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Abstract. Bifurcation and perturbation techniques are used to construct small-

amplitude periodic wave-trains for general systems of reaction and diffusion. All solu-

tions are characterized by the amplitude a and the wavenumber k. For scalar diffusion,

k ~ a, while for certain types of nonscalar diffusion, k is bounded away from zero as

a\0. For certain ranges of a and k, linear stability of waves is demonstrated.

1. Introduction. Recently, there has been a great deal of interest in the existence and

stability of waves for reaction-diffusion equations. These nonlinear parabolic systems are

believed to play a role in biological and chemical pattern formation. A variety of wave

forms have been demonstrated for these systems including wavefronts, pulse waves, and

periodic wavetrains (see for example [3] and [7]). In this paper we are concerned only

with small-amplitude, periodic wavetrains: those occurring as a zero rest state loses

stability. There are numerous rigorous andjormal results concerning the existence of

small-amplitude wavetrains, but very little is known of their stability; most results have

been negative [2, 5, 7]. In [4, 7] it was conjectured that large-amplitude waves "near" a

stable homogeneous limit cycle were stable. Rinzel [8] demonstrated neutral stability for

large-amplitude waves occurring in a simple class of reaction-diffusion equations model-

ing nerve-axons.

The most complete stability results are for a very simple class of two-component

systems introduced by Kopell and Howard [5], These so-called 1-co-systems exhibit stable

waves which can be explicitly constructed. Many general reaction-diffusion equations can

be reduced to A-a>systems when the kinetics are near a Hopf bifurcation (see [1] and

Sec. 3 of this paper). Cohen et al. [2] recently proved the existence of bifurcating waves

for a fairly general class of equations, but these waves were shown to be unstable. Based

on these results, it was suggested that all small-amplitude bifurcating waves are unstable.

In this paper we show that there are many small-amplitude wavetrains which are, in

some sense, stable. The principal difference between our techniques and those of [2, 5, 7] is

the introduction of a small bifurcation parameter into the reaction kinetics. In Sees. 2

and 3, stable long waves are constructed near a small-amplitude bifurcating limit cycle.

By long waves, we mean that the wave number is of the same order as the amplitude;
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thus, as the amplitude vanishes, so does the wave number. In Sees. 4 and 5 we examine

the existence and stability of truly bifurcating wavetrains, that is, wavetrains which are

not "near" a homogeneous limit cycle. For this second type of wave, instability arises

because of differences in the diffusion constants and not because of the kinetics; in the

absence of diffusion the uniform state is asymptotically stable. Other investigators have

demonstrated diffusion-induced instability which leads to stationary spatially periodic

structures. In our case this diffusion-induced instability leads to traveling waves or stand-

ing spatially periodic temporal oscillations. At the end of Sec. 4 we discuss an example of

a system with this unusual instability.

2. A simple 1-w system. Kopell and Howard [5] introduced a simple class of nonlin-

ear reacting dynamics of the form:

s(".)-$, -fit): + (21>
If we let u = r cos 6 and v = r sin 0 be the polar coordinate representations of (u, v),

(2.1) becomes

r, = r A(r), 9, = co(r). (2.2)

If A(0) > 0, A(r) = 0 for some r > 0, A'(r) < 0, and co(r) 0, then (2.2), and equivalently
(2.1), admit a stable limit cycle:

u = r cos co(r)t, v = r sin co(r)t.

Suppose we put co(r) = 1 and A(r) = y — r2, where y is a parameter. Then, for y < 0, the

rest state, u = v = 0 is asymptotically stable, while for y > 0 it is unstable. It is readily

shown that the eigenvalues at the instability are complex and thus (2.1) undergoes a

Hopf bifurcation to a stable limit cycle at y = 0. The amplitude of these cycles is Jy.

Consider now the system (2.1) with scalar diffusion terms:

8t\v) \ 1 7-(u2 + r2)/M + 3x2U/- ( '

The change to polar coordinates yields:

1

r0<y/y, (2-5)

r, = r(y - r2) + rxx - r6*, 9, = 1 + ^ (r26x)x (2.4)

(2.4) admits solutions of the form:

r = r0, 9 = at — ax,

(j=l, a2 = y - rl;
i.e.,

u = r0 cos(t - yjy - r20 x), v = r0 sin(t - Jy - r20 x).

These are wavetrains with amplitude r0 and wavelength 2n/(y — rl)xl2. In Fig. 1 we have

sketched one such wave.

We now examine the stability of this wave. There are a number of different concepts

of stability—in this paper we are concerned only with linear stability. That is, suppose

u*(x, t) is a solution to:

u, = F(u).
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Fig. 1. Typical profile of a bifurcating wave. The wavelength is 2n/(y — rj)"2, the velocity l/(y — r;j)1/2, the

amplitude (y - rJ)"2, and the frequency 1.

Then the linear stability problem is:

v, = DF(u*(x, t))v. (2.5)

If this linear problem admits solutions which are spatially bounded but grow without

bound as t increases, we say that u*(x, t) is linearly unstable. Ideally, we would like to be

able to say that if we start near the solution u*, we remain close to u* (up to translations

and rotations in x or t) for all t > 0. In certain cases, it has been shown that linear

stability implies stability in this latter sense (see e.g. [9]). To determine stability of the

solutions (2.5), we apply a theorem due to Kopell and Howard [5]:

Theorem 2.6 [5, p. 317]. The wave solution with amplitude r0 and wavenumber a is

linearly stable if and only if:

4a2(l + (a>'(r0)/A'(r0))2) + r0X'(r0) < 0.

For our system, we find this implies:

Jy > r0 > (§y)1/2. (2.7)

Thus, we can always find stable waves with arbitrarily small amplitude which "bifur-

cate" from a uniform rest state. We note that these are long waves with a wavelength

proportional to l/^/y. There is an entire range for which these waves are stable, including

the infinite-wavelength "wave" corresponding to the bulk kinetic oscillation, r0 = 1. In

Fig. 2, we illustrate the bifurcation diagram for this system, showing the domain of

stability.
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Fig. 2. " Bifurcation diagram" for waves arising as the rest state loses stability.

This simple example shows that we cannot eliminate the possibility of stable small-

amplitude wavetrains.

3. Long waves in general systems. In Sec. 2, we examined an extremely simple

system constructed in such a way as to demonstrate stable long waves explicitly. The key

point in the analysis was that (2.3) displayed a stable small-amplitude bifurcating limit

cycle. The presence of diffusion enables spatial variations in phase to develop and travel-

ing waves to arise. If the bifurcation parameter y is fixed and of order e2, e <g 1, then the

amplitude and wave number are both of order e.

Using a multi-scaling perturbation approach, we derive a A-cotype system starting

with a general reaction-diffusion system as it passes through a bulk Hopf bifurcation. To

simplify the present computations, we write the general system as:

— = Au + yBu + D+ F(u) (3.1)
du ^ d2u
— = Au + yBu + D~2
8t dx2

where ueR" and F(u) = 0(\u |2). Define H(y, k2) = A + yB — k2D and let nt(y, k2) —

s(y, k2) -I- im(y, k2) be an eigenvalue with maximal real part s. We make the following

assumption:

Assumption A (Fife [3]). Assume that for (y, k) in some rectangle R with positive area,

is algebraically simple and hence differentiable in (y, k). Let Ju1 be unique up to

complex conjugate, and assume for some (y0, k0) in the interior of R that:

(i) s(y0,/co) = 0,

(ii) s(y0, k2) < 0 for all \k\ ^ |k01,

(iii) s,(y0, kl) = ^(y, kl)

(iv) m(y0, k%) = m0 0.

>0,
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There are two cases which can occur. If D is nearly scalar then k0 = 0, while in other

cases, we may have k0 ± 0. In this section the case k0 = 0 is treated, leaving the remain-

ing case for the next two sections.

