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Abstract Dirichlet problems with a small parameter in factor of the highest deriva-
tive are considered for bounded domains. A two-variable technique is formalized in order
to carry out the study of the main boundary layer. A " secular " hypothesis is made, and a
unique and uniformly valid asymptotic expansion is obtained. However, it is shown that
the "secular" hypothesis may be weakened and this yields a whole set of expansions.
Then the asymptotic validity of each expansion in the set can be proven for second-order
operators by means of an extension of a theorem due to Eckhaus and Jager.

1. Introduction. Until recently, problems of singular perturbations have generally
been treated by the method of matched asymptotic expansions whose origin goes back to
the beginning of the century with the study of flows at large Reynolds number. This
method, which successively looks for two or more local approximations of the solution
(which are afterwards combined into a uniformly valid approximation), differs fun-
damentally from the multiple-scale method for which the uniformly valid approximation
is obtained in a straightforward manner in the very process of building the approxima-
tion. The latter is mainly used in problems involving slowly varying coefficients and
infinite domains (see, e.g., Whitham); an account of multiple-scale methods and their
applications to several problems of this sort may be found in Cole or Nayfeh.

The method of matched asymptotic expansions is now firmly established (Van Dyke,
Kaplun, Lagerstrom and Casten) and the mathematical proof of its validity through
rigorous estimates of the error has been completed in a number of situations (Eckhaus,
Mauss, Lions).

Despite the fact that this method is usually thought to be the best suited for problems
involving a singular perturbation, the very fact that the ultimate goal is the search for
some uniformly valid composition expansion suggests that a multiple-scale technique
may be quite appropriate as well. As a matter of fact, Nayfeh, Erdelyi, Reiss, Smith,
Wollkind have found uniformly valid approximations with the multiple-scale method in
the case of differential equations.

Following along the line of the corresponding study of ordinary differential equa-
tions, we consider here problems with partial differential equations of the elliptic type.
Such an example is provided by the equation treated by Comstock:

- e2 v4/ + a(x, y)^ + b(x, y)^ + c(*> y) = °.

* Received June 8, 1978; revised version received October 30, 1979.
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in a bounded domain, but this work mainly is an extension of that on ordinary differen-
tial equations because of the way in which the variable x is split (x and t = e~1u(x, y))
with the variable y considered as a parameter. Thus, it is assumed that:

8_= _i d_ d_ d_ = d_
dx 6 U* dt + dx' dy dy'

Moreover, from a mathematical point of view these formulas are in contradiction with
the very definition of t. These shortcomings are remedied in the present study (Sec. 2)
and the "secular" hypothesis (Hj) leads to an approximation which seems similar to that
found in the W.K.B. method (Levinson).

However, certain difficulties (which do not invalidate asymptotic validity) occur in
the use of hypothesis (Hi). Moreover, the formalism cannot be applied in the case of a
parabolic boundary layer. Thus an enlargement of the hypothesis (Hj) has to be en-
visaged. This is done in Sec. 3 where a whole set of asymptotic expansions is obtained.
This is very close to a point raised by Erdelyi when dealing with an ordinary differential
problem. The asymptotic validity of each asymptotic expansion in the set can be proven
from a theorem due to Eckhaus and Jager.

2. The two-variable technique in the case of partial differential problems: the restricted
hypothesis.

2.1. The formalism. Let ft be an open bounded set of Rn, T its boundary, and v the
inward normal unit vector to T • e will be a parameter which may take very small values.
We seek an asymptotic approximation of the real function f(x, a) solution of the Dirich-
let problem:

(eA + B)f= g, Vx e Q,

3"-1/
/

dl
r' dv r'

prescribed. ^ ^
r

A is a partial differential operator: it is linear and strongly elliptic. Its coefficients are
variable with x and its order is 2k. B is a linear partial differential operator of order
m < 2k, and g is a function of the variable xeQ (closure of Q). In the following, we need
to break down A and B into their homogeneous differential parts:

2k m

A= £ P.(x, D), B= £ Q/x, D),
j=o j=o

where Pj(\, ■), Q/x, ■) represent homogeneous polynomials of degree j with coefficients
depending upon the variable x; D is the usual gradient operator (8/dx1, d/dx2,d/dxn)
so that D/will be the vector (df/dx1, df/dx2, ..., df/dxn).

