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Abstract. Two problems of pressure distributions applied to an elastic half-space
over a circular pressure zone whose center is fixed but whose radius changes non-
uniformly with time are considered. In one case, the pressure depends only on time; in
the other case, the pressure varies with the radial distance from the pressure zone center.
Complete transform solutions are obtained and several wave propagation aspects are
briefly studied, with emphasis on the Rayleigh pole contributions and the associated
propagating singularities. The effects of some specific zone time-histories on the Rayleigh
pole disturbances at the half-space surface are considered. Some characteristics of a given
time-history appear to be manifested in the corresponding disturbance.

1. Introduction. The dynamic analysis of elastic solids whose surfaces are subjected
to pressures over certain regions has applications in seismology and structural dynamics.
Lamb [1], Pekeris [2] and Chao, Bleich and Sackman [3] have treated the special case of
the fixed normal point load on a half-space. Problems of surface pressures applied over
axisymmetric areas which expand at constant rates have been considered by Craggs [4],
Atkinson [5] and Gakenheimer [6]. The work of [4] and [5] examined a uniform pressure
while [6] treated a class of pressure loads which give a constant force on the half-space.
All three analyses were exact. Miles [7], Baron and Check [8], Ablow [9], Blowers [10]
and Tong [11] have studied variable expansion rates. However, the solutions in [7, 8] and
[9] are valid only at points near, respectively, the half-space surface and the wavefronts.
The work of [10] and [11] considered the special cases of surface pressures whose appli-
cation areas expand at a rate inversely proportional to the square-root of time. More
recently, Freund [12, 13] gave exact solutions for the plane-strain problems of time-
independent line and semi-infinite pressure loadings extending at largely arbitrary non-
uniform rates on a half-plane.

The present work considers two related three-dimensional problems of pressure dis-
tributions applied without friction over a time-varying zone on the surface of a linearly
elastic, isotropic, homogeneous elastic half-space. The zone is a circle with its center fixed
on the half-space and a radius which changes non-uniformly with time. In one problem,
the pressure distribution is spatially invariant but time-dependent, while in the other
problem, the distribution is time-independent but varies with the radial distance from the
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pressure zone center. In the former case, the half-space is initially undisturbed. In the
latter case, however, the pressure distribution may initially be quasi-statically applied
over a fixed zone. The time rate of change of the zone radius and the time and spatial
variations in the respective pressure distributions are largely arbitrary. In the next three
sections, the solutions for the time-dependent pressure distribution are presented in some
detail. In Sec. 5 the spatially-varying pressure distribution solution is given largely by
analogy. Subsequently, some wave propagation aspects of the problems are discussed,
with particular attention focusing on the Rayleigh pole contributions.

2. The time-dependent pressure distribution. The problem geometry is shown in
Fig. la where z > 0 defines the half-space and r, 9, z are cylindrical coordinates. For
convenience the variable s = x (time) is introduced, where cl5 c2 and /i are, respec-
tively, the dilatational and rotational wave speeds and the shear modulus in the half-
space. Prior to s = 0 the half-space is at rest. For s > 0 the pressure distribution f(s) is
applied without friction over the zone r < h(s). The functions h and / are at least piece-
wise smooth and finite for finite s > 0. Here h>0,s>0 and both / and h may take on
negative values, where (•) = d( )/ds, but h < 0 only when h > 0.

Because of axial symmetry, the tangential displacement and all ^-dependence vanish.
The boundary conditions on the half-space surface z = 0, r > 0 are then

= -f(s)H[h(s) - r], orz — 0 (la.b)

when s > 0, while for r, z > 0 the initial conditions are

s < 0: u, w = 0. (2)

Fig. 1. (a) Time-dependent pressure distribution, (b) spatially-varying pressure distribution.
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Here u and w are the radial (r) and axial (z) displacements while H( ) is the Heaviside
step function. The governing equations for r, z, s > 0 are

A r + 2m2a)_z = ii, A z — 2 m2r~ 1(rco)r = vv (3a, b)

where A and to are the dilatation and rotation defined by

A = wz + r_1(ra)r, 2 w-uz-wr. (4)

Here ( ) a = d( )/da while m = c^/c^ (0 < m < 1/^2). The pertinent constitutive equations
are

ffl^ J
— az = w,z + (1 — 2m2)r~1 (ru) r, - arz = w,r + u2. (5)

Also, u and w are bounded above almost everywhere in r, z > 0 for finite s.