With no loss in generality, we assume y0 = 0 and define <J>0 and ¥0 by:

A<t>0 = /m0O0, ArVo = -im04>0, (<D0, 4>0) = 1, (<50, O0) = 1, (3.2)

where A' is the transpose of A and (•, ■) is the inner product on €". We introduce the

fast time scale, t* = m01. Clearly the operator L0 = m0(8/dt*) -I- A has eigenfunctions:

(f)l(t*) = %ei'\ (/>2(t*) = 4>0e"'''* (3.3a)

and the adjoint, = —m0(d/dt*) + A', has eigenfunctions:

il,l(t*) = V0ei<\ +2(t*) = V0e~it\ (3.3b)

Here denotes complex conjugate. Certainly from (3.2) we must have

130 <<£,., <j>j) = - f un) dt* = <</>,-, t> = <v
n ■ o

We seek solutions to (3.1) which are real, bounded, periodic in the fast variable t* and

slowly varying:

u(x, t) = e{Z(£, t; e)</>i(t*) + w(<;, r, t*; e)} ~ (3.5a)

y = £2y(e), ^ = sx, t = c2t, (3.5b)

where

<<£,., w>= 0; j= 1,2. (3.6)

The symbol " ~ " means "plus the complex conjugate of the preceding quantity" and is

necessary here since real solutions are desired. Z(£, t; e) = R(£, t; incorporates

the slowly varying amplitude, R(£, t; e) and the slowly varying phase, 0(£; t; e). These

depend only on e and the slow variables £ and r. At the onset of this section, we justified

the scaling for the slow spatial variation £ and the amplitude e. Our choice for r is made

based on the second-order frequency corrections required for the Hopf bifurcation. We

expect w to be 0(e) since all components which are outside of the null space decay

exponentially to zero at y = 0. To derive the equations governing Z, we write F(u) =

B(2)(u, u) + Bi3)(u, u, u) -(-•••, where B(k) is a homogeneous multinomial of degree k. We

expand w and w in a power series in e:

w(£, T, t*;s)~ = ew^t, r, t*)~ + e2w2(£, t, f*)~ + ••• (3.7)

and substitute this and (3.5) into (3.1) to obtain:

L0(wi + Wj + e(w2 + w2)) = B'2>(Z</>i + Z<Ai + Z^)

+ e{B(2)(Z(l)i + Z<J>U w, + wt) + B{i\Z(t)l + Z(j)u Z(j)x + Z<f>u Z(j)l + Zfa)

+ y^ZBfa + y(e)ZBh + D[Zt: fa + Zlt fa\-ZTfa- Zr^} + 0(e2).

(3.8)

This is an equation of the form L0w =/; since L0 has a two-dimensional null-space

spanned by (/»! and <j)2 = (f>l, (3.8) can be solved in the space of continuous 27r-periodic
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functions C0 if and only if / is orthogonal to the adjoint eigenfunctions iand ip2.

Clearly the first term on the right-hand side of (3.8) is orthogonal to ipj so we may solve

for :

L0w, = Z2B<2|(4>„ + ZZB"21^!, fa). (3.9)

Seeking solutions in C0, we find:

wi = Z2&2)e2"' + ZZ<D(0) + C1(j)i + C2<p2 (3.10)

where <i>(2) and O<0) satisfy the algebraic equations:

—/4<1)<0) = B(2)(O0, <50), (2im0 — ̂ )0(2) = B(2|(O0, O0) (3.11)

and Cj, C2 are arbitrary constants. From (3.6) it is seen that C, = C2 = 0, so that the

complete lowest-order solution is:

Wl + wj = Z2Q><2,e2"' + ZW2)e~2"' + ZZ{O(01 + 4>(0)}. (3.12)

To find w2, we apply the orthogonality principle to the order-e equations in (3.8),

obtaining:

Zr = dZti + Z(y(e)fe1 - b3ZZ) + 0(e) (3.13)

with

d = £#! + i$2 = <«Ai, D0!>, bi=bul + ib2il = b3 = bi3 + ib23

= -<ipu B{2)(<S>{2\ O0) + B(2)(<|),0) + O<0), O0) + 3B(3)(<to, <D0, <J>0)>- (3.14)

The following lemma characterizes bt and d.

Lemma 3.15. Let q = k2; then from Assumption A:

3yyi
(a) bi = s., + I'm..; m.. = — (y, 0)

; = 0

(b) d = £/ix+i£tf2 = -sq-imq,sq = lim — (0, <j) > 0, m, = lim — (0, q).
q->0+ vq q->0+ VQ

Proof. We consider the eigenfunction equation:

(A + yB - qD)4>(y, q) = ^,(y, qp(y, q) (3.16)

where 0(0, 0) = <I>0 and /^(O, 0) = im0 ■ Differentiating this with respect to y at y = 0 and

taking the inner product with 4*0 yields (3.15a).

From Assumption A(ii), for q small and positive:

Mi(0, q) = qSq + im0 + iqmq + 0(q2).

Since nt(0, q) has a maximal real part at k = Jq = 0, sq < 0. Note that the case sq = 0 is

excluded since it is nongeneric. Expanding (3.16) in powers of q, we observe that to order

1-

AQ>q - D<&0 = s4<D0 + imqO0 + im0<t>q.

Taking the inner product of this expression with *F0 gives (3.15b).
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We remark that if D is a scalar matrix, say D = 1, then d = 1. Furthermore, note that

from Assumption A(iii) that b, j > 0. To derive the zero-order modulation equations we

expand Z and y in a series in e:

Z(£,t;e) = Z0({, r) + eZl({,r) + ---, y(e) = y0 + eyt + ••• . (3.17)

Substituting (3.17) into (3.13) and collecting the zero-order terms leads to:

Z0r = dZ0*t + Z0(y0b1 — b3Z0 Z0). (3.18)

Before continuing the analysis of (3.18), y0 must be determined. To do this, we return to

the problem (3.1). In the absence of diffusion this system admits a small-amplitude per-

iodic orbit, u(t), for y > 0, i.e. a Hopf bifurcation. As a further normalization requirement,

we demand that |Ju(f)|| = <u(t), u(t)}112 = e, whence we find Z0(t)Z0 (t) = 1 and

?o = *>i, 3/bi, i- One could pick any arbitrary amplitude normalization in order to

uniquely specify y0; we have chosen the usual one (see Sattinger [9]). With this value of

7o, the spatially uniform solution to (3.18) is:

Z0(t) = eit ob2- l~b2-3)T.

In the event that bx 3 = 0, then y(e) = £4y(£) and we must rescale the space and time

variables ^ and z. Rather than a nonlinearity of the form Z2Z, we would find Z3Z2. We

shall not consider this latter case, and hence assume blf 3 ̂  0. The spatially uniform

solution m(t) is stable if and only if bl 3 > 0, as can be readily shown.

To see the similarity between (3.18) and the simple system studied in Sec. 2, we note

that by setting W = re'", (2.4) may be written as:

WT = W(* + W(y + i — WW).

Clearly, (3.18) is a generalization of (2.4) with complex diffusion and a complex

nonlinearity.
With 70 as defined above, we look for space-dependent solutions to (3.18). The

solutions analogous to the long waves in Sec. 2 are:

Z0(£, T) = r0ei("r + J«; 0 < r0 < 1 (3.19)

where

= *>1,3(1 - r20) = A(r0), a = -&2ci2 + y0*>2,i - b2,3r%

= -£^2 0(2 + w^o)-

These solutions correspond to periodic wavetrains in the original system, (3.1), with

amplitude er0, frequency, m0 + s2ct, and wave number ea. We now examine their stabil-

ity. Rather than determining stability of (3.19) and (3.5) as a solution to (3.1), we instead

determine the stability of (3.19) as a solution to (3.18). While stability of the modulating

solutions does not necessarily imply stability of the solution, it is not an unreasonable

possibility. From Theorem 2.6, with X and u> as defined in (3.19), we can determine

stability when £22 = 0:
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Corollary 3.20. Suppose Q 2 = 0- Then the solution with amplitude r0 is linearly stable

if and only if:anu uiuy ii.

(a) bi 3 > 0 and

(b) rl> 2/[2 + 1/(1+ 3)]; d = (b2,3/bU3)2.