Let the hypothesis of ellipticity be written in the form:

3 >0, VpeR", Vxefi: ( —l)kP2k(x, p) > »?|p|2fc. (2)

We require Q to be a strictly B-convex set (see Hormander); this assumption is not
absolutely necessary but it avoids free boundary layers and other parabolic boundary
layers, which, for the time being, are not within the scope of this paper.

Let (•,•) and | • | stand respectively for the scalar product and the norm in L2. Let <j)
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be any smooth (that is, infinitely differentiable) function with compact support in Q. We
assume that the coercivity inequality:

3 c > 0, V</>: {4>,B<p)>c\4>\2, (3)

holds good and that the coefficients of (1) are sufficiently regular. Then we can find an e0
such that the problem (1) has one and only one solution when e belongs to (0, e0] (for
details, see Bouthier).

We do not suppose anything else about the form of the operator B: it could be
elliptic, hyperbolic or of a mixed type. It will only be assumed that, when e = 0, the limit
of problem (1) has a unique solution.

We want to study the main boundary layer of /by means of a two-variable expansion
technique. Thus, let us set:

t = ^_10(x), (4)

where
3 = Ell(2k~m\

while the function 0(x), which depends on the variable x £ R", is unknown for the time
being. The location Tc of the boundary layer is defined by the equation

0(x)= 0.

Let us look for an asymptotic expansion of/as:

F(x, t, e) = F(0,(x, t) + (5F(1)(x, t) + S2F(2) • • •. (5)

In order to derive this, the tool used is the chain rule for derivatives: the gradient of F is
the vector:

<5"1p(x)^ + (DF)t = 5_10(x). (6)

where:

p(x) = D0.

Note that this formalism (4)-(6) actually is multidimensional and that all directions in
R"-space are treated on an equal footing. For the sake of brevity, we shall henceforth
omit the index r = <5_10(x); as a matter of fact the introduction of x as a new indepen-
dent variable leads merely to performing the substitution

D-r'pfxJ^ + D, (7)

within (1). Computing higher derivatives of F, we find that A and B transform according
to:

2k f)2 k-s m F)m~s

^ £^-2*+SSs(D)__ B.|r-+T!(D) —, (8)
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where Ss(D) and 7^(D) denote differential polynomials of the sth degree with coefficients
depending on x and the s first partial derivatives of Q. In particular, we have:

S0(D) = P 2n(p), T0(D)=em(p).
Now, we require that F satisfy:

d2k dm
^2k(p)~^2k + Qm(P)

2kF+ I -5sSs(D)£^+Ts(D)dx2k-s sy , dir-
F = 5mg, (9)

where we impose the convention that 7^(D) = 0 if s > m.
The first boundary condition of (1) defines the value of F(\, t, s) when x belongs to T

and t = 0. It will be written as1:

prescribed.
r

The second boundary condition will be:

dF
S !p • v-r- + l^j- I prescribed, when x e T, x = 0.dz l»(x)

(-)\dv )z=i-lg

Again, we drop the index t = S~ l9(\) and simply write this as:

r'p'Vv + T"! prescribed. (11)
dz dvJ r

More generally, the k boundary conditions for F will be:

h <d\d"-sF
dv / dth-s prescribed, 0 < h < k — 1. (12)

r

Here U[h) denotes differential polynomials having d/dv as their argument. Their degrees
are s and their coefficients are functions of x (because of the occurrence of v(x)) and the
(s + 1) first derivatives of 6.

2.2. The restricted "secular" hypothesis. 2.2.1. We can now use the expansion (5) to
obtain a hierarchy of problems for the successive approximations F<0), F(1), ...; but we
must previously define what will be considered as a "secular" term in the expansion (5);
hence the definition/hypothesis:

A term of F(r)(x, t) is said to be secular and has to be cancelled as non-
uniformly valid, if either the ratio of Fir) to F<r~l\ or the ratio of a deriva- -
tive of Fir) (with respect to x or t) to the homologous derivative of Fir~1\ is 1
not uniformly bounded on the set fi x [0, +oo)2.

1 This can be mathematically justified if we consider the space {x; x e R"J as a subspace of {(x, i);xe R",
t e [0, +<»)}. Then I~ is a (n - l)-dimensional manifold of this larger space.

