
VISCOELASTIC SURFACE WAVES ON A STANDARD LINEAR SOLID*

By P. K. CURRIE" (University College, Belfield, Dublin)

Summary. We investigate the number of surface waves on a standard linear vis-
coelastic solid. It is shown that two or one surface modes are possible, depending on the
frequency and the material parameters. For materials on which two waves are possible,
they will generally both be of equal significance over a wide range of frequencies.

1. Introduction. Surface waves propagating over a half-space of viscoelastic material
have been investigated recently [1-4]. In the first paper [1] a general analysis showed that
(in contrast with elastic materials):

(i) more than one surface wave may be possible;
(ii) the waves may be either retrograde or direct at the top surface;

(iii) the surface wave speed may be greater than the body wave speeds.

In the second paper [2] the number of possible surface waves was investigated numeri-
cally as a function of the material parameters, and the results applied to the Kelvin-Voigt
and Maxwell models as well as experimental data. The conclusion from the experimental
data was that there are typically two surface waves on solid polymers, especially in the
transition zone. Detailed experimental data obtained by Waterman [5] for two polymers
shows that for one of them only one surface wave is possible at the frequency and temper-
atures considered [3] but that for the other polymer two surface waves are possible above
a certain temperature. This analysis also confirms that it is reasonable to assume in-
compressibility when examining surface waves on polymers.

The work reported here considers surface waves on an incompressible standard linear
solid. This simple model of viscoelastic behavior is more realistic than either the Kelvin-
Voigt or Maxwell models considered in [2]. The results presented here show that over a
relatively wide range of frequencies there will be two modes of surface wave propagation.
Outside this range (at high or low frequencies) there will be just one mode. When both
modes are possible, they seem to be of equal significance.

2. Basic equations. We quote the few equations from [1] that are needed sub-
sequently, using the notation of that paper. A Rayleigh surface wave propagating over the
free surface jc3 = 0 of a half-space of homogeneous, isotropic, incompressible, linearly-vis-
coelastic material will have a displacement u, of the form [1, Eq. (3.1)]

= t U,(N) exp {iw(sp'">xp - 0}, (2.1)
iV= I

where to is the real frequency of the wave. The slownesses s,0}, s,'2' satisfy [1, Eqs. (3.3),
(3.4), (6.3)]

S,"> = s,<2> = j2<'> = s2<2) = 0,

[j3("]2 = (p/jtl) - j,2, j3<2) =

where x, is the direction of propagation of the wave, p is the constant density and /i is the
complex Lame modulus which is a function of frequency. If we write

c = p/jlls,2, (2.3)
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then c is determined by the cubic secular equation derived from the boundary condition
of zero traction on the top surface. The roots of this secular equation are [1, Eq. (6.2)],

c, = 3.5437 + 2.2303/, c2 = 3.5437 - 2.2303/, c3 = 0.9126. (2.4)

It is shown in [1] that c, is never an admissible root, since the disturbance corresponding
to it does not decay with depth as required for a surface wave. If ju+ and ju" are the real
and imaginary parts respectively of /t, then the root c2 is admissible if [1, Eq. (6.8)]

—ju"/M+ = tan5 > 0.159, (2.5)

where tan S is the loss tangent. This mode is called the viscoelastic mode (v.e.m.). It is not
admissible if the material is purely elastic (ji~ = 0). On the surface the elliptical particle
path is described in the direct sense. For this mode [1, Eq. (6.5)]

j3<'> = - (1.7215 -0.6478/>,. (2.6)

The third root c3 is always admissible. It is called the quasi-elastic mode (q.e.m.), since it is
the only mode possible on a purely elastic material. On the surface the elliptical particle
path is described in the retrograde sense. For this mode [1, Eq. (6.9)]

i,(,) = - 0.2956k, . (2.7)

3. Standard linear solid. The constitutive equation for the stress au at time t in an in-
compressible standard linear solid is given by [6, p. 450]

°u = -ptu + 2G^t) + £(7 - 7) exP {-(' - 0/0} e0(t'W (3.1)

where p is the arbitrary pressure and e0 the infinitesimal strain. G0 is the elastic shear mod-
ulus, t the characteristic time for creep and 9 the characteristic time for relaxation. We
note that [6, p. 451]

r > 6 > 0, G0 > 0. (3.2)

For this material, it follows that ju is given by [1, Eqs. (2.1)—(2.7)]

Hence, from (2.5),

tan 5 = w(t — 0)/( 1 + w20t). (3.4)

The condition (2.5) is found to be satisfied if

w, < w < w2, (3.5)

where, using (3.2),

1 Uk - 1
2t .159

(3.6)

k = T/0> 1.