(3.20a) simply states that the spatially homogeneous Hopf bifurcation must be super-

critical (y0 > 0) and hence stable. We can parametrize these waves by either the ampli-

tude or the wave-number using (3.19). As in the case of the A-co-systems, there is an entire

interval of stable periodic wavetrain solutions to (3.1) with amplitude er0. For b2t 3 = 0

the frequency does not change to lowest order and the bounds on r0 are identically those

obtained for the system studied in Sec. 2. Thus, general reaction-diffusion equations with

scalar diffusion can always be reduced to A-co-systems when their kinetics are near a

Hopf bifurcation.
In the event that &2 ^ the above result is not valid and we state a somewhat

weaker version of the linear stability theorem, (2.6):

Theorem 3.21. Consider the problem:

(a) Zt = dZ^ + Z(A(r) + ico(r)); r2 = ZZ.

The traveling wave solutions

Z0(t, £) = r0g'(" + 3,«

where ia + da.2 = A(r0) + ico(r0), are stable to infinitesimal perturbations of sufficiently

small spatial frequency k, if:

(b) A'(ro)<0
(c) r0A'(r0) + a2[l + (cy'(r0)/A'(r0))2] + r0a>'{r0p2/&, < 0.

Here d = 3>1 + i&2.

Proof. Linearizing (a) about Z0(t, £) = r0e'("OT + xlt) leads to the problem:

J0W = -Wz + dWi( + (A(r0) + ico(r0))W

+ r<AX'(r0) + iw'(r0))[W+ We2i^ + X()] = 0. (3.22)

We are interested in solutions bounded in space which grow exponentially in time; in

this case the waves are said to be linearly unstable. We look for solutions of the form

W(t, £) = F(t, Z)ei(°T+li). Substituting this into (3.22) and taking real and imaginary

parts of V, V = x + iy, we see that x and y satisfy:

- ^2- 2a£/2x. - 2aQt^y. + r0A'(r0),

>'r = £^! + ^2xii + 2a.(/! x. - 2a.®2^ + co'(r0)r0.

(3.23) is linear with constant coefficients, so it suffices to examine perturbations of the

form (f12)e'n+iK\ (ff\) a constant vector, and keR. If there are values of k for which

p = p(k) has a positive real part, then the waves are unstable; otherwise, they are said to

be linearly stable. Substituting this exponential form into (3.23) leads to the algebraic

system:

— p - ®,k2 - 2&2aix + r0A'(r0) -2aiK&t + &2k2

2a.iK.3i — &2k2 + w'(ro)ro ~P -®iK2- 2aiKr£/2
= 0. (3.24)
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This has nontrivial solutions if and only if

p = p±(k) = —Qxk2 4- — 2aik&2

r0K(r0)
2

+ 4<x2&Ik2 + (J2k2[-9\ + r0co'(r0)]

11/2

2

+ i[+4®1®2K3 - 2a.'?1/"0ft/(r0)K]

When k = 0, the roots are r0X'(r0)/2 ± |r0A'(r0)|/2.

If r0 A'(r0) > 0, then there is a positive root and the wave is unstable, thus we require

< 0. In this case, when k = 0, p+(0) = 0 and we must examine higher-order k

terms. Expanding Re p+(k) in a power series in k, we show to order k2 :

Re p + (k) = —k
^ + 4i/\a.2 + o) + ^2^>W(ro)2

r0A'(r0) *'(ro) r0A'(r0)3

For stability, the quantity in the brackets must be positive. Since r0X(r0)/&1 < 0, multi-

plying through by this gives us (3.21c). Unfortunately, because of we are unable to

prove the stronger result that stability to long wave perturbations implies stability to all

wavelength perturbations, as was achieved in [5]. By setting = 0 and 5c 1 = 1, we

recover Theorem 2.6. As a corollary to Theorem 3.21, we obtain:

Corollary 3.25. The solution (3.19 to the modulation equations (3.18) is stable to

infinitesimal perturbations of sufficiently long wavelength if and only if:

(1) bx, 3 > 0 and

(b) 2(1 + <52)/[(l + Sc) + 2(1 + <52)] < rl; <5 = ^, c = §*.
" 1, 3 ~^1

For general systems, the presence of the term &2 prevents us from obtaining a global

linear stability result. Nevertheless, in the subclass of systems with near diagonal, scalar

diffusion, there is global linearized stability and we conclude there are in fact formally

stable small-amplitude periodic wavetrains bifurcating from the initially uniform rest

state. These long waves have the form:

u(x, t) = + ae2]t + ocex) + O(e)}.

4. Existence of short waves and a Poincare-Lindstedt series. In the previous two

sections, we constructed long waves using bifurcation and perturbation methods. Here,

we construct periodic wave trains with a wave number k bounded away from zero. We

call these short or slow waves, since their wavelength and velocity are both 0(1) with

respect to the amplitude a, and not 0(l/a) as the waves in Sees. 2 and 3. The construction

in this section is motivated by an existence theorem of Fife [3] and depends on two

independent parameters: the amplitude a and the change in wavenumber q. In this

respect, it differs from the small-amplitude waves constructed and demonstrated by

Kopell and Howard [5] and Ortoleva and Ross [7] where the change in wavenumber is

the only parameter. Ortoleva and Ross [7] briefly discuss the case considered here in the

appendix of their paper.
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Re|t,(p) Re flSp)

(a) (b

Re fl,(p.i0)

Fig. 3. Real part of the maximal eigenvalue plotted as a function of wavenumber k2. (a, b) stability lost when

there is no additional parameter; (c) dependence on a parameter y.

In [3], Fife discusses why the above-mentioned one-parameter expansions are ex-

pected to generate only unstable wavetrains. We briefly sketch his argument. In [2, 5, 7]

there are no "external" bifurcation parameters; rather, the wavenumber, k2 = p, plays

the role of the parameter. Let (p) denote the eigenvalue of maximal real part for the

matrix A — pD (this corresponds to the linearized version of (3.1) when y = 0). We

suppose that for p = p0, Re Hi(p0) = 0 and Im Hi(p0) ^ 0. As long as

(d/dp)Re Hi(po) ^ 0, we expect a Hopf bifurcation to periodic wave solutions. Under this

latter assumption, the graph of ^i(p) versus p must have the form shown in Figs. 3a and

3b. From these figures, it is clear that there will always be eigenvalues of the linear

equation with large positive real parts and instability is consequently always expected.

We contrast this to the situation depicted in Fig. 3c, where, the additional bifurcation

parameter y has been introduced. For y = 0, all wavenumbers but p0 lead to eigenvalues

with negative real parts. As y increases beyond 0, an interval of values of p, centered

about p0, have small positive real parts. Below, we show that this can sometimes be

compensated for by the nonlinear terms and for each fixed value of y, a one-parameter

family of stable waves results. These waves arise in a manner quite different from those

discussed in [1, 2, 5] and Sec. 3 of this paper. The loss of stability of the rest state is due

to unequal diffusion of the reactants—in fact, in Lemma 4.6c we show that scalar diffu-

sion is precluded for the genesis of this phenomenon. It is known that spatial pattern
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formation arises from differences in the diffusion coefficients; here we demonstrate simi-

lar structures which, additionally, are time-dependent. It is important to emphasize that

these Turing-like structures arise as the rest state becomes unstable to spatially inho-

mogeneous perturbations while remaining stable to homogeneous perturbations.

We turn now to a statement of Fife's existence theorem. Using this theorem as a

starting point, we construct the lowest-order terms in a two-parameter expansion of the

wave solutions. In Sec. 5, we determine a restricted linear stability of these waves. Recal-

ling Assumption A (Sec. 3), we also assume that k0 ± 0, m0 ^ 0, and that D is nonsingu-

lar. Let 3>0 be the complex eigenfunction of H(y0, k2) with eigenvalue im0 such that

(f0,O0)=l.