2 As we shall see hereafter, the ratios are only uniformly bounded on {H - u(y)} x [0, + oo), whatever the
neighborhood u(y) of y where y is given by (19).
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Moreover, we look for approximations of/ which are 2/c-continuously differentiable.
2.2.2. Study of the first-order term. F(0) has to satisfy an ordinary differential prob-

lem with respect to t:
d2k dm

P2*(X, P)^2l+Cm(x, P)^,
piO) = j°> if m > 0,

\g, if m = 0,

f(0)
r

dhF(0>

St'h

prescribed, (13)

= 0, 1 < h < k - 1.
r

The bounded solutions have the form:

2k — m

a(0)(x) -I- £ b(i0)(x)eu**, (14)
i = l

where A;(x) (1 < i < 2k — m) are the (2k — m) roots of:

l2k —m   A/„\_ 8m(X' P) ,15)

and a(0)(x) and b^\x) are indetermined functions of x. Note that, because of (2), lj(x) is
bounded on the set where the new variable t is well-defined (p ^ 0). However, an expon-
ential term exp[/l;(x)i] is bounded only if the real part of A, is negative. Close to rc,
Re(A,-0) has the same sign as Re(l,<30/<3vlrc), v being the unit vector normal to rc,
pointing towards the side where the boundary layer lies (that is to say, the interior of Q).
Hence, we have to study the roots of:

a2k-m= 1 Qm(x, p) Idd Y
I Piki*, P) \Sy)

2k — m \

(16)
rc

First, 9 vanishes on the manifold rc and:

P = ^v. (17)
rc dv

Secondly, Qm and P2k are homogeneous with respect to p, so that (16) may be written as:

-,2k — m , £>m(x, V)
(18)

rc^2k(x, v)

Now we have to split T into three sets:

r+ = {x e T; (-l)[(m+1)/2]Qm(x, v) > 0},

r = {xe T; (-l)[(m + 1)/21em(x, v) < 0}, (19)

r = {xeT; <2m(x, v) = 0},

where [(m + l)/2] stands for the integer part of (m + l)/2. It can be shown that only
i+ = [(2/c — m + l)/2] (respectively i~ = [(2k — m — 1 )/2]) exponentials of (14) are
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bounded on T+ (respectively on T"). Hence F(0)(x, t) can be given in the form:

F(°) = a<0)(x) + £ fe(.0)(x)eA,(x)t + £ (20)
i=i j=i

Here fe-°'(x), 1 < i < i+ (respectively 6<0)(x), 1 <j<i~) has to vanish on T (respectively
on r+). We can easily recognize that (20) has the structure of a composite approximation
according to the W.K.B. method: a{0) is the regular approximation and there are two
boundary layers. Let us note that the location of the boundary layer (called hereafter Tc;
Tc may stand for either T+ or T") has been defined before we obtain any exact expres-
sion of the new variable t.

For the time being we are able only to obtain boundary conditions on rc for 0, a{0\
b\0) (for details, see Bouthier); as a consequence we need further information for their
complete determination; this will be given by the consideration of higher order terms
through the "secular" hypothesis.

2.2.3. Study of the second-order term. As usual, the problem for F(1) appears to be
simply the same as for F(0), but with nonhomogeneous parts:

P2lt(X, P)
d2k dm

p( i)

+
d2k~l dm~ f,0) = |°> if m ± 1.

\g, if m = 1. (21)'dx2k'1 ' *1V 'df"'1

In accordance with the principle (HJ, we have to cancel three types of terms:
(i) Terms independent of r: They exist only in the case m = 1 and they are:

9 ~ F1(D)a<0) = g — Ba(0). (22)

(ii) Exponential terms such as re^x}t: These yield (2k — m) equations which are
equivalent to one:

[A VP2k(p) + Vgm(p)]DA = 0, (23)
where VP2k(p) and V(?m(p) stand for the gradients of P2k and Qm with respect to p. From
(23) we may know 0(x), whence the variable t.

As a matter of fact, (23) is rather complicated, but let us consider the particular
solution:

A = Const <-> A; = Const, Vi. (24)

It can be shown that this is the only possible solution which agrees with the hypothesis
(Hj) (see Bouthier). Thus 9 is now defined by means of the Cauchy problem:

AP2k(x, D0) + Qm(x, DO) = 0,
25V = o.