3. Transform solution. The Laplace transform and Hankel transform of order v [14]

L(F) = F=\ F(s)e~ps ds, HV(F) = F = f rF(r)Jv(Zr) dr (6a,b)
•o '0

over s > 0 and r > 0 are employed, where p is real and positive and large enough to
insure convergence of (6a) while ^ is in general complex. Here Jv is the Bessel function of
order v. Operating on (3a,b) with (6) for v = 1 and v = 0, respectively, in view of (2) and
(4) and requiring that u, w for z > 0 behave no worse than 0(r~d), S < 1 as /• -♦ 0 yields

m2u\z - a2uJ + £(m2 - l)w° = 0, a = J(p2 + £2) (7)

°2I - m2p2w° + £(1 - m2)uK = 0, p = V(p>2 + H (8)w

for z > 0. For p real and positive a, P are defined in the complex £-plane cut along
Re(£) = 0, |Im(£)| > p and |Im(^)| > p/m, respectively, so that Re(oc), Re(/?) > 0. Simi-
larly, from (1) and (5) it can be shown that

-o_ -1o, C f(t)h(t)Jimt)]e-"' dt, ft = 0 (9)
s *0

— a°z = w°z + (1 - 2m2)#1, - ft = u]z - £w° (10)
fi /i

for z = 0 and z > 0, respectively. Solutions to (7)—(10) which are bounded as z -> oo are

ul = Ae~" + Be'"2, w° = \ Ae~" + ^ Be'"2 (lla,b)

liR(A, B) = (-p2 - <f, 2ap) CfhMW dt, R = 4£2a/? - (p2 + £2)2 (12a,b)
• o

where R is a form of the Rayleigh function with simple zeros at £ = ±ip/mR, mR = cR/c1.
Here cR(0 < cR < c2) is the Rayleigh wave speed. In (12) and similar integrals in the
sequel, the t-dependence of/ and h is understood.
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4. Transform inversions. The inverse Hankel transform of order v is defined [14] as
Jio + <*>

F(r) = | ^J^r)r dt, (13)
Ja o

where the real constant £0 is chosen so that the integration path lies in the region of
analyticity for Fy and convergence of (6b). Eqs. (11)—(13) show that we can choose
(0 = 0. Then substitution of (11a) into (13) yields the Laplace transform

rx r°° d£
fiu=j fhe 01 - {P2 + £2)e "]— dt. (14)

o o K

To obtain the inverse transform of (14), the Cagniard-de Hoop [15] scheme is used.
Therefore, because p is real and positive, the transformations

£ = pq, a = pa, p = pb, R = p4D (15)

a = 7(l+<?2), b = J(m~2+q2), D = 4q2ab - (b2 + q2)2 (16)

are introduced, where clearly the behavior of a, b, D in the complex q-plane follows from
that for a, /?, R in the £-plane by setting p = 1. These transformations, the well-known
relations [16]

r . . dJn(x) r . , 2 r1 cos vx

J»W-;JC w^) ( 1
and some simple manipulations are used to rewrite the first term in (14) as

~r\ fe~P' \ v [ ^ [ 2at,(K e~pbz[cos pq(x - y) - cos pq(x + >>)] dq dy dx dt, (18)
n r ' o -^0*0

X = J(h2-x2), Y = y/(r2 — y2). (19)

Recognition that the integrands are real for real q allows the ^-integration to be written

. 00 „

Re ( 2ab^-e-pbz{eipq^-^ - e""*-x+y)) dq. (20)
-0 D

The Cauchy theorem is used to switch the original ^-integration path to Cagniard
contours in the q-plane along which the exponentials in (20) assume the form e~pn where
n is real and positive. Thus, it is readily shown that (20) becomes