Theorem 4.1 [3, p. 711]. Under Assumption A with s and m as before and the additional

assumptions that m0 ± 0, k0 ^ 0, and that D be nonsingular, there exists a two-

parameter family [t/(z; a, q), y(a, q), a>(a, q)] of solutions to (3.1) defined and continuous

in (a, q) for a and q sufficiently small, such that

(i) U is 27t-periodic and continuous in z = <u(a, q)t — (k% + q)1/2x

(ii) <$!, U} = a, <<p2, U) = 0, where = Re O0eiz and </>2 = —<t>\

(iii) y(0, 0) = y0 = 0, a>(0, 0) = m0 0.

To lowest order, it will be shown that:

U(z; a, q) = <#i(2) + 4wo, i(z) + awu 0(z) + 0(a2, q2, aq)\, (4.2a)

(b(a, q) = m0 + Co, i<? + Co, 2<?2 + Ci.oa2 + 0(a2q, q3, a3, aq2), (4.2b)

y(a, q) = Vo, 2q2 + h, 0«2 + 0(a2q, q3, a3, aq2). (4.2c)

Thus, the lowest-order expansion tor the parameter y depends only on a2 and q2 and

there are no terms of the form aq. Before continuing we define the following quantities:

dv ,, _ d2v
L0u = m0— -kl Djp - Av, (4.3a)

Lgt; = -m0 ~ - klD1— - Arv, (4.3b)

H(0, k2yt>0 = H0% = «m0O0, (O0, <&0) = 1, (4.3c)

HoV0 = - im0o, (4>0, T0) = 1. (4.3d)

We assume k0 =£ 0 so that from Assumption A(ii), Fig. 3c obtains. Let p = k2, p0 = kl,

and q = p — p0. Then s(y, p) is a function of q and because s vanishes at q = 0 and has a

maximum at q = 0 (y = 0), we must have:

s(0, k20 + q) = sqqq2 + 0(q3) (4.4)

with sqq < 0. We contrast this with the situation in Sec. 3, where s depended linearly on q

for q small and positive. That k0 ^ 0 and Fig. 3c obtains precludes this possibility from

the present case. The case sqq = 0 and Fig. 3c imply that s must have fourth-order

degeneracy. This is " non-generic " and thus we do not consider this case. Define:

0! = Re ®0eiz, 02 = Im ®0eiz = - 4>\,

•A, = Re 4Viz, <A2 = Im V = ~fi, ^
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where ' denotes d/dz. Note that:

(4>i, <t>j> = $ij, <ih, (t>j> = $ij ■

We have the following lemma, which corresponds to Lemma 3.15:

Lemma 4.6.

(a) <01( B0i> = sy(0, k%) = sy > 0,

(b) <i/>2, B(f>!> = m..(0, kl) = m.,

(c) <«Ai, Dcpi} = <iA2, D(p2y = 0,

(d) <i^2, D(f>i> = — <«Ai, D(f)2> = m,(0, /c£) = m,.

The proof of this lemma is similar to that of (3.15) and has been omitted. Letting C0

denote the space of continuous 2^-periodic functions, we see that <p1 and 02 are the

independent eigenfunctions generating the two-dimensional null-space of L0 in C0- Sim-

ilarly \l/u ip2 generate the null-space of the adjoint, LJ. The key point in this section is

(4.6c). This follows from the assumption that kl is the only wavenumber leading to a

nonnegative eigenvalue when y = 0.

Here we see the importance of nonscalar diffusion for this type of instability. For if D

were, say, dl, where I is the identity, the inner products, <tj/j, D(pj> = d(ipj, cpj) = d,

could vanish if and only if d = 0. Thus in order for (4.6c) to hold it is necessary that D be

nonscalar.

Motivated by the preceding existence theorem we write:

U(z; a, q) = a^^z) + wa q(z)), <0,-, wa>,) = 0,;' = 1, 2, (4.7)

and expand wBiq, y(a, q), and cb(z, q) in a power series in a and q:

q = awuo + qw0, i + <j2w2,0 + qawu ! + q2w0_ 2 + ---,

y(a, q) = ayuo + qy0,, + a2y2,0 + aqyu , + q2y0< 2 + ---, (4.8)

d)(a, q) = m0 + aCu 0 + 9Co, i + a2C2. o + aq£i,i + <Z2Co, 2 + '' * ■

As in Sec. 3, we assume that the nonlinear terms are sufficiently differentiate and can be

expanded into homogeneous multinomials:

F(u) = B(2)(m, u) + B(3)(u, m, u) + ■ ■ ■

Substituting (4.8) into (3.1) leads to the following linearly inhomogeneous equations:

L0wli0 = Ci,o0i + B(2)(<t>i, 0i) + yuoB<Pi, (4.9a)

Lowo, 1 = ~ Co, 10i + ^0i + Vo, 150i' (4.9b)

L0Wi, 1 = —Ci, i0i — Ci.o^o, 1 — Co. iwi,o + 2B<2)(0i, vv0 j)

+ Dw'[ 0 + 7u i^0i + yi,0Bw0,1 + y0,iBw10, (4.9c)

Low2, 0 = — Cl, 0W1, 0 C2. 001 '(01, Wli0)

+ B(3)(01, 0!, 0i) + ylt0BwU0 + y2,0B(f>1, (4.9d)

L0w0, 2 = -Co, 1< 1 - Co, 2 01 +^Wo, 1 + y0, iBwo. 1 + 7o,2^0i- (4.9e)
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Each of the equations, (4.9 a-e), is of the form L0w =f. This has a solution in C0 if and

only if /is orthogonal to the two adjoint eigenfunctions, and i^2. At each stage in our

expansion / takes the form of

yn,mB<Pi — Cn, m </> 1 + 9nm

where gnm depends on lower-order terms. The orthogonality conditions require

10 Sr W Vn, m |   I <>A 1> 9nm) j

U rn.,)\C„,mj \<Ii>2,9nj\

Since s,, ± 0, yn, m and m can always be uniquely determined. Applying these conditions

to (4.9a), we find ylt 0 = Ci. o = 0 and that 0 satisfies:

^-owi,o = B<2)($i> <Ai)-

Using the normalization (4.7), we see that this has a solution in C0:

Wt, o (z) = Re{O(0) + &2)e2iz} (4.10)

where Ol0) and 0<2) satisfy:

A&°>= -iB(2)(O0,O0)

(2ico0 — /I + 4/c2D)(D<2' = iB,2)(<D0, «D0). (4.11)

Applying the orthogonality principle to (4.7b) and using Lemma 4.5 shows y0, t = 0

and Co.i = mq. To find w0 u we examine the algebraic eigenvalue problem:

H(0, q)Q>(q) = »Ai(0, q)Q>(q)', H(0, q) = H0 — qD. (4.12)

Letting O(^) = <J>0 + q<i>q and substituting this into (4.12) yields

(H0 - imoyt>q = M>0 + mq(D0

Multiplying both sides by eiz, taking real parts, and comparing to (4.9b) shows

d®(q)
w0 J = Re O eiz, O =

dq (4.13)
q = 0

where, again, we have used the normalization requirement (4.7). Applying the orthogona-

lity condition to (4.9c) demonstrates that Ci, i and ylt t are both zero. Since we are only

interested to determining y2, o. Vo, 2. £2, o> ar>d Co. 2> we do not need to solve (4.9c) for

j. The orthogonality conditions applied to (4.9d) imply:

72,0 = - <"Ai» 2B(2)(0i> wlt 0) + B(3)(0i, <f>i, <pi))/sy

= bU3 /s,, (4.14)

C2.0 = -<^2. 2B(2)((/>„ w10) + B(3)((/>i, (/>!, 0i)> - y2,oWv

= b2.3- 72.0 «•;.

In the event that fci 3 = 0 we must continue to higher orders than Wj a, w0,2, and w2 0,

so we assume that b13 =^0.