(iii) Exponential terms such as eUx}z\ These terms vanish if each b(°] satisfies the
equation:

[ASt(D) + 7i(D)]fcj0) = 0, Vi. (26)
Adding to this equation the boundary conditions of (13), we get a problem of the Cauchy
type for b\0>.
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Now, let us come back to the problem (25) for 0(x) and let us set:

u,(x) = A,0(x), Vi. (27)

Since Plk and Qm are homogeneous polynomials, it follows that the functions m,(x) are
solutions of:

P2k( Du) + Qm(Du) = 0,

«|rc - 0-

This problem can be solved with the method of ^characteristics and it can be shown that
m,(x) is well-defined in a neighborhood of rc. We can also show that (26) are indeed
ordinary differential equations with respect to the variable 9 (for details, see Bouthier).

So the first approximation F(0) is completely and uniquely determined (if m = 1), and
the second approximation F(1) takes the form:

Fil) = a(1)(x) + Y, b\1)(x)eXiT + £ b(l)j(x)ex~'\ (29)
i=i j=i

Here a(1>(x), b\l)(x) and b{l)(x) are unknown functions of x; at this stage, their values are
known only on the boundary Tc.

2.2.4. It is not difficult to extend this formalism to the higher-order terms and to set
out the "secular" conditions issuing from the hypothesis (Hj). In this way it is seen that:

(i) The general structure of F<r) is the same as for F(0) and Fa\
(ii) The principle (Hx) leads to a unique definition of the regular parts a,r,(x) and of

the exponential terms corresponding to the boundary layer (at least in a neighborhood of
rc).

Consequently, the two-variable technique relying on the hypothesis (HJ may be
considered as self-consistent.

While the process just completed defines the boundary layer parts of F<0) or F(r) only
in a neighborhood of Tc, it may be desired to have F(0) and F(p) defined on the whole set
d. This extension may be achieved in the following way: let us introduce smooth func-
tions x(+r)(x) (resp. /~r)(x)) equal to one in a neighborhood of T+ (resp. T ) and zero
outside the domain of definition of 6>(x), bt(x). Whatever the conditions (25)-(26), the
following approximations may be used:

F(r) = a(r)(x) + X x(+r'(x)b(ir>(x)eA,r + X X( r>(x)b(l>J(x)eA'T. (30)
i=i ;=i

Here we may use any extension of d(x) provided that:

Re(A,-0) < 0, x e Q n sup %(r)bf\ Vi.

2.3. The asymptotic validity of the expansion. In order to justify (Ht), it must be
proven that F<0) (then F<0) -I- 5F(1), F(0) + <5F(1) + 52F(2), ...) actually is an asymptotic
approximation of/ To do this, we shall restrict the analysis to the case of a second-order
operator A. The main tool will be the following theorem (Eckhaus and Jager) which can
be demonstrated by the maximum principle (Protter and Weinberger).

Let u0(y) be an open neighborhood of y, bounded by a subcharacteristic manifold
(when B is a 0-order operator, o0(y) is the empty set) and R{x, e) be a function which is
twice continuously differentiable and uniformly bounded in Q — v0(y) when e goes to
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zero. If there exists <5 = e", a > 0, such that:

(sA + B)R = 0(S), Vx g 0 - o0(y),

R = 0((5), Vx e T - d0(v), (32)

then:

R = 0(<5), Vx g Q - o(o0(y)),

for any neighborhood u(u0(y)) of o0(y).
Let us now give the proof of the asymptotic validity of the first approximations F<0)

which, in this case, must be written as:

F(0)(x, e) = a(0)(x) + ^<0)(x)£><0)(x)e'5~,u(x), (33)
where:

S — u(x) = 10(x). (34)

In a natural way, we set:
R = /(x, e) - F(0)(x, e)

for the asymptotic error; it satisfies the regularity conditions of the last theorem.
First (excluding the singularities of F<0) on y) the boundary condition:

R(\, e) = 0, Vx e T — v(y),

holds good whatever the neighborhood u(y) of y.
Secondly, from the very definition of F(0):