Re | Ub[qb(n)]e~pn dn - Re | Ub[qb {n)]e~pn dn, Ub(q) = 2ab (21)
z/m z/m Dan

where for z <mn < p± and mn> p+, respectively,

qHn) = ivb(nl P± vb(n) = nr± ~ zyJ(m~2P± - «2). (22)

p+qH") = im± + zV("2 ~ m'2p±l (23)
P± = V(z2 + r±)' r+=x + y, r_=|x-y|. (24)

Eq. (23) indicates that the Cagniard contours include hyperbolae in the first quadrant of
the g-plane with vertices qb = ir+/mp± and asymptotes arg(^)= tan~l(r±/z). As the
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hyperbolae are traversed from left to right, n varies from m~1p± to oo. Eq. (22) shows
that the remaining portions of the Cagniard contours follow the Im(^)-axis from q = 0 to
the corresponding hyperbola vertex. As the contours are traversed from q = 0 to
q = ir+ /mp+ , n varies from z/m to m~ lp+ . It is understood that Re(q) = 0 + .

In view of (21), the exponentials in (18) are the Laplace transforms of the Dirac delta
function 8(s — t — n) [14], The sifting property of the delta function can be used to
eliminate the n-integration. Similar results hold for the second term in (14), so that for r,
z, s > 0

pn2ru = 2 | / | ~ ^ Re U(s — t) dy dx dt, (25)
•o X Jo Y■ o

V(n) = {uaha (»)] - 11 aha (n)]}H(n - z) + {U b[q„ («)] - U b[q£(n)]}H(n - z/m), (26)

ujs)(27)

where follows from (22)-(24) by setting m = 1. A completely analogous procedure can
be followed for the inversion of (lib) with the result that for r, z, s > 0

= 2 f / f [ y Im M-'(s ~ f) dy dx dt, (28)
► 0 *0 A Jo *

W{n) = {Wb[qJ(«)] + SWb[(qb (;n)]}H(n - z/m) - {Wa[q^(n)] + SWa[qa (n)]}H(n - z), (29)

wa(q) = {b2 + 92)^' = 2ql s = sgn(* ~ •y)'

It should be noted in light of (22)-(24) that the characteristic transformations

^/2x = k — I, sj2y = k + I, dx dy = dk dl (31)
(see Fig. 2) into (25) and (28) allows a partial uncoupling of the ^±-terms in evaluating
the multiple integrals. This may prove convenient in certain instances. However, as Fig. 2
indicates, determining the k and I integration limits for given values of r and h can be
complicated.

5. The spatially-varying pressure distribution. The problem geometry for the
spatially-varying pressure distribution is shown in Fig. lb, where r < h0 defines the initial
pressure zone. Prior to s = 0 the half-space is in quasi-static equilibrium under the
pressure distribution g(r) applied without friction over the initial zone. For s > 0
the pressure zone is defined by r < h(s). The function g is at least piecewise smooth and
finite for finite r > 0. As in Sees. 2-4, the function h > 0, s > 0 is at least piecewise
smooth and finite for finite s > 0. Both g and h may take on negative values, but h < 0
only when h > 0.

Because the wave propagation problem is of chief interest, the superposition-related
problem obtained by subtracting the initial quasi-static results from the complete solu-
tion is considered. Again, axial symmetry requires that the tangential displacement and
^-dependence vanish. Then, the boundary conditions on the half-space surface z = 0,
r > 0 are

Oz = g(r)H(h0 - r) - g(r)H[h(s) - r], arz = 0 (32)

pn 2w
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Fig. 2. Characteristic integration variable transformations.

when s > 0. The remaining conditions and governing equations for this problem are
identical to those given by (2)-(5). The transform techniques in Sec. 3 can be applied to
(32) and (2)—(5) with the result that (7), (8) and (10) are again valid, but (9) is replaced by

