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Abstract. The interfacial instability of a stratified two-phase flow is studied. Two
independent cases are investigated: first, the instability of an idealized atmosphere (density
decreasing exponentially with height) over a liquid; second, the instability of an ideal gas
over a liquid. The unbounded and incompressible cases may be obtained by specializing
the above results.

The purpose of this paper is to investigate the influence of the combined effect of
compressibility or stratification, and rigid boundaries, on the instability of a superposed
flow.

1. Introduction. A superposed two-phase flow, for instance a gas blowing over a
liquid surface, is a very common phenomenon in nature as well as in engineering appa-
ratus. The wind blowing over the ocean surface; the entry of a meteor into the atmosphere;
the flow system inside a rocket combustion chamber; and the fluid inside containment and
piping systems, for example in the petroleum industry and in nuclear power plants, are a
few cases of interest.

In all these interfacial stability problems, the lower fluid of the system can often be
treated as a liquid, where by “liquid”’ we mean that the fluid is incompressible. The upper
fluid, on the other hand, is usually in a gaseous state, and can be considered as a perfect
gas or an idealized atmosphere.

In studying the instability of a bounded incompressible two-phase flow, Liang and
Seidel [6] found that the characteristics of the upper fluid play a major role in determining
the stability of a system. Thus, the compressibility or stratification of the upper fluid
should be taken into consideration in a stability analysis.

The interfacial instability problem has long attracted the attention of numerous
investigators [2-5]. The stability of a system without an upper boundary was studied by
Sontowski and Seidel [7] for the idealized atmosphere, and by Chang and Russell [8] for
the compressible case.

Sontowski and Seidel found two types of instability. As the velocity of the gas relative
to the liquid increases from zero, there first appears an instability of a selective and
relatively weak nature referred to as the initial instability. This is followed, at higher
velocities, by a stronger type of instability called the gross instability. However, the band
width of the initial instability has never been found.

The upper boundary is also an important factor in instability analysis. It has been
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shown [6] that a system with an upper solid boundary may decrease the critical velocity
considerably.

In the present work, the idealized atmosphere and the compressible gas are investi-
gated separately. The combined solid boundary and compressibility, or stratification,
effects are studied. The unbounded flow, namely the flow system without an upper
boundary, is included as a special case. The band width of the initial instability is also
studied.

2. Idealized atmosphere. A rectangular coordinate system is used. The system is
bounded by an upper and a lower solid boundary at z = h, and z = A, , as shown in Fig. 1.

An idealized atmosphere in the stationary (undisturbed) state is a fluid whose density
decreases exponentially with height [1], i.e.

Po = pa exp(—pz). (2.1)

In the disturbed state, the density does not change following the motion of the fluid; the
motion of the fluid is isochoric and satisfies the equation

V-V = 0. (2.2)
Accordingly, the equation of continuity is
Dp/Dt = 0 (2.3)

for stationary and disturbed states.
The lower fluid is an incompressible liquid, i.e.

po = p» (constant) 2.4)

which also satisfies Egs. (2.2) and (2.3). Both fluids are assumed to be inviscid, and the
equation of motion can be written as

DV/Dt = B — (Vp/p), (2.5)

where B is the body force per unit mass.

2
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FiG 1. Flow geometry.
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In the stationary state, z = 0 is the interface; the velocity vector and the body force
vector are
V = [UO ) 09 0] (2'6)

= [0, 0, —g] 2.7)

where U, is a constant and U, = U, (z > 0), U, = U, (z < 0).
Substituting (2.6) and (2.7) into Egs. (2.2), (2.3) and (2.5), we find that in the
stationary state

Po = po(2), (2.8)
Po = po(2), (2.9)
dpo/dz = —pof, (210)

From Egs. (2.1) and (2.10) we obtain

Po = ’% exp (—8z) Q.11)

provided p, = 0 as z — «, Usually, 8 is very small. With the earth’s atmosphere, for
example, substituting p, = | atm, p, = 0.0012 gm/cm® at z = O into (2.11), we have 3 =
1.16 X 10-®* cm™!

