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Abstract. Water flowing down a dry channel and infiltrating into the channel bed

constitutes a free boundary problem. The free boundary is the time history of the water

edge or front. In this paper we discuss a kinematic wave model of the problem. The

problem is formulated in Sec. 1 and the results summarized in Sec. 2. In Sees. 3 and 4 the

mathematical details are carried out, and in Sec. 5 a model using the continuity and

momentum equations of hydraulics is discussed.

1. Formulation of the problem. The problem of irrigation has been studied for many

years; we list, in the references, some of the more recent papers. We are dealing, essen-

tially, with water flowing down a channel and infiltrating into the channel bed. The time

history x = s(t) of the front of the water, i.e. the interface between the covered and

uncovered part of the channel, is a free boundary which has to be determined along with

the velocity u(x, t). This problem has been treated at various levels of mathematical

complexity. We choose here a kinematic wave model that has been discussed in [1, 3, 7, 8,

9, 11].
Let x be the distance along a channel of uniform cross-section, u(x, t) the velocity,

h(x, t) the depth, q(x, t) the lateral inflow rate, and f(x, t) the infiltration rate. The latter

two are in volume per unit area per unit time. We can interpret q as rainfall. Further, let

S be the slope of the channel, assumed constant, and Sf the friction slope. For Sf we take

the Chezy formula Sf = vT/Ch, m and C positive constants. The continuity and momen-
tum equations are [10, Chapter 11]

h, + (uh)x = q — f

u, + uux + ghx = g(S - Sf) - qu/h. (1)

Conditions under which various terms in the momentum equation can be omitted have

been discussed in the literature; we refer here to [4, 5, 6], The kinematic wave model is

obtained by omitting all but the terms S — Ss. Thus we get

u = ah1/m, v. = (SC)llm. (2)

We assume now that q = 0 and that/is a function of t only. Then, writing n = 1 + m~x,

we get, from (1) and (2),

h, + (ah% = (3)
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Considering now water advancing down a dry channel, we assume that the front face of

the water advances as a shock. This assumption is, of course, not justified by observation,

but calculations based on it may not be grossly inaccurate. It would be necessary to

compare this model with the model, discussed in Sec. 5 of this paper, using the complete

momentum equation. Let x = s(t) or t = ((x) be this advancing shock. Then, using (2),

we get

s'(t) = ah"' 1(s(r), f), s(0) = 0, (4)

which we can also write

C'(x) = K-1(x,C(x))]-1, C(0) = o. (5)

In the context of our discussion the /(f) on the right of (3) has to be replaced by

f(t — C(x)), since infiltration at x does not begin until the time, t = ((x), at which the

water reaches x. Thus we get

h, + (cth")x = -f(t - C(x)). (6)

Finally, to fully define the problem, we have to specify h at x = 0:

h(0,t) = g(t). (7)

Thus, in (5), (6), and (7), we have a free boundary problem; in the (x, t) plane (6) is

satisfied in the domain D in the first quadrant which lies between the t axis and t = £(x),

the time history of the advancing front. The free boundary £(x) is subject to (5). We make

the additional assumption that g'(t) < 0, since otherwise we may get shock formation in

D.
If we introduce the new variable x — t — £(x) in place of t, then the free boundary

maps onto t = 0 in the (x, t) plane; k(x, t) = h(x, x + £(x)) and C(x) are subject to

[1 - nak"~ »?(*)]*< + nak"~ 1kx = -/(t), k(0, t) = g(x),
)

C'(x) = [a/c"_1(x, 0)]~ \ C(0) = 0.

We can write (8) as follows:

1 ~ "(^5)) \k' + fc(°' T) = Sir)- (9)

Eq. (9) is a partial differential-difference equation; while k is specified along the t axis it

is not specified along the x axis, but it is this k(x, 0) which appears in (9). If we specify

k(x, 0) = *p(x), ij/(0) = g(0), on the x axis then we have

1 ~ "( il/(x) ) J^ + "a/c" l(x> r)k* = ~/(T)' k(x, 0) = iA(x). (10)

Eq. (10) is a quasilinear first-order equation with data il/(x) specified on the x axis; il/(x)

is the depth of the front wall of water. We wish to determine i)/(x) so that the solution

k(x, t) of (10) has the property k(0, r) = g(x). Let

x = x(a, £; ip), x = t(<j, i/>), k = k(a, «A), (11)

be the characteristic of (10) passing through the point (£, 0, t/>(£)) of (x, r, k) space. Here

a is the running parameter along the characteristic; if a = 0 in (11) we get

x(0, <£; «A) = <5, t(0, Z;iI/) = 0, k(0,^;^) = ^(c). (12)
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The characteristic equations of (10) are

dx . dx Ik \"-1 dk ,
di'mk ■ s = • To-~m (131

and these are subject to the initial conditions (12). If we solve the first two equations of

(11) for a and £ in terms of x and x and insert in the third equation of (11) we get the

solution of (10). To this end we note that the Jacobian

J (a, \j/) = xax< - xtx„

has the value, at a = 0, J(0, if/) = n — 1