-1

P Jo

Eqs. (7), (8), (10) and (33) yield the solutions (11) but (12a) is replaced by

a°z = —- [ g(h)hhJ0(£h)e dt, c\z = 0 (33)
D •>*

MPR(A, B) =(-p2- e, rg(h)hkJ0^h)e-" dt. (34)
Jo

Inversion of the transforms (11) in view of (34) follows the same pattern outlined in
Sec. 4. The results are that for r, z, s > 0

Hn2ru = 2 I g(h)hh I I' Im U(s — t) dy dx dt, (35)
Jq -Q X Jq Y

rs 1 rr 1
Hn2w = 2 | g(h)hh ) — — Re W(s — t) dy dx dt, (36)

•<o -0 X -0 Y

V(n) = {U'biQb («)] - SUbkb (n)]}H(n - z/m) + {SU'a[qa(n)] - U'a[q + (n)]}H(n - z), (37)

W(n) = {W'h[q + (n)] + W'h[qb (n)]}H(n - z/m) - {W'a[q^a (n)] + W'a[qa (n)]}H(n - z), (38)

where the primed functions of q follow from (21), (27) and (30) upon multiplication by q.
Again, the transformations (31) may prove useful in evaluating the integrals.
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6. Rayleigh pole effects. When z/r-> 0 care must be taken in evaluating (25), (28),
(35) and (36) because the hyperbolic Cagniard contours collapse onto the positive Im(q)-
axis. This necessitates deforming the contours about the Rayleigh pole due to the
presence of D in the integrand denominators, which results in special contributions to the
solution. In this section we isolate these Rayleigh pole contributions for all r, z, s > 0 by
following the approach of [3]. The contributions are then briefly studied for the case
z = 0. The inverse Laplace transform [14] is defined as

1 .Po + 'OO
F(s) = — I Feps dp, (39)

Po-i®

where the positive real constant p0 is large enough to insure convergence of (6a) and that
the integration path lies to the right of all singularities of F. Operating on (14) with (39)
therefore yields

1 CO e + i oc aP(s-I)

Hu = — jfhl J^r)J^h) pa/te-^2 - (/?2 + £2)e~*z]—— dp d£ dt, (40)
MtlJ0 Jo £ — ioo K

where s -»0. Because the p-integrand is analytic for Re(p) > 0, the p-integral can be
evaluated by switching the integration path into the left half of the p-plane. To insure
that the integrand is bounded there for | p | -> oo we must have t < s. The Rayleigh
function R has zeros at p = ± imR £, which, because £ is real and positive, lie on the
Im(p)-axis in (40). Thus, in switching integration paths by means of the Cauchy theorem,
both poles will be crossed and their residues will appear in the solution as the Rayleigh
pole contribution. Denoting this contribution by uR, we find

itI2 rs (*00
Vur = ^—r I fh Im I J li&W i(th)[2cde - (1 + d2)eiiP] d£, dt, (41)

2mR(j-<0 'o

P = mR(s — t) + icz, Q = mR(s — t) + idz, (42)

c = y/(l -m2R), d = yj(l - m2R/m2), G = [c2 + m2d2 - cd(l + d2)]. (43)

In view of (17),

I Ji(*r)Ji(W d£ = -~r~2 I 1^1 sin sin £yeiiP dZ dy dx- (44)
Jo r'ln ■ o " 0 X Y Jq

Because z > 0 it is readily shown that, after some rearranging of terms,

(P - x)2 (P + x)2
| sin £x sin £ye'iP dl; = ^

(P — x)2 — y2 (P + x)2 — y2 (45)

Substitution of (45) and formally carrying out the indicated y-integration gives for the
right-hand side of (44)

1
7irh -'o X

P + x
V[r2 - (P - x)2] V[r2 - (P + x)2]

which can be simplified to yield

dx = ~Iu(P), (46)

np)=+~ f" x(F ± *)dx +1T y(p ± y) dy (47)
M ' -nLhXj\r2-(P±x)2Y -nLrYj[h2-(P±y)2Y 1 '
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Thus, (41) can be rewritten as