74 G. BARD ERMENTROUT

Finally, we turn to (4.9e); applying the orthogonality condition to this equation

yields:

70, 2 s)' = Co, 1 w0, 1 ~~ l)>

Co, 2 = -7o.2"»y + <1^2, mqw'o, 1 - Dw'o, !>. (4.15)

In order to determine y0<2, we expand (4.12) to order q2:

H0<&qq + 2D<J>q = im0<bqq + 2imq<J>q + Hiqq®o ■ (416)

Applying NKq to both sides and using the definitions of w0 1( <pj, and ij/j, we find

7o, 2 — ~isqq/sy and Co, 2 = ?mqq — 7o, 2 my ■ From (4.4), y0i2 > 0 and we have obtained

the solution to desired order. Recapitulating, we tabulate the above computations:

7i, o = 7o, i = 7i, i = Ci, i = Ci, o =

70, 2 = ~2Sqq/Sy > 0,

72,0 = ~{Oi, 2B(2,(<^1, w1-0) + B<3|(0 1, </>„ 4>i)y}/sv = bi.j/s,,;

Co, i = mq, Co. 2 = "To, 2 . (4.17)

C2, 0 = -{<72, o".; + <1^2, 2B(2)(01, Wli0) + B(3)(<t> 1, (p!, <M»}>

= — 72, 0my + *>2.3,

w0 j = Re <bqelz, wl 0 = Re{O(0) + <S>i2)e2,z},

</>! = Re O0e'z, i/>, = Re ^V'2, «A2 = — «Ai-

We have constructed the leading terms in an asymptotic expansion for the wave

solutions of a system of reaction and diffusion equations. Unlike other expansions, there

are two independent parameters, a, the amplitude, and q, the deviation from the critical

wavenumber, kl. For each fixed y, these two parameters are related by the equation:

7 = fl272, o + <727o, 2 + higher-order terms. (4.18)

Thus, when all external parameters are fixed, there is a family of periodic wavetrains

parametrized by the amplitude, i.e.

k2 = kl± q(a) = k% ± ((y — a2y2 0)/7o 2)1/2 + higher-order terms,' , (4.19)

co = m0 ± Co 1q(a) + Co, 2k(a) + C2,0" + higher-order terms.

(4.19) is the dispersion relation for the small-amplitude waves and in Sec. 5, conditions

for stability are given. It should be noted that (4.18) is very similar to the expression

relating the wavenumber a2 to the amplitude r0 in (2.5), for (4.18) can be written as:

42 — (7 ~ 72, ofl2)/7o, 2 • (4-20)

At the beginning of this section we made some very specific assumptions about the

reaction-diffusion system. In particular, we required that the real part of the maximal

eigenvalue s(y, p) have a maximum at p = p0 =£0 and that m(y, p0) 0. It is not easy to

construct such a system—we show, here, that a minimum of three reactants are needed.

The second example is not general but the method of construction can be generalized for

any systems.
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We first show that Assumption A(iii) is easily satisfied by setting B = I. For then,

from Lemma 3.15a and Lemma 4.6a, s., = 1 > 0. Thus, we need only verify Assumption

A(i, ii, iv), and disregard y. Clearly one cannot expect oscillations in a one-component

first-order system, so we consider the general second-order system:

d_

dt
"lj/tfii <*i2 |/"i | + Id u dl2\d^_lUl\

u2) \a21 a22)\u2) \d21 d22)dx2\u2)

u21

(4.21)

\u2) dx

In this case, the matrix H(0, k2) is given by:

mp)={a"~d,"P p = k\ (4.22)
\a2i d21 p @22 d22 p I

For a 2 x 2 system, a necessary condition for imaginary eigenvalues is that the trace,

Tr(p) = an + a22 — {dn + d22)p, of H(0, p) vanish while the determinant remain posi-

tive. Since the trace is a monotonically decreasing function of p, it has a maximum value

at p — 0, thus if Tr(/?0) = 0, Tr(0) > 0. This violates Assumption A(ii) since, a positive

trace implies an eigenvalue occurs with positive real part. Hence, we see that Assumption

A can hold only if p0 = 0 and then the instability is due not to diffusion but to the

chemical kinetics.

This, of course, is not true for higher-order systems, as is illustrated by the following

third-order system:

1 0\ luA I 10 0
0.3452 1 «2 + 0 1

3.1000 0J \uJ \0 0

(4.23)
I vx \ I

*3t \«3 I

The solutions to (4.23) are of the form

<J>(p)exp(/l(p)t + ikx); p = k2,

where O(p) and A(p) are respectively the eigenvectors and eigenvalues of the matrix

H(p) = A- Dp.

We find that A satisfies the characteristic equation

Z(A) = A3 + T2(p)A2 + 7,(p)A + T0(p) = 0,

T2(p) = 6 p + 0.2, Tj(p) = 9 p2 + p + 3.1, T0(p) = 4 p3 + 0.8 p2 + 21.7p + 0.45.

The Routh-Hurwitz criteria demand that each of the coefficients Tj(p) be positive for

stability. This is clearly the case since p > 0. The last requirement for stability is that the

penultimate Routh-Hurwitz determinant:

D{p) = Up)^) - T0(p)
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be non-negative. If for some value of p, D(p) vanishes while Tj(p) > 0, the eigenvalue

equation x(A) has a pair of conjugate imaginary roots, ±im0, and a real negative root,

— r2. For our example we find:

d(p) = (P ~ Po)2(50p + 17); Po = OA.

Clearly, for all p > 0, p ^ p0, D(p) > 0 and 7}(p) > 0, so that (4.23) is asymptotically

stable to perturbations with k =f= k0 ±Jp0- For p = p0, D(p) = 0 and 7}(p0) > 0, so that

there is an imaginary pair of eigenvalues, ± im0, with m0 0. In fact, for p = p0, we find

m0 = 1.8125, — r2 = —0.8.

One could actually compute the eigenvalues of ^(A) exactly and verify Assumption A, but

this is unnecessary; the above calculations are sufficient verification of the hypothesis. To

the author's knowledge, this is the first example of a diffusion-induced instability at

imaginary eigenvalues for a reaction-diffusion system. The use of the Routh-Hurwitz

criteria presents a simple way to verify Assumption A since it only requires examining

four polynomials in p = k2 and, particularly, the form of D(p).

Summarizing, we have presented an example of a reaction-diffusion scheme for which

diffusion plays a major role in inducing pattern formation. In this 3 x 3-system, the

appearance of nonscalar diffusion leads to a loss of stability of the rest state through a

complex eigenvalue at a nonzero wave number, k0 = y/p0. This is unlike previous

examples (see e.g. [2, 5]) where stability is initially lost at the zero wave number k0 = 0.

5. Stability of small-amplitude short waves. In the last section, we used a two-

parameter series to construct small-amplitude short waves near a bifurcation point. Here

we compute the linearized stability of these waves following the method proposed in [5]

and explicitly carried out in [4].

To formulate the stability problem, we linearize (3.1) about the solution U(z; a, q)

given in (4.1a), obtaining:

dV d2V
— -N(U(z;a,q))V-D^-£ = 0, (5.1a)

N(w)V =(A + 2B(2)(w, V) + 3B{3)(w, w,V) + - -. (5.1b)

Changing variables to the moving coordinate z leads to:

dV dV d2V
~ N(U(z; a, q))V - (k20 + q)D = 0. (5.2)

Since the coefficients of (5.2) are independent of t, we look for solutions of the form

V(z, t) = ep'V(z),

where V(z) is bounded. From the results of Floquet theory (see e.g. [5]), V(z) is of the

form:

V{z) = eiK2P(z)

where k is real and P(z) is 27r-periodic. Thus, we seek solutions to (5.2) of the form

V(z, t) = ep,eiKZP(z). (5.3)
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If for some real value of k, there is a p such that Re p > 0, then we say the solution

U(z; a, q) is linearly unstable; otherwise, the solution is said to be linearized stable. A

necessary condition for linearized stability is that U be stable to perturbations with k

small. In the following we determine the stability condition for small k. Substituting (5.3)

into (5.2), we find that the relevant problem is:

™[lz + iKjP ~ a' 4))^ ~ (ko + + /k| P + pP = 0. (5.4)

At k = 0, (5.4) becomes:

dP d2P
™Tz~ a'q))p ~ (/c°+ q)Dl? + pp ~ ^°P + pp = o- (55)

(5.5) has a solution p = 0 and P(z) = Uz(z; a, q). Clearly, for stability we require that all

of the remaining eigenvalues of L0 remain in the left-half complex plane. In addition to

the zero eigenvalue corresponding to neutral stability of the phase, there is another

eigenvalue with a real part near zero (see [9] for a complete discussion of this point for

periodic problems). We can compute this small eigenvalue.