At the beginning of a perturbed state the disturbances are small and can be expressed

as
o' = po + 0p, (2.12)

p' = p, + 0p, (2.13)

= [U, + 68U, 0, 6 W], (2.14)

where the small perturbations ép, ép, 6U, and 6 W are functions of x, z and ¢. A system is
said to be stable if all possible perturbations are found to diminish as time increases;
otherwise, it is unstable.

Substituting (2.12) to (2.14) into Egs. (2.2), (2.3), (2.5), and neglecting the higher-order
terms, we obtain the equations governing the perturbations:

(:{ + U, 2 )5p = —$W(dpy/dz), (2.15)
20U  ooW
ox oz (2.16)
<i+u )5U=—aa/a
at ° PLOX,
(—(;—9;+Uo )5W——f;—5‘—’—gap+r<”23)abz (2.18)

The last term of Egs. (2.18) is the pressure jump across the disturbed interface z = §z; 6, is
the Dirac delta function.

At the interface the velocity § W and the displacement 6z have the following relation-
ship:

oW = Déz/Dt. (2.19)
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Applying the normal mode method, all the perturbations are expressed in the form
W = 6W(z) exp [ilkx + nt)] (2.20)

where §W(z) is a complex function of z, k is real, and n is complex. These perturbations
propagate in the flow direction (x-direction), since this direction gives the most stringent
requirement for stability [6].

Eq. (2.19) and the normal mode method give

F ﬂ_)
z I<n+ka . (2.21)
Notice that at the interface
6z = bz, . (2.22)
Combining Egs. (2.15) to (2.18) and (2.21), we have
d dow — dp, oW
7 |:p0(n + kU°)_Jz_:| — pok¥(n + kUy) oW = gk? 7‘% P
0
oW )
— L4 -
k Ts(n KU, 0pz. (2.23)

If we integrate this equation from —e to ¢ and let ¢ — 0, we achieve the dynamic
boundary condition at the interface

7] _ o[ aps 0 2] (17 )

A[po(n+ kU,) - = gk® | Ap, — k 2 n+ kU

where Af = Iimc—m{(f)e - U)—e}
Recalling Egs. (2.1) and (2.4), we can obtain the differential equations governing the
upper and lower fluid from Eq. (2.23):

(2.24)

"zjz'f“ ~ k? [1— (—n—ff(—/a—);] W,=0  (z>0), (2.25)
“ﬂjzf/" - k%W, =0 (z<0). (2.26)
The boundary conditions at the upper and lower solid boundary are
We(ha) = 0, (2.27)
5Wy(hy) = 0. (2.28)

Egs. (2.25), (2.26) and the boundary conditions (2.22), (2.24), (2.27) and (2.28) give the
characteristic equation of the system

g —Bg_}lﬂ {|: _ i—]lm }
paln + kUs) [' CETA B R e A B

—ps(n + kU, ) coth (khy) — k(pog — pag + Tsk*) = 0. (2.29)

Eq. (2.29) is a transcendental equation. The Nyquist criterion is used in this analysis.
Essentially, this method is based on Cauchy’s principle of the argument [9-11], which
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states: if (1) s is a complex variable, and F(s) is regular within and on a closed contour C
on the s-plane, save for some poles within C, and (2) F(s) does not vanish on C but has
zeros within C, then the excess of the number of zeros over the number of poles of F(s)
within C is 1/27 times the increase in arg F(s) as s goes once around C.

In order to use this principle let us transform Eq. (2.29) into

_ . _ b2 1/2 _ bz 1/2
F(s) = ok(s + 1) [1 —(s n l)zjl coth {|:l ——_(s+ 1)2:| Ha}

+k(s—1PcothHy, +6—-1—7=0 (2.30)
where

Y =43 (U, — U,), b* = Bg/k*Y?, T = k®*T,/pog, Hyo = kh,, H, = kh, ,
o = pa/po, k= kY/g,

h
5= [—-E—%(UQ+U,,)]/Y.