HruR = ~ f f[2cd Im IU(Q) - (1 + d2)lm IU(P)\ dt. (48)
2mR (j * o

Similarly, the total Rayleigh pole contribution to w can be written as

ffi^c rs
H™r = j—r I tt2 Im /w^) - (! + d2)lm tJP)] dt> (49)

2mR U • o

/ (/>)= i |f ('P±y)dl  + - (H    (50)
nlrYj[h2-(P±y)2]' ± nlhX^[r2-(P±xf\

Turning to the spatially-varying problem in Sec. 5, we find that

m^ cs
HruR = ~2r | hhg(h)[(l + d2)Re IU(P) - 2cd Re Iu(Qj] dt, (51)

zmR u Jo

m2c rs
»WR = t Tr I lMh)[(l + <*2)Re IW(P) - 2 Re IW(Q)] dt, (52)

zmR u • o

where in this case /„( ) follows from (50) by interchanging h and r while

/ (jP)= _ ^ r"  ^- f ^  (53)
n)_hXj[r2-(P±x)2Y nirYj[h2-(P±y)2y (^>

As indicated above, the Rayleigh pole contribution to the solution is most noticeable
on the half-space surface (z = 0). Therefore, we study these contributions for the normal
displacements. When z = 0 we have P, Q = mR(s — t) so that Eqs. (49) and (52) can be
simplified to yield, respectively,

2m c rs f
HWr= — [x3n(x4, x2) + x5K(x2)] dt, (54)

7T Cj •' o X j

Hwr = ( hhg(h)—K(x2) dt, (55)
n(j • o xl

where K and n are the complete elliptic integrals of, respectively, the first and third
kinds of parameter x4 and modulus x2 [17]. The quantities xu x2, x3, x4 and x5 in (54)
and (55) are defined in the Appendix. It should be noted, however, that the simple forms
of (54) and (55) are not necessarily the most convenient for computational purposes. In
view of the Appendix it can be shown that as | r — h | -> mR(s — t)

~(x3Il + x5K), JIn| \r — h\ — mR(s — t)\ + • ■ •, (56)

while for r + h = mR(s — t)

2 2hK n l(h\
-<*,11 + xsK),—= (57)

Eqs. (54)-(57) demonstrate that the pressure zone edge in general creates logarithmic
singularities in vv which travel both radially inward and outward at the Rayleigh wave
speed. However, (57) shows that when the inwardly-traveling wave crosses the pressure
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zone center, the singularity disappears. Moreover the singularity in general decays as
0(r~1/2), r-* oo. This attenuation is identical to that observed in [3] for the point force.

To gain insight into the effect of zone time-history on the solution behavior, the
Rayleigh pole contribution (54) due to four different functions h is studied. The surface
point z = 0, r = 1.0 is examined for a time interval s > 1 jmR under a constant pressure p0,
where " 1.0" is some unit of length. The /i-functions are

h(s) = 0.5mRs, h(s)=l.5mRs, h(s) = 1.0 + cos ns, h(s) = 0.5s2 (58a-d)

and m takes the typical value 1/^/3. Because wR,r,s and h have the same dimension, (54)
and (58) show that the choice of unit length can be arbitrary, and that these quantities
will be multiples of this length. Eqs. (58a-d) represent pressure zones with, respectively,
constant sub- and supercritical, oscillatory and constantly increasing extension rates.

Plots of (54) are shown in Fig. 3. The singular behavior in the particle velocity
predicted by (56) is evident as s -> 1 /mR . The magnitude of all the Rayleigh disturbances
tend to increase with s and the type of increase appears to be related to the time-history
of the /i-functions. Thus, the magnitude due to the zone with the constant supercritical
extension rate exceeds that due to the constant subcritical rate. Moreover, the sinu-
soidally oscillating zone produces an oscillation in the time behavior of the correspond-
ing magnitude. The constantly-increasing zone velocity gives, after a short interval, a
magnitude whose slope also increases while the slopes due to the constant-velocity zones
become constant. From the discussion of [18], it is noted that, if the Rayleigh wave itself
is of interest, values of s in Fig. 3 should be confined near 1 fmR .