Lemma 5.6. The problem (5.5) has a zero eigenvalue p = 0 and, for (a, q) sufficiently

small, an eigenvalue:

p(a, q) = p(a) = -2y2,0a2 + 0(a3, qa2), (5.6)

in particular, this eigenvalue is ^-independent to lowest order.

The proof of this lemma is in Appendix A. From (5.6), y2,o must be nonnegative; this

condition is equivalent to the requirement (3.25a) that blt 3 be nonnegative. If (5.6) is to

hold to order a2, we demand that y2, o> and therefore fr1>3, are positive. The case

72,0 = 0 wiH not be considered since it is then necessary to continue to higher orders.

For a problem with quadratic or cubic terms, it is rare that y2,0 = 0. If we set q = 0 in

the expansion for the bifurcation parameter y, this condition implies supercritical bifur-

cation. As is typical in most bifurcation problems, supercritical bifurcation is necessary

for stability (see [9] for a discussion of this point). We remark that the condition y0, 2 > 0

is implicit in Assumption A. As was discussed in the opening paragraphs of Sec. 4, the

case >'0i 2 < 0, leads to unstable waves, since there are always solutions to the linear

equation L0 w = 0 with positive real parts. It is now clear that the lowest-order expres-

sion for y, (4.1c), describes an ellipse, y0 2 q2 + y2t 0«2 = 7, and so when y is small, so are

both a and q.

From the above lemma, we know that there is a zero eigenvalue for k = 0; thus we

examine how this changes with k small. To determine this, we expand p and P in a series

in k :

p = 0 + KPi + K2p2, P = Uz(z; a, q) + k?! -I- k2P2 + ••• . (5.7a, b)

Rather than explicitly performing the rather tedious computations, we rely on the stabi-

lity condition calculated for general plane waves in Howard and Kopel [4], We assume y

is a fixed parameter, thus determining the relationship between the amplitude a and the

wavenumber q:

7 = 72,0a2 + y0,2q2- (5.8)
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Using (5.8), we can parametrize l/(z; a, q) and a>(a, q) by the wave number q. If we let U

denote the derivative of U with respect to q, we find

(a, q) = a)' = mq + 2aaC2,0 + 2<j£0,2 +
da)

dq

U(z; a, q) = a(f)l + 2aaw, 0 + aw0 j + aqwt 0 + ••■, (5.9)

where, by differentiating (5.8), the expression

2aay2,0 + 2qy0_ 2 = 0 (5.10)

determines a. Let denote the adjoint of the operator ¥ 0:

dV d2V
&%V = -cb—-NT(U(z-,a,q))V-(k20 + q)DT-^I. (5.11)

We assume that ¥% has a unique eigenfunction rj* with a zero eigenvalue such that:

(ri*, Uz(z; a, q)> = a2. (5.12)

(5.12) is a convenient normalization and uniquely determines r\j*. We may compute rj* as

a function of a and q for small (a, q) using a simple perturbation scheme. The result of this

is:

Lemma 5.13.

(a) rj* = a{-i/>2(z) + (/+ acuo + qc0t j)iAi(z) + arjuo(z) + qrj0. ,(z) + •••}

where

(b) iAi(z) = Re e'2, 1p2(z) = -ip\(z),

(c) rlo,1(z)=fReVqe"-IrrWqei\

(d) rju 0(z) =f Re{T<0) + Vwem} - Im{*P,0) + ¥(2|e2iz},

(e) f=b2,i/bU3,

(f) c1? o and c0,1 arbitrary at this order.

(Note that xi'(0), *P<2), are defined in Appendix C.) We shall see that the terms clj0

and c0,1 are unnecessary for the lowest-order stability results. This lemma is proved in

Appendix C. With these preliminaries, we state the stability result of Howard and Kopell.

Lemma 5.14 ([4], Eqs. A8-A10). The unique eigenvalue p(k) of (5.4) such that p(0) = 0,

has the following form for sufficiently small k:

p = 0 + i[ — d> + 2(ko + q)ci)']K + kl Ty k2 + • • •,

Ti = DUz(z; a, q)) -I- 4(k20 + q)cb(ti*, U(z; a, q))

- 4(/cq + q)(t]*, DUz(z; a, q)}.

Thus for stability of the waves to low-wavenumber perturbations (k small), Tt < 0.

Substituting (5.9) and (5.13) into (5.14) and using the relationship from (5.10) that aaq =

~~ <l2(yo, 2 hi, o)> we obtain to order a2, q2, aq :

2I1 , ^2,3 ^21 , 2 \, , 1^2,3 \2 b2 3 C2,01 ^ A 1 <\

i1+v^i+2"--Y+fc) 1 '
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Stable waves

Fig. 4. Complete " bifurcation " picture for traveling waves. For each value of y, there is an ellipse of values of q

and a corresponding to traveling waves. Only a band of these is stable (shaded).

with — —sqq and d2 = —mqq — mq/Skg. This expression is quite similar to (3.21b)

when one makes the identifications of with dj and the nonlinear terms ct/(r0) and

l'(r0) with b2,3 and bl 3 respectively. If we combine (5.15) with the restriction (5.8) we

observe the stability diagram shown in Fig. 4. The lines lx and l2 represent solutions to

F(a, q) = 0 where F is the left-hand side of (5.15). Projecting this figure onto the a-y

plane leads to Fig. 2, showing that the basic stability diagram of this very general system

is qualitatively the same as that of the simplest A-cu-system. Once again there is a

restriction on both the amplitude and the wavenumber for stability.

The expansion of p(k) as given in Lemma 5.14 only holds for sufficiently small k.

Thus a natural question to ask is: how small? p(k) can be written in the form

p{k) = Ci(a, q)K + C2(a, q)K2 + ■ ■ ■ + Cj(a, q)icj + ■■■

where Cj(a, q) are complex coefficients which depend on a and q. A trivial computation

shows that the odd coefficients are imaginary and the even coefficients are real. The real

part of p(k) is: C2(a, q)K2 -I- C4(a, q)KA + ■■■ . If the coefficient C4(a, q) is, for example,

0(1) in a and q (i.e. C4(0, 0) =/= 0), then for (a, q) sufficiently small the fourth-order terms

are important since C2(0, 0) = 0. Thus the size of k must somehow be restricted so as to

prevent these problems near (a, q) = (0, 0). To get bounds on the allowable range of k,
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we introduce the natural scaling:

a = dyjy, q = fijy, k = Sy\

where a, /}, <5 are 0(1) in y, and v remains to be determined. Note that a, /? are restricted

by (5.8):

1 = 72. o«2 + y0,2 P2 + 0(y112).

When these scales are substituted into the expression for p(k), we obtain:

Re p(w) = Re p*(y) = <52Cf(a, /?)y2v+1 + <54CJ(y, a, /?)y4v + ■■■ .

where C\ is 0(1) in y and C* is some polynomial in y. By dividing through by

<52y2v + ', we obtain:

d~2y~2v~1 Re p*(y) — Cf(a, /?) + 0(y2v_1).

Thus, for validity we must have v >i and the allowable range of perturbations in k

becomes vanishingly small as y \0, i.e. k = 5yv with v >

We have shown that there exist formally stable small-amplitude wavetrains which

bifurcate from the rest state at a non-vanishing critical wavenumber k0. Our results bear

a close resemblance to those of Newell and Whitehead [6] in which two-parameter

families of stationary periodic solutions were constructed. More recently, Fife [3] has

proven an existence theorem for a two-parameter family of periodic stationary solutions,

under Assumption A, where m0 = 0. This corresponds to a bifurcation at a nonzero

wavenumber through a real eigenvalue. While this case was not studied in the present

paper, the results of Sees. 4 and 5 can be readily adapted. Indeed, since the maximal

eigenvalue is assumed real for small \k2 - kl | = |q|, m(y, k2) = 0. In this case Co, 2>

C2.0' b2,3, and d2 vanish, the solutions are:

U(x) = a[<D0 cos ((kl + q)l,2x) + •••], y = a2y2,0 + q2 y0,2 + ''' ,

and these are stable as long as:

2y0.2<?2 - 72.0«2 ^ 0.