For convenience, we assume Y > 0.
2.1 Unbounded upper flow. If the upper boundary is moved to infinity (b, — =), Egs.
(2.30) becomes

b2
(s+ 1y

Since the disturbances have to be zero as z — o, the boundary condition is now
replaced by the requirement that the real part of the square root appearing in Eq. (2.31)
must be positive (see Egs. (2.25) and (2.27)).

The singular points of (2.31) are located at s = —1 £ b.

If I(n) < 0 (I(s) > 0), for some k, the system is unstable. Thus for a stable system, the
roots of F(s) must not have a positive imaginary part; A closed curve as shown in Fig. 2
(with L — o, 1 — 0) can be taken as the closed contour C for Cauchy’s principle in this
test. D, E and F represent —1 — b, —1, and —1 + b respectively.

12
F(s) = ok(s + 1)? |:1—" } + k(s — 1P2cothHy, + 6 —1—-7=0. (2.31)

IS

B
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L
4
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F1G. 2. s-plane.
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For large s,
F(s) = ok(s + 1 + k(s — 1)!cothH, + 0 — 1 — 7. (2.32)
s real is especially important. If s is real and (s + 1) < b7,
F(s) =iok(s + 1) [b* — (s + 1)*]"* + k(s — 1) cothH, + ¢ — | — 7. (2.33)
If s is real and (s + 1) > b,
F(s) = ox|s + 1|[(s + 1) = b*"> + x(s — I} coth H, + ¢ — | — 7.

Eq. (2.33) shows that, if sis real and — 1 — b < s < — | + b, F(s) always has an
imaginary part (except at s = —1), and the imaginary part is negative if s < — 1, positive if
s> —1.

Since B is very small, if s is not in the vicinity of s = — 1, the minimum of F(s) can be
found at s = G, where

G = (coth H, — ¢)/(coth H, + o). (2.34)

F(G) is a minimum since F"(G) > 0.

Now the Nyquist diagram can be constructed as shown in Fig. 3.

Points A, B, C, D, E and F in the s-plane are transformed into points 4’, B’, C', D', E,
and F’ in the F(s)-plane. G’ represents F(G). The location of the origin depends on the
values of b, o, x, H, , and 7.

According to the Nyquist criterion, the system is definitely stable if the origin is located
to the right of E’ and definitely unstable if it is located to the left of G'. On the other hand,
the system is also stable if it is located between F' and G', and unstable if it is in the area
between £’ and F'.

In other words, the sufficient condition for stability is

F(E) < 0; (2.35)

RF

F1G 3. Nyquist diagram for a flow without upper boundary (F(s)-plane).
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the sufficient condition for instability is

F(G) = 0. (2.36)
The system is also stable if
FG)<0 and FF)=>0 (2.37)
and unstable if
F(EY=0 and F(F) £0. (2.38)
Point F' is of special interest. From Eq. (2.31), we find
F(F)=4xcothH,,<l—b+-b4i>+a— 1 -7 (2.39)

F(F) = 0 can be rewritten as

1/2 — 2
Yz_(ﬂg) Y+E&_pbg pag+Tsk:O

k 4" dkpycoth Hy, (2:40)
which gives
= (Bg)l/z <Pbg — pug T Tsk2>l/2
2Y 7 + %pn coth H, ) (241
The stability condition (2.37) becomes
e , pog —pag + TK* (ﬁg(pbg —pag + Tskz))”2
k? kp, coth H, k®p, coth H,
(pa + p» cOth H,)(0pg — pag + Tok?)
< - 2 <
S Uy — Uy < kpupy coth H, . (2.42)
The instability condition (2.38) becomes
Pv8 — pag + TK? < _ 2
kpb coth Hb - (Ua Ub)
Bg . pog — pag + Tk (ﬁg(pog ~ pag + Tsk2)>“2
< Ee .
Tk + kpb coth Hb +2 kzpo coth Hb (243)
The sufficient condition for stability (2.35) is
—_ 2 < pbg - Pag + T.sk2
(Ua Ub) - kpb Coth Hb (244)
and the sufficient condition for instability (2.36)
— 2
(Upy — Uy > (pa + py coth Hy )pog — pag + Tk*) ) (2.45)