(eA + B)R = -s[Aaw + es',uAbw\,

when x(0) = 1- Moreover, when 0 < x{0) < 1:
(eA + B)R = -£Aa{0) + 8~mes~iuZ(d),

where Z stands for a polynomial in the variable S, whose coefficients are functions of x
alone. Because of (31) and the regularity of a<0>, b(0), xi0) in — u(y), R satisfies all the
conditions (32). Hence:

Theorem. The function:
F(0) = a(0)(x) + /0)(x)bw(x)ex\

i = g1/(2_m|0(x),

determined by the formalism of Sec. 2.1 and the hypothesis (Hj) is a valid asymptotic
approximation of the solution of (1) in the sense that:

F<0) —f+ 0(<5), Vx e 0. — D(y), (35)
for any neighborhood v(y) of y.

A similar theorem holds true for the higher approximations. Its proof, which is
slightly more complicated than but very similar to the preceding one for F<0), will not be
given here (refer to Bouthier). Analogously to (35) we state it as:

£ SSF(S) = / + 0(6r+l), Vx g f2 - u(y). (36)
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As a matter of fact, the proof of these results is actually simpler than for those obtained
through matched asymptotic expansions (Eckhaus and Jager): in the latter case
(eA + B)Z is not uniformly 0(6) in H - v(y). This means that the boundary layer approx-
imation found here is very good indeed (this can be shown when the regular part of F
reduces to a constant).

Now it appears that the principle (Ht) is completely justified; strictly speaking,
however, it holds only in a neighborhood of Tc.

3. Enlargement of the " secular " hypothesis.
3.1. Definition of the new "secular" hypothesis. The two-variable technique used in

Sees. 2.1-2.2 led to a valid asymptotic expansion of/, but the functions xi r)(x) had to be
introduced, and it appeared that the hypothesis (Ht) is not entirely satisfied in the whole
of — 0(7). More generally, it is known that a boundary layer approximation can be
multiplied by any function x(x) without losing its validity, if /(x) = 1 on Tr Otherwise
Erdelyi has remarked that, in the ordinary differential case, there is no need to impose
the condition corresponding to (26). Finally, if we try to apply the formalism to parabolic
boundary layers, serious difficulties arise with regard to the application of the principle
(H,).

All this means that it may be possible to enlarge the "secular" hypothesis. To this
end we consider the following definition:

A term of F(r)(x, t) is said to be "secular" and has to be cancelled as
non-uniformly valid if F(T) or one of its derivatives (with respect to either x (H2)
or t) is not uniformly bounded on H x [0, + oo).3

Now the algorithm used in Sees. 2.1-2.2 remains unchanged up to the second order.
F{0) again takes the form (20). F(1) must satisfy the problem (21), but the condition
(22)-(23)-(26) reduce to only one condition: F(1) must not contain terms linear with
respect to x. Thus, again, a<0) is defined by the problem (22), but we allow exponential
polynomial terms (such as x2eXi(x)z, re*'ix)T, ...) to be found in F(1). Eqs. (23)-(26) no
longer hold, and the functions 0(x), b(i0>(x) remain undetermined to the same extent as for
the first order. Only their boundary values on rc are known (because of the boundary
conditions of (13)). Of course there is no particular reason to choose the constant. This
lack of unique determination must not be considered as a failure but as a sign of greater
generality: we get a set of approximations F(0)(x, r) which include the previous situation
as a special case.

Now the unchanged problem (21) requires that for each F(0>, F(1> must be written as:

F(1>(x, x) = a(1)(x) + £ MX)(x. r)e^xh. (37)
i

Here, ^'(x, t) is a polynomial of second degree in x. The coefficients of x and x2 in it are
uniquely defined from the functions 0(x), 6(,0)(x) but the term independent of x is
undetermined (except on rc).

As a matter of fact, this will be applied on {£i - u(y)} x [0, +00).
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It can be shown that the work can be extended similarly for the higher orders: this
yields a sequence of problems and their solutions F(r) take the form:

F(r) = a(r)(x) + £ b\r)(x, T)eUx)r, (38)
i

where b\r)(x, t) is a polynomial in t (its degree is equal to or less than 2r).
The final expansion F(x, r) depends upon the choice which has been made at each

order for the term independent of t in b\r). Notice that the boundary value on rc of this
term is imposed.