This represents a one-parameter family of stable stationary periodic structures for each

fixed y. Thus, the case of stationary periodic patterns can be analyzed in the same

manner as the traveling periodic patterns.

In computing the stability of these waves, we have made a serious symmetry restric-

tion : we have excluded the possibility of standing oscillatory patterns. These are of the

form:
a Re{<50ei<""_kx) + O0ei(w,+fcx)} + •••

In order to select between the traveling waves and the standing waves, a complete

unrestricted bifurcation analysis is necessary. By restricting our analysis to traveling

waves we often are led to incorrect stability results with regard to the full bifurcation

problem.

We sketch the arguments for the stability of the wave with maximal amplitude, q = 0,

a — (ihi, o)1/2- Assuming solutions of the form where zf are complex

numbers:

01 = ^Do^""0^"0^, <t>2=&oe-Hm°''kOX\ <t> 3 = ^1,04 = ^2

and z( = Zj if </>, = the bifurcation equations for this system can be computed.
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In Appendix D, we verify that these equations have the form:

Mdy + ia> + Qir\ + QA) = 0,
r2(^ + «B + e1r! + G2rf) = 0 armtrary, p.iOj

where

d = s., + im.,, Qi = ~bU3 - ib2i3, Qi = ~CU3 - iC2.3. (5.17)

The expressions for Cj 3 and C23 are in the appendix, while those for d and bj 3 are

given in Sec. 4. The solutions analogous to those in Sec. 4 with q = 0 are = 1, r2 = 0,

whence we find

y = bu3/sy, to = b2,3 — myy.

These agree with the lowest-order terms for y and a> in (4.14) when we set q = 0. In

addition to rl = 1, r2 = 0, there are also solutions of the form rl — r2 = \ which corre-

spond to standing patterns. Only one of these distinct possibilities is generally possible.

Thus, we examine the stability of the traveling wave against both standing- and traveling-

wave perturbations. To do this, we linearize (5.16) about the solution rl = 1 ,r2 — 0. This

two-by-two matrix has eigenvalues 2£>i and Q2 — Qi', thus for stability we require:

bU3> 0 and bu3<Cu3.

The condition on the relative sizes of Cj 3 and 3 was ignored in the stability analysis

of Sec. 4 because only perturbations of the form e,Ki were examined. As a particular

example, if there are no quadratic terms in the system, then from the appendix

^1,3 = iQ.3 (518) always holds. More generally, if (5.18) is violated, we do not

expect always to observe stable traveling waves. Thus, we cannot ignore the possibility of

standing waves near an instability with k0 0 and m0 ± 0.

6. Discussion and conclusions. The results of this paper indicate that there are in fact

stable small-amplitude solutions to reaction-diffusion systems which " bifurcate " from a

homogeneous rest state. The actual computation of these waves can be done using a

two-parameter series expansion or a formal multi-scaling technique. When there is

a Hopf bifurcation of the reaction kinetics, we expect a one-parameter family of stable

long waves for each fixed small value of the bifurcation parameter. This is qualitatively

similar to the situation occurring near a large-amplitude limit cycle. In both [5] and [7]

existence of such long waves near limit cycles was established. In simple A-w-systems, we

can explicitly demonstrate these long waves and establish their stability. For more gen-

eral systems with scalar diffusion, the multi-scaling procedure enables us to reduce the

problem to that of finding stable solutions to a A-co-system.

For systems with nonscalar diffusion, the possibility exists for a Hopf bifurcation at a

nonzero wavenumber k0. Such a bifurcation can lead to a stable (at least to long-wave

perturbations) family of plane waves for each fixed value of y as long as certain addi-

tional requirements are satisfied. The first of these is shown in Fig. 3c and corresponds to

an assumption about the maximal eigenvalue of the linearized equations. The second

assumption requires supercritical bifurcation with respect to the amplitude. The major

point is that the lowest order expansion of the bifurcation parameter must be a positive

definite form in the two variables a and q. This resembles the requirement in A-co-systems

of positive diffusion and that A'(r0) < 0. Dispersive effects (those involving (b(a, q)) play
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an important role in determining the stability of solutions with amplitude a and wave

number (k% 4- q)112. In absence of these dispersive effects, the stability requirement

depends only on the relative sizes of y2t 0 and y0 2 • In this case, the stability results are

identical to those obtained in section 2 for a simple A-co-system with no dispersion

(cb(r) = co0).

While we studied only a simple class of reaction-diffusion models, we expect these

results to hold for much more general systems. To this end, we have derived a system of

modulation equations for a nonlinear, homogeneous, isotropic, stationary medium and

under certain restrictions the equations reduce to the l-co-system described in Sec. 3. It is

hoped that these results will answer some of the many questions on the stability of waves

in biological, chemical, and physical systems.

Appendix A. Eigenvalues of ¥0. We wish to study the eigenvalue problem:

!£0V=-pV (Al)

where ¥0 is as in (5.5). V and p are typically functions of a and q, so it is natural to

expand in powers of a and q. Much of this computation is simplified by observing that

when a = 0, U(z; 0, q) is an eigenfuction of Js^0 with zero eigenvalue. Thus p = p(a, q)

vanishes when a = 0. The periodic symmetry of the eigenfunctions <j>u (j>2, imply, as in

Sec. 4, that all terms of the form aq" vanish as well. Thus p(a, q) is of the form

p0a2 + terms in a3, a2q2, and so on. To lowest order we can with no loss in generality

study the ^-independent problem. We follow Sattinger [8] and look for solutions of the

form:

V = a{c(a)[(j)\ +aw'uo+ ■ ■ ] + *},

p = a2{p0 + api + ■■■}, c = c0 + ac1 + ■■■, (A2)

X = 4>i + X> = <«A2, X> = 0- X = Xi + ax2 + ''' •

Substituting this into (Al) and setting q = 0 leads to the following equations:

LoXi = 2B<2»(01, (A3a)

L0X2 = 3B,3,(</>„ 0o. 0i) + 2B(2)(w1 o, + 2B,2)(01, Zl)

+ 72,0^01 — ̂ 2,001 — Poco<Pi " Po<t>i (A3b)

(A3a) has a solution since the right-hand side is always orthogonal to the two eigen-

functions of L0, i/zj and ip2 - We find:

Xi = 2wj o • (A4)

Applying the orthogonality principle to (A3b) we find:

~Po + 3B<3,(</>i, <pi, <pi) + 6B(2)(wi,o, 4>i) + yi.oB<Pi> = 0, (A5a)

PoCo + Ci.o + <^2, 3B(3|(^„ 0!, 0j) + 2B(2)(w10, (j>) + y2,0B<t>i}- (A5b)

Using the fact that <0B<3,(</>,, 0l5 <pt) + 2Ba)(wl 0, </>])) = —y2,o, we obtain:

Po~ ~~ 2/2, 0^; • (A6)
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Since p0 ± 0, c0 may be similarly obtained. We have shown that the small eigenvalue of

■¥* is:

p(a, q) = 0 - 2y2i 0sya2 + a20(a, q)\ (A7)

thus stability occurs if and only if y2, o > 0.