The critical frequencies u, and to2 are complex if k < 1.37. Thus for 1 < k < 1.37 only the
quasi-elastic mode is possible for the standard linear solid. For k > 1.37 there is a range of
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Fig. 1. k = 2. Variation of wave speeds and slownesses with frequency u>. Quasi-elastic mode: (a) v/ V, (b) V,
(c) s3~V. Viscoelastic mode: (a) v/V, (6) s,~V, (c) s3~ V. Viscoelastic mode possible for In \u/u*\ < 1.44.

Fig. 2. k = 10. As for Fig. 1. Viscoelastic mode possible for In |w/a>*| < 2.i
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FlG. 3. k = 50. As for Fig. 1. Viscoelastic mode possible for In |w/w*| < 3.77.

frequencies for which the solid has two surface modes.
Quantitites a, fi, V are defined by

a =
([1 + toV][ 1 + cj2#2])172 + 1 + <o20t

1 + coV

fi - {![<['+ t-V"'1^1)"'-'» (3.7,

V-(G/p)"'.

V is the body wave speed in an elastic material with shear modulus G0. The following val-
ues of the slowness components are then found from (2.2)-(2.4).

Viscoelastic mode c = <v

s* = i,<2>" = (0.332a - 0.096p)V~\

s= (0.096a + 0.332/8) V~\ (3.8)
i3(,r = (0.050a - 0.634^)^-'.

Quasi-elastic mode c = c3:

s* = j«r = 0.740a V\

= 0.740/?^', (3.9)
j3(,r = -0.219aF"'.
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We investigate these results by first taking co = co* where

co* = (co,co2),/2 = (0t)"1/2. (3.10)

w* is a typical value in the range of frequencies for which both modes are possible. We
define the wave speed v and the minimum slowness s,~ by

v = 1/j,+, sf = min {-J3('r, - s3m~). (3.11)

Then it is found that at frequency w*:

(i) the speed v over the top surface is greater for v.e.m. than for q.e.m.;
(ii) the exponential decay rate oj.y,~ with distance along the top surface is less for

v.e.m. than for q.e.m. if k > 2.61;
(iii) the exponential rate of decay with depth cos3~ is greater for v.e.m. than for q.e.m.

if /c > 6.13.

Thus if k > 6.13, then at the typical frequency to* the v.e.m. travels faster, suffers less at-
tenuation with distance and decays more rapidly with depth than the q.e.m. It therefore
seems to have the characteristics of a surface wave to a greater degree.

For further investigation we determine k for materials in the transition zone from ex-
perimental values of the maximum of the loss tangent tan 5. From (3.4) this maximum
value is {(kw2 - k w2) and occurs at co = co*. Comparison with Ferry [7, Fig. 12-9] gives
the maximum of tan S as 1.5 for polyurethane rubber, 2 for poly-n-octyl methacrylate, 3.5
for polyvinyl acetate and 4 for unvulcanized Hevea rubber. The corresponding values of k
are 16, 23, 56 and 72. These choices of k give curves for tan S as functions of co which
match the experimental curves reasonably well for polyurethane rubber and poly-n-octyl
methacrylate, but for the other materials the curves rather overestimate tan S away from
CO*.

In Figs. 1, 2, and 3 we plot the normalized wave speed v/V and the slowness com-
ponents st~V and s3~ V (governing decay along the surface and with depth) for both modes
as functions of In (oj/oj*), taking k = 2, 10, 50. It is seen that:

(i) when it is possible, the v.e.m. has greater wave speed than the q.e.m.;
(ii) for large k (k > 10), s,~ is less for v.e.m. than for q.e.m. over at least the range

|ln(co/<o*)| < 1.6;
(iii) for large k{k> 10), s3~ is greater for v.e.m. than for q.e.m. over at least the range

|ln (co/co*)| < 0.8.

Thus, if it is accepted that this model is reasonable for the materials considered above, we
can expect that over a range of about two decades of frequency centred on co* the v.e.m.
will exist, and will travel faster, suffer less attenuation and decay more rapidly with depth
than the q.e.m.
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