The new hypothesis (H2) avoids solving the problems (25)-(26) and, incidentally,
makes the process as easy to apply as the matched asymptotic expansions method;
indeed it is also no longer necessary to introduce the functions /(x). However, we must
require that the exponential terms are small. Consequently:

Re A,(x)0(x) < 0, when x e fi n sup fc'r), Vr, Vi. (39)

3.2. Asymptotic validity. 3.2.1. As may be expected, the asymptotic validity of the
expansions now is more difficult to prove than in the previous case (Sec. 2.3).

First, let us remark that the exponents, w,(x) = A;(x)0(x), have gradients which satisfy
(28) on rc. Although A, is not constant, we may write:

Dtii|re = A,-|rc • D0|r<..

By the very definition of A,- (15), it follows that:

P 2*(DM,|rc) + 2m(DWj|rc) = 0. (40)

Hence, whatever choice is made for the function 9(x), the are roots of (40).
Let us now define the asymptotic error by:

R = F(0) -/

As before, and for the same reason, the case of a second-order operator A only will be
considered: the boundary layer will contain only one exponential term (see (33)) and if
we use the variable 5~1u(x) instead of <5-10(x), the algebra of Sees. 2.1-2.2 yields:

(eA + B)R = -eAai0) - rV"'"[P2(Du) + Qm(Du)]tf0)
- S1-me6~lu[S1(u, D) + T^u, D)]fc<0) -

Here the definitions of ^(w, D) and Tt(u, D) are the same as in (8), with the function m(x)
replacing 0(x). (40) tells us that there exists a constant M > 0 such that (excluding a
neighborhood of y)4\

|«5-V"1u[F2(D«) + Qm(Du)]b(0)\ < MS'm \ u \ es~lu

holds uniformly. Hence, we get:

(eA + B)R = 0(d-m\u\es~lu) + 0(81~mei'lu) + 0(3). (41)

3.2.2. The left-hand side of this equation does not appear to be uniformly 0(5): owing
to terms being 0(1) in the boundary layer the theorem of Eckhaus and Jager can no
longer be applied and we need the following stronger theorem.

' This constant M depends on the chosen neighborhood of y.
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Theorem. Let u0(y) be any open neighborhood of y, bounded by a subcharacteristic
manifold (when B is an O-order operator u0(y) will be the empty set), v(x) be the distance
from the point x to Fc (close to Tc, i>(x) is the abscissa along the normal to Tc) and
R(x, e) be a twice continuously differentiate function. If there exists a constant a > 0
such that:

(sA + B)R = gx{x, e) + g2(x, e) in 0. - u0(y),

R

R uniformly bounded in Q - o0(}'),

= 0(5), (42)
rc

with:

then

g1(x,e) = 0(di-me-*~lm),

g2(x, £) = 0(5), (43)

R = 0(5) in Q — o(o0(y)),

for any neighborhood u(u0("/')) of ij0(>').
In order to prove this, we shall use the technique of barrier functions, and introduce a

function tv defined in a neighborhood i>i(rc) of and such that5:

(i) w = 0, dw/dv 0, on Tc - v0(y),

(ii) —a.v<w<0, in ^(r,) - D0(y), (44)

(iii) 3K>0, P2(Dw) + Qm(Dw)>K, in ^(r,) - u0(y).

Let u0 be the unique negative solution6 of:

P2(Du0) + Qm(Dw0) = 0, u0|r<. = 0,

and p be a positive constant such that:

0 < p < Min 1, Inf
I x6r,-i)o(ri

-(£)"

Then the function w = pu0 satisfies the requirement (i) and is negative. When x tends
toward a point of rc, the limit of — w/olv is:

duo -1 ^ ,<1-

and the condition —olv<w holds by continuity in a neighborhood of rc — u0(y).
At last, we may write:

P2(Dw) + Qm(Dw) = (p2 - pm)P2(Dm0),

5 The function w and the neighborhood u,(re) depend on the neighborhood u0(y).
6 It is well-defined only in a neighborhood of Tc.
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and the constant K occurring in (iii) can be chosen as:

K= -(P2-Pm)n Inf (%f>0.
x e rc- oo(y) \ ov !