kpapb coth H(,

The stability of a system can thus be illustrated as shown in Fig. 4.
2.2 Unbounded upper and lower flow. If h, as well as h, tends to infinity, conditions
(2.42)-(2.45) become:
stable:
pag + Tk

’

(Ug — Up)r < 28~ (2.46)

kp,
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F(G)=0

F(F)=0

W F(1):0
k

FIG 4. Stability diagram for a flow without upper boundary. [ ]stable, [/Z]unstable.

unstable:

—_ 2
Pvg — Paf + Tsk < (Ua _ Ub)2

kpy
< é& + Pog ~ Pag F Tk + 2 <6g(pbg — p.g T Tsk2)>1/2
k? kps kp, ; (2.47)
stable:
Bg  pog — pag + Tk <Bg(pbg — pag + Tsk"))”"’
k2 kpb k3pb
< —_ 2 < (Pa t po)(0og = pag + Tsk*) .
= (Ua Ub) = kpapb ) (2'48)
unstable:
_ 2
(Ua _ Ub)2 > (pa + Pb)(pbg pag t Tsk ) ' (249)

kpapo

The criteria (2.46) and (2.49) are referred to as the initial instability and gross
instability [7] respectively. Now we can see that the band width of the initial instability is
defined by (2.47). The band width is zero if 8 = 0.

As a particular example, consider air blowing over the water. Take

pa = 0.0012 gm/cm?, ps = 0.9982 gm/cm?,
T, = 72.8 dynes/cm, g = 980 cm/sec?,
B =1.1X10"° I/cm.
Conditions (2.46) to (2.49) give the instability diagram shown in Fig. 5.

2.3 Bounded flow. For the flow with an upper and lower boundary, we recall Eq.
(2.30):

o) = , I: b? :Il/z {': b? :Il/z }
(s)=ok(s+ 1?1 — ‘(S Ty coth §| 1— m H,
+k(s—1)¥cothH, +o—1-—7. (2.50)
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FIG 5. Stability diagram for air blowing over water.
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Ifsisintherange (—1 — b, — 1 + b) then (s + 1)* < b% and (2.50) can be written as

F(s) = ox(s + 1) [(sf 0y - l]m cot {[(s fl)z - l:|”2 H,,}

+k(s—1)*cothHy + o —1-1. (2.51)

In this expression, F(s) is real as long as s is real. Compare this with the behavior of
F(s) in Eq. (2.33), where F(s) has both positive and negative imaginary parts in this range
of s.

A system with large H, has been studied in the preceding section. For small H,

F(s)=ox(s + 1 Hy"' + k(s — 1)*cothHy + 60— 1 — 7 (2.52)

and the minimum is at s = H, where

_ coth H, — oH,™!
COth Hb + O'Ha—l

The Nyquist diagram of small H, is shown in Fig. 6. Hence the system is stable if F(H)
<0, or

(2.53)

[pa + khapy coth (—khy))(peg — pag + Tsk*)

(Ua — Up)* < (2.54)

kpapb coth ('_ khb )

For small H, the distinction between initial instability and gross instability does not
exist. Physically speaking, for small 4, and small 8, the change of the density fromz = 0 to




66 S. S. LIANG AND B. S. SEIDEL

FiG 6. Nyquist diagram for bounded flow.

z = h, is essentially zero; hence the effect of density heterogeneity on the instability is
negligible and the band width of initial instability disappears.