Appendix B. Computation of the adjoint eigenfunction t]*. We must solve the follow-

ing equation:

= — ci>/7* - Nr(U(z; a, q), rj*) - (k% + q)D' t]*z = 0;

N'\u, rj*) = (AT + yBT)rj* + 2£(2)7'(l/(z; a, q), rj*) (Bl)

+ 3B(3)7(C/(z; a, q), U(z; a, q), tj*)

subject to the normalization condition:

(ri*,U') = a2; ' = d/dz. (B2)

Expanding rj* in a series in a and q:

rj* = a{tjo + atiu 0 + qio, i + a2^, 0 + q2rj0i 2 + aqrju !+■••} (B3)

and substituting this into (B1-B2) lead to the following equations:

L*1o = -Wo'/'o - -4' - D'ri'o = 0; (t]0, <t>\y = 0 (B4a)

L*1i.o = 2B(2)7(0!, f/0); <f?0, w'1>0) + (r]u0, fiy) =0 (B4b)

nrio,i=o,qr,'0 + DWi; 07o, W0, i> + <fo, i. 4>'i> = 0 (B4c)

L*l2,o = 3B(3)7(</>i, </>!, >7o) + yi.oB'lo + 2B(2)7'(^1, f/i,0)

+ 2Ba)r(wuo,tioy, <»/o. w'o,2>+ <»?!,()Wli0>+ ••• =0 (B4d)

Each of these is of the form Lgw = g and thus has a solution if and only if <7 is orthogonal

to the nullspace of (I*)* = L0. So we must have <$,, #> = <02, 0> = 0. The solution to

(B4a) is:

1o=~^2+f*ki (B5)

where /is an arbitrary constant determined in higher orders. Turning to (B4b), we must

solve:

Loh, o = 2/B(2)7'(01, - 2BI2)7 (01, ^2).

The right-hand side is orthogonal to </>! and </>2 so this has a solution:

i/1>0 = -2/4T(0) + ¥(2)e2i-'] + /2 Re[*P(0) + ¥<2)e2i2] + cli0iAi, (B6a)

-/IT*0' = iB(2|7'(4>0, ̂ o), (B6b)

H<2)4/(2) = (-2/coo - A7' - 4k^Dr)T<2) = iB(2)7'(O0, T0). (B6c)

Again, ct> 0 is an arbitrary constant determined at some higher order. The right-hand side

of (B4c) is orthogonal to </>! and (j>2 and t]0 l is readily determined:

1o, 1 = -ImWqeiz +/Re ¥,<?'* + c0,1i/^1 (B7)
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where is a solution to the algebraic equation:

(Hi + ho0f¥q = D'Vo - /w0 T0

and c0 ! is an arbitrary constant. / is found by applying the orthogonality condition to

(B4d):

<0,, 3B(3"(4>1, 4>i, -tl>2 +/iAi) + yi.oB'i-il'i +f*l>i)

+ 2B,2)r(01.i,1,o) + 2B<2)>i.o. -02+/0i)> = O, 7 = 1,2. (B8)

To evaluate the expressions in (B8) we note, for example, that:

<«A„ B(3,'(0i, 0i, 02)> = <B<3,(0i, 0i> 0i), *2>,

<02, B<3,7'(01, 0i, <A2)> = <B<3>(01; 0„ 02)02> = K«Ai, B<3>(01( 0i, 0i)>- (B9)

The quadratic terms are slightly more difficult. The terms of the form <0t, B(2)7(w10,

0y)> can be computed as in (B9). This leaves us with terms like

<0i, B(2)7(01, >??)>,

where = Re[4"0) + T,2,e2,z]. and w10 satisfy respectively:

Loli = B,2,7(0„ >Ai), I0wi, o = B(2)(0„ 0i) (BlOa, b)

We apply w10 to both sides of (BlOa), f/f to both sides of (BlOb) and use the definition
of the adjoint to show:

<0i, B<2)7(01, »/*)) = <^1, B,2,(wi.o, 0i)>•

Using this and similar relationships, we obtain:

f=b2,3/bu3. (B11)

It is unnecessary to continue with further terms since c1-0 and c0i i do not appear in the

lowest-order stability expression.

Summarizing, we have shown:

ri* = a{-<l/2 + (f+ cit0a + c0, iq)0i +^o.i + a1 l.o+ '••}, (B12a)

f=b2.3/bu3, (B 12b)

1o. 1 =/nl - L*1J = Lfif/j = (Dqij/'j + D'lpj. (B12c)

Appendix C. Computation of the full bifurcation equations. As is the usual case in

Hopf bifurcation problems, we expect the frequency to change as the amplitude a in-

creases. Thus, in addition to the parameter y(a), we introduce the frequency co(a), and let

t = u>(a)t, y = k0x. We seek solutions to (3.1) which are 2jt-periodic in t and y. Substitut-

ing the new time and space variables into (3.1) yields:

|— fco^^~2 — -4 jM = y(a)Bu + B(2)(u, u) + B(3)(m, «,«) + •■• (CI)

We expand u, a>, and y in a power series in the amplitude a:

u = aU0 + a2Ui + -", u>(a) = m0 + a2co H , y(a) = a2y + • • ■ . (C2)
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Solutions which are 27r-periodic in y and r are sought with the amplitude

normalization:

II"Cf. T)lli = ̂ 21 dx I dy(u(y> xl "(^T)) = «2-
' 0 • 0

Again (,) is the inner product on C. Substituting (C2) into (CI) produces a sequence of

linear inhomogeneous equations:

L0U0 = 0, L0U1 = Bf2)(U0, U0) (C4a, b)

L0U2 = ~co^ + yBUo + 2B(2)(U0, [/,) + B(3)(U0, U0, U0) (C4c)

The solution to (C4a) is:

Uo ~ Zrf! + Z2tj2 + Zrfj + Z2tj2 (C5)

where

n — iff) n —id) o'(T + y)HI— T^0e » ']2—Tv0e

and Zu Z2 are arbitrary complex numbers determined by (C3) and the remaining equa-

tions (C4b, c). L0, <1>0 are the same as in Sec. 4. Each of the remaining equations (C4b, c

...) is of the form L0u =f Since L0 has a nontrivial nullspace, a continuous solution

27t-periodic in t and y exists if and only if/is orthogonal to the adjoint eigenfunctions of

L0; ri*, t]2, rj*, tj*. Here the rjf satisfy:

LtnJ = o

and are given by:

n*{y, t) = oe'iT~y)' i*(y, *) = *J/0ei<T+3".

Note that (tjj, = Su.
For (C4b), this orthogonality requirement automatically holds and the solution to

(C4b) is:

Ut(y, f) = *(0.o,(Zi Z1 + Z2Z2) + <t(0,2)e2'yZ2Zl

+ ^>(o, 2)e~2iyZ1Z2 + 25>(2i0)e2irZjZ2

+ ®(2,2)[e'<2t 2y>2izi + ^*(2t2^*Z2Z2] -(-complex conjugates. (C6)

The 0()i J, satisfy:

-^O(0,0) = iB(2,(3> o.&o). (2im0-4/c2D-/l)<D(2,2) = iB(2,(<I>o,<I'o),

( —4/cqD — -4)^(0,2) = 4-®<2>(®o> ®o)> (2iwi0 — -4)<I)(2, o) = , "Jo)-

The amplitude normalization (C3) implies there are no additional terms of the form Cjtjj

in (C6).
Applying the orthogonality requirement to (C4c) and using the expression in (C6) for

Uj yields the following equations:

(iw + y(V0, BO0) + Z1Z1Q1 + Z2Z2Q2)Z1 = 0,
_ — (C--0 J

(id) + yC?,,, B®o) + ^2^261 + Z1Z1£)2)Z2 = 0
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and their complex conjugates, where

(2, = (4B(2|(<J>o , <t(0,0) + &(2,2, + o, $0, %), Vo),

Q2 = (4B<2>(<D0, <t(0,0) + <P(0,2) + <D(2, o, + |S<3>(<D0, <D0, %), %).

(C9) is a system of four equations for the unknowns Z}, Zj. We can considerably

simplify them by writing:

Zj = rj e'"\ rj> 0, dj 6 (0, 2n).

Substituting this into (C8) yields:

rt(dy + ia> + Qxr\ + Q2r\) = 0, r2(dy + i(b + Qtrj + Q2rj) = 0. (C10)

Comparing the expression for <2i with that in (4.17), we see that gi = -(^1,3 + ib2,3).

Furthermore, in absence of quadratic terms, note that Q2 = 2Qt.
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