Fig. 3. Rayleigh pole disturbances for different pressure zones under constant pressure.
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7. Other wave propagation aspects. For more insight into the solution behavior,
apart from the Rayleigh pole contributions, it is convenient, in light of (22) and (23), to
write the Ua and Ub terms from (26) in the more explicit forms

Ua[qa(s - t)]H(s -t- p±)+ ua[iv~(s - t)]H(p± + t - s)H(s - t - z), (59)

Ub[qbis ~ t)]H[m(s - t) - p + ] + Ub[iv£(s - t)]H[p± - m(s - t)]H[m(s - t) - z], (60)

At some instant f, suppose a point on the pressure zone edge in a given axial plane is
located at r = h(t). For s > t this edge point and its diametrical opposite, or image point,
will radiate dilatational and rotational signals behind circular wave fronts in the axial
plane whose radii are, respectively, s — t and m(s — t). At t the distance from the edge
point and its image to a point r, z in the same axial plane are J(z2 + \r — h\2) and
^/[z2 + (r + h)2], respectively. In view of this illustration and the Heaviside functions, the
first terms in (59) and (60), i.e. along the hyperbolic Cagniard contours, represent, respec-
tively, dilatational and rotational disturbances generated by a point on the pressure zone
edge ( —) and its mirror image ( +).

Examination of (21), (22) and (27) shows that if z > r±y/(m~2 — 1), then for all
z < s — t, m(s — t) < p± we have 0 < v„, vb < 1 so that the second terms in (59) and (60)
are purely real. However, if z<r±s](m~2 — 1), while 1 still, we now have
1 < < l/m for /*+ + ZyJ{m~2 — 1) < m(s — t)< p+ and the second term in (60) is
complex. Returning to the previous illustration, it can be seen that the relations z <
\r ± h\J(m~2 — 1), \r + h\ + Zy/(m~2 — 1) < ^/[z2 + (r + h)2] confine r, z within regions
bounded by the edge and image point circles of radius m(s — t) and tangents to these
circles which intersect the circles of radius s — t at the half-space surface. In this light, the
complex contribution above represents the head wave disturbances, i.e., rotational waves
generated by the faster-traveling dilatational waves radiating from the edge (—) and
image (+) points.

Moreover, if we visualize that, in the same illustration, the zone edge moves a finite
distance instantaneously at t, then instead of points, an edge strip and its image result.
Between the ends of the strip, the envelopes of the circular wavefronts radiated by points
in the strip are straight lines parallel to the half-space surface and a distance m(s - t) or
s — t from it if the radiated signals are, respectively, dilatational or rotational. In view of
the Heaviside function products, it follows that real values of the second terms in (59)
and (60) are related to the plane dilatational and rotational waves generated when the
pressure zone radius h(s) changes instantaneously.

An instantaneous change in h is a limit case of a supersonic zone velocity, i.e.,
\h\ ->• oo. In our now well-worn illustration, it is clear that for finite h points r, z behind
the circle of radius m(s — t) radiating from the zone edge point are confined within a
locus C_(f) = m2(s — t)2 — z2 — | r — h|2. Solution of the characteristic equations

C_ = 0, dC_/dt = 0 (61)
gives an envelope for varying t of the form

m2
r = -T- (s — t) + h, z = m(s — t) / [ 1 -f) '«»

which obviously yields real values only for h > m. In view of the Heaviside functions in
(60), this result shows that if h(s) >m for s>s0, then a rotational Mach wave front
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defined by (62) arises, where t = s0. This wavefront emanates from the pressure zone
edge z = 0, r = h(s) and is tangent to the circle C_(s0) = 0. If subsequently at > s0h(s)
drops below m, then the wavefront separates from the edge and also becomes tangent to
the circle = 0. Eq. (62) describes a straight line when h = constant > m. This
equation is also valid for ft < 0, \h \ > m when r > 0. Therefore, an inwardly-traveling
Mach wave will result from zone contraction rates which exceed the rotational wave
speed.