For medium H, , the behavior of F(s) is undefined as s — —1. The stability of such a
system is undetermined in this paper.

3. Perfect gas. The flow geometry is shown in Fig. 1. The upper fluid is assumed to
be a compressible, inviscid, perfect gas; while the lower fluid is incompressible and inviscid
liquid. The gas flow is considered to be isentropic.

In the undisturbed state, the velocity profiles are assumed to be uniform. The body
force is B = [0, 0, —g].

The governing equations, namely the equation of state, the continuity equation, the
equation of motion, and the velocity vector for the upper fluid, are:

p = Covy (3.1

where C is a constant and « is the ratio of specific heats;
Dp/Dt + p(V-V = 0, 3.2)
DV/Dt =B — Vp/p (3.3)
V=1[U,,0,0]. 3.4)

For the lower fluid,

P = po, (3.5)
V.V =0, (3.6)
DV/Dt = B — Vp/p, (3.7)
vV=1[U,,0,D0]. (3.8)

Substituting the velocity and body force vector into the above governing equations, we
obtain these relationships among the stationary variables:
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_(a? v - 1 )1/(7 1
Po = <C7 C'Y z ) (Z> O)
Po = pb (Z < O)
_ a,? oy - 1 )7/(7—1)
po = C <C‘y _—C’Y z , (z>0)

Y/ (y-1)
Do = C C_‘Y — prgZ, (Z < 0)

where a is the speed of sound.
The perturbed state can be expressed as
p’ = Po + 51’»[" =Po + 5[’»
V' = [U, + 46U, oV, 6W].
The small perturbations 6U, 6V, 6 W, ép and 6p are functions of x, y, z and 1.

Linearizing the governing equations, we find that the small perturbations, for the gas
phase, are related as follows:

dp = a*op, (3.9)
(£ + vl oo = (2L + 2L, 207), (.10
oL+ v L ) su= - o 3.11)
(aiJ' Ua%)6V=— %, (3.12)
(5‘9- + UL >5W= - %”. (3.13)

For the liquid phase,
60 =0, (3.14)
Gr S B =0 (3.15)
po(% + U, aix)a - - Z—‘i”, (3.16)
oo (L4 0 2)ov = - gr (3.17)
po<%+U,, :)W —2;7". (3.18)

By the two-dimensional normal mode method we see that

ox = bx exp [i(k.x + kyy + nt)]
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and, eliminating four of the unknowns, we achieve
BoW/d2 — m2 oW =0 (gas), (3.19)
#oW/dz — k2 5W =0 (liquid) (3.20)
where k? = k2 + k,? and

_ _ ’,l &{ 2L12
m—k{:l <k+kua> 02:' .

The upper and the lower boundary conditions are

iW(ha) = 0,
oW (h,) = 0.

Consider the uniqueness of the interface displacement: the kinematic interface bound-
ary condition is obtained as

SWa(0)/(n + kyUg), = 6W,y(0)/(n + kUy).
Since the pressure jump across the interface is

. Viki a?)
A/7 =T (3.\’2 + 3},2 oz,

we have the dynamic interface boundary condition

_ ool kyUs) d6Wal(0) | po(n + ksUy) doWi(0)
g2 dz ! k? dz

In deriving the above condition the linearized Taylor’s series is used, i.e.

+ (phg ~ Paf + Tskz) Es =

p'(62) = p'(0) + (%”2—0) 6z, 5 W(8z) = 6 W(0).