Let us now consider the following barrier function:

Y = Sx(x)eiiwix),

where x is an infinitely differentiate function such that:
(i) it is equal to one in a neighborhood of Tc,
(ii) its support is contained in t>i(rc).

Through straightforward manipulations we get:

(eA + B)Y = S1~mes~iw[P2(Dw) + Qm(Dw)]Z + S2~mg3(x, e),

where:

g3(x, s) = D) + T,(w, D)]X + ^"4

Owing to (44), for any positive constant cu we have:

(eA + B)ClY- \(eA + B)R\ >(ClKed~lw- \8l \ )x - (1 - x)\gi \ ~ \9i\

Now the assumption (43) about the magnitude of |\ means that the constant Cj can be
chosen large enough to get

(eA + B)cx Y — \(eA + B)R\ > -(1 - x)\gi\ ~ \gi\ + <*xgz.
But when e is small,

(i -x.)\gi I + \g3\ = o(S),
so we introduce a last positive constant c2 which allows us to verify simultaneously:

(eA + B)(Cl Y + c2S) — | (eA + B)R | > 0,

and:

(Ci Y + c2<5)|r-c_uo(y) = Ci + c2S > \ R \ |re-uo(y)>

where the first inequality holds provided that:

(eP0 + Qofad > -Ecxg3 + (1 — x)10i I + \9i\-
This is indeed possible since g3 is bounded and Q0 > 0.

Thus Cj 7 + c2S actually appears to be a barrier function for R if on the boundary of
00(7) ̂ 's greater than | R |. To do this, we can use the method of Eckhaus and Jager, and
this yields:

R = 0(Y) + 0(5)= 0(6),
uniformly in H - i^Uo^))-

3.2.3. Our aim now is to apply the previous theorem to the case of (41). With a view
to do this, it is useful to notice that the function u has the following main properties:

(i) u = 0<->x e rc,
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du " 6L-4 (45)
rc

(iii) u < 0 in Q.

From these properties it follows that the asymptotic evaluations:
^i-V1" = 0(51"me-',"lTO) + 0(<5r), Vr > 0, (46)

and
5~m\u\e>'1" = 0(51~me~s~lx") + 0(<5r)> Vr > 0, (47)

hold provided the positive constant a is small enough:

0 < a < lnf (-f).
As a matter of fact, by continuity avu 1 can be set equal to ct(du/dv) 1 on Tc, so that we
obtain the statement:

u < — av < 0,

in the interior of a neighborhood of rc — 00(7). say 0 < v < V. In that neighborhood, (46)
is readily verified, while

— 8~1ued~lu/e~s~1'xv = — (5~'(u 4- ai;)e'5~i<u+'"'),
u + av v '

is bounded in view of the fact that:
(i) The maximum of the function te~' on [0, +00) is finite,

(ii) u(u + av)~1 can be extended into a continuous function (with value of rc given as
du/dv(du/dv + a)-1.

Thus:
S-1\u\ei'lu = 0(e-d~1°a')

holds if 0 < v < V. Now in the remaining domain of H - u0(y), all the exponentials of
(46), (47) are smaller than 0(Sr), for any positive r, since

v > V > 0,
and

u < — Cst < 0

(from (45)). Using (41), (46), (47) and the theorem proven above, we may state the
theorem:

Theorem. The functions

F(°) = a<°)(x) + b(0)(x)ei~ 'u(x>,

determined by the formalism of Sec. 2.1 and the hypothesis (H2) are all valid asymptotic
approximations of the solution of (1). The asymptotic error is:

f(°> = f + O(S), Vx g Q — u(}>),
whatever the neighborhood v(y) of y.
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4. Conclusion. It has been shown that the two-variable technique can be used in the
field of partial differential problems. This may be done in two natural ways: the first one
follows from the principle (Hx)—the asymptotic expansion obtained is uniquely defined
and takes the form of a W.K.B. expansion, while the second one, which includes the
former as a particular case, leads to the enlargement (H2) of the "secular" hypothesis
and to a whole set of asymptotic expansions. As occurs in ordinary differential equations
(Erdelyi), each expansion of this set is valid. The asymptotic validity has been proven for
second-order operators by means of an extension of a theorem due to Eckhaus and
Jager.
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