = T + f-x)„a((y,n [,(*)- (4'13^

where \p(x) = x,*(x) is obtained from (4.11) and (4.12).
We consider next

({L - x)h)t + ((L - x)ahn)x = (L - x){q(x) - f(x)). (4.14)

If to (3.16) we add f(x)(L — .v) = f(x) then (4.14) is the same as (4.1). If we impose the
condition

~^a(x)(L - x)(q(x) - f(x))n > 0, (4.15)

then the entire discussion above applies to (4.14) and (4.4). But, as in Sec. 3, condition
(4.15) is unsatisfactory since it excludes the case a(x), q(x), and f(x) constant. Again the
situation in D2 U £>i or D2 U Du is not affected. As in Sec. 3 we can replace (4.15) by

and q'{x) ~ ^'(*> ~ °' (4'16)

Then (4.16) includes the case a{x), q(x), f(x) constant, and implies that the solution in D3
is given by appropriately modified expressions in the discussion above. This is also true in
Dl2 , but we omit the detailed argument.
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