The characteristic equation of the above eigenvalue problem is

puln + ko Uy L) oy e ORI (o g Ty = 0. (321)
3.1 Unbounded flow. If the upper rigid boundary is moved to infinity, Eq. (3.21)
becomes
pa(n + k, U,)? pa(n + k Uy)? coth (kh,)
K= (1 + kUnf/atV e~ I T g g+ TH = 0. (322)

We apply here a graphical method [, 7], first transforming the above equation into a
pair of simultaneous equations

2
08/t Zf/az)m + Qn* —n’ =0 (pbranch) (3.23)
§—n=U,—-0U,, (3.24)
where
n + k.U, B _n+ k.U,
f = (kg)”z ’ Q = coth (—/(h,,), n= (kg)‘” \
k:Us - _ kU,

a = (k/g)uzaa ) Ua = (1 -0+ T)l"z.

(k) " gy ™™ "
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By the normal mode defined previously, we know that for a stable system the imagi-
nary part of n must not be negative. Hence, it is immediately seen that for supersonic flow
(a < &), with £ and n real, (3.23) cannot be satisfied. Therefore, in this case £ and n are
complex, and the system is always unstable.

The square of Eq. (3) is

;‘L_ —_ 2 __ 2\2 —

(1 — £/a?) (o On*)? = 0. (3.25)
This equation, together with its auxiliary equation (3.24), is equivalent to a sixth-degree
polynomial in n. Notice that in squaring (3.23), a new equation

2
_—Tl_—%/a—?)lf_z + On* —n2 =0 (sbranch) (3.26)
is introduced in (3.25).

For subsonic flow, a? is generally much greater than £, and Eq. (3.25) defines a real
locus in the (¢, ) plane.

The locus of Eq. (3.25) shown in Fig. 7 consists of two branches: the p-branch, plotted
in solid line, represents the locus of Eq. (3.23), while the s-branch, plotted in dotted line,
represents Eq. (3.26).

For a given (U, — U,), Eq. (3.24) is a straight line inclined to the &-axis by 45°, as line
A in the diagram. The effect of varying (U, — U, ) can be found by drawing a series of lines
parallel to line A.

The number of intersections of Eqs. (3.24) and (3.25) represents the real roots of the
simultaneous equations. The number of roots of the p-branch plus those of the s-branch
must be exactly six for a sixth degree polynomial. Since the complex roots appear in
conjugate pairs, the system is stable only if all the roots of the simultaneous equations are
real.

From the diagram, we can see that there are always six intersections as long as Eq.
(3.24) intersects the p-branch. We can also see that to the right of line B, which is a line
tangent to the p-branch at point T and parallel to line A, the total number of intersections
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reduces to four or two, all these intersections belong to the s-branch, and the p-branch
does not have any intersections; therefore, the system is unstable. Hence, by determining
the corresponding value of (U, — U,) of line B, the critical value of instability is
determined.

Referring to the diagram and Eq. (3.23), we find that the ratio of the two intercepts,

point Q and point P, is
£ _Q_ [(.ﬁ )1/2_ noz:l
n2/Q 20 oot +4 oo’

Cn () n]
bo 20 |: a’at 4 oa?
For a gas over a liquid ¢ is very small; hence the shape of the p-branch is long and thin,
and point Q is a very good approximation for point T. Eq. (3.24) gives
(Ua = Un)f =~ &2 (3.27)

Returning the physical variables, the above analysis concludes that the system is stable

where

if
pog + Tk?)

(pog —
—_ 2 <
(Ua Ub) - k*2kpa

G
where k. = k,/k and

G=1 [( e —pat = T )" G gt + Tskﬂ
2 kzaa4p02 kaa2/)a
Note thata, = ® and thus G = 1 for incompressible flow. To consider some finitea, ,
note that G is of the form

G=)(x*+4)"*—x<s(x+2)—x=1-x/2

for x > 0. That is, for a finite a, (and thus finite x), G < 1. Introducing compressibility
thus lowers the stability.

Furthermore, k« = | gives the most stringent requirement for stability. If the system is
stable in the x-direction, then it is stable in all other directions. In the following work, let
us assume k« = 1 (k; = k).

Eq. (3.27) indicates that at the neutral instability (point T) n =~ 0: namely, n and kU,
are of the same order of magnitude. Since, in general, U, is much greater than U, , we
have kU, >> |n| and Eq. (3.22) becomes

kU2 + kU,)? coth (—kh
(lp— M?)V2 + 2L b)kco Chh) _ (0og — pag + T5k*) = 0

where M = U,/a, is the Mach number. Hence the eigenvalue can be obtained as

LNYRD SRR S PR by p_kU_]}
k - Ub + {kpb COth ("khb) |:(pbg Pag + Tsk ) (l _ M?)I/Z :

Obviously, for a stable subsonic flow

(l — M2)l/2
2 < X 7
= kpa

Ua (pog — pag + T5k?). (3.28)
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The critical velocity (the minimum of Eq. (3.28)) and the corresponding critical wave
number are

2(1 = M)

a

_ oy = pa)®)"?
ke = T, .

Compare this with the incompressible case [6]:
2(pa + ps)
PaPo

the critical velocity of a compressible subsonic flow is reduced by a factor of (1 — M?*)V2if
Pa << py.

3.2 Bounded flow. By applying the assumption kU, >> |n|, Eq. 3.21 becomes
coth [(1 — M?*)"2%kh,]
(1 — M?)"? T Pe

V2, comp. = (Ts(pog — pag)]?,

V.2, incomp. = [Ts(osg — pag))"?;

ana2

n 2
m + U,,) coth (kh,)

1
~ % g ~pag + Tk*) = 0. (3.29)

For a supersonic flow Eq. (3.29) can be written as

¢ [(M? — 1)V%kh, 2
paUa? > [((M2 - I;m l_ p,,(% + U,,) coth (khy)
I
% (008 — pag + Tsk?) = 0; (3.30)
hence
no_ 1 pog — pag + T:k? , cot (M2 — l)mkha)]}w
K- U"i{p,, coth (= ki) [ k T ol =y :

It is seen that the system is always stable as long as cot [(M? — 1)"2kh,] > 0. On the
other hand, if cot [(M? — 1)"2 kh,] < 0 the system is stable only for

(M2 — 1)
2 L —_ 2
Ve < oo Tcot (M = Ty7okh,)] Pe8 ~ Po8 F 1ok

In other words,

k = No/(M*> — 1)"2h, (N =1,2,3, ")
are the “dangerous” wave numbers.

Since a stable system is a system which is stable with respect to every possible
disturbance to which it is or can be subjected, we conclude that a system with a supersonic
upper flow is always unstable.

For a subsonic flow, Eq. (3.29) gives

n__ t{ l [pag—pag+Tsk2_
k b Po COth (—khb) k

, coth (1 = W)l/?kha)]}“é

ana (1 _ M2)1/2 K

(3.31)
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therefore, the system is stable if

. (1 — M2)1/2 .
U.* < kpa coth [(1 — M?)2khy] (008 — pag + T5k?).

Eq. (3.32) reduces to Eq. (3.28) as A, — .

From Eq. (3.31), we find that kU, >> |n] if

(l) Ub < Ua;

(2) pa << po;

(3) The gas flow is not a transonic flow;

(4) h, is small.

Under the above conditions, to neglect n/k compared with U, in Eq. (3.21) is justified.

(3.32)

4. Conclusion. It has been shown that, for the unbounded idealized atmosphere, due
to the stratification effect, a system becomes unstable at a low critical velocity which can
be found from Eq. (2.46), i.e.

Ve = 2((po — pa)g T)'? .
Py

For small A, there is no distinction between initial instability and gross instability.

As for the perfect gas, because of the compressibility the critical velocity decreases by a
factor of (I — M?)"? for the subsonic cases, while the supersonic flow is always unstable.

The effect of surface tension and gravity force on stability can also be found by
studying (2.44), (2.45) and (2.32): surface tension is effective in stabilizing large wave-
number disturbances, while gravity force is effective in stabilizing small wave-number
disturbances.
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