A similar analysis for the image locus C+(t) = m2(s — t.)2 — z2 — (r + h)2 gives

r = -y(« - t)- h, z = (63)

where the necessary combination h < 0, \h\ > m, r > 0 is possible. The pressure zone is
not allowed to contract to a point so that the edge passes through itself. However, (63)
can describe a wavefront traveling through the zone center which previously had
separated from the zone edge when the contraction rate dropped below the rotational
wave speed. It should be noted that a similar discussion applies for dilatational Mach
waves by setting m= 1.

8. Brief summary. Two problems of pressure distributions applied to a half-space
axisymmetrically over a circular pressure zone whose radius changes at a non-uniform
rate have been considered. General solutions for the displacements in both problems
were obtained by transform techniques. A brief investigation of these expressions showed
that the wave propagation disturbances are generated at the pressure zone edge. The
form of the displacements indicated that the disturbance arising at a location in the
half-space in general depends on the signals received both from a point on the zone edge
having the same polar angle and the diametric opposite, or image, edge point.

More particularly, it was found that Mach waves can be generated which travel
radially outward or inward, depending on whether the zone edge is expanding or con-
tracting at a rate which exceeds the dilatational and/or rotational wave speeds in the
half-space. A general formulation for the contributions due to the Rayleigh pole existing
in the transform solutions showed that, on the half-space surface, logarithmic singulari-
ties in the normal particle velocity travel both radially inward and outward from the
pressure zone edge with the Rayleigh wave speed. These singularities decay with
the square-root of the radius from the pressure zone center and disappear at the center.

A complete study of the solutions for different zone time-histories was beyond the
scope of the present general work. However, the Rayleigh pole disturbances on the
half-plane surface for a uniform pressure applied over zones with different time-histories
were examined. The results indicated that some characteristics of the type of history may
be manifested in the time-history of the corresponding Rayleigh disturbance. Perhaps,
then, information on the time variation of a pressure zone can be obtained from studies
of the Rayleigh wave itself. It should be noted, however, that such studies must also
include the effect of the pressure distribution over the zone. A survey of [4-11] may give
insight into this effect. More work on both effects is currently planned.

It should be noted that two closely related problems not treated here are analogous
to the two-dimensional moving line load problem of [13], i.e. the expanding ring load
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problems. These problems can be formulated by substituting for az in (la) and (32),
respectively, the expressions

o-z = ~f(s) <5[Ms) - r], (rz = g(r) S(h0 - r) - g(r) 5[h(s) - r] (64a,b)

when z = 0. These problems are readily solvable by the methods outlined here.
Moreover, it is clear that the solutions for (64a) are, in form, the negative of the deriva-
tives with respect to r of the present time-dependent problem. For (64b) the solutions
follow by adding the results for the present spatially-varying problem with g replaced by
g r to the negative of the derivative of the results themselves.

Appendix. In (54)-(57) we define

x + = +r — mR(s — t) (A-l)

so that for x_ < —h<x+ < h:

Xi=2J(rh); x^x2 = y/(h + x + )J(h - x_); x3 = h + x_,x+-h (A.2)

2rx4, 2/ix4 = h + x +; x5 = x_,/i (A-3)

while for x_ < —h < h < x+:

xl = y/(h + x+)x/(/i — x_); XjX2 = 2x/(r/i); x3 = h + x_ , h — x+ (A.4)

(h — x_)x4, (h + x+)x4 = 2h; x5 = x_,x+ (A.5)

while for — h < x_ < h < x+:

xi=2y/(rh)\ x,x2 = J(h + x + )s/(h - x_); x3 = h + x^,h — x+ (A.6)

2/jx4 , 2rx4 = h — x _; x5=—h,x+ (A.7)

and for — h < x_ < x+ < h:

xi — \J(h + x + )yJ(h - x_); x,x2 = 2y/(rh); x3 = h + x_,x+—h (A.8)

(h + x + )x4, (h — x_)x4 = 2r; x5 = —h, h. (A-9)

It is understood that in any of the four possible sets of x3, x4 and x5, the parameters
chosen must all be either left- or right-hand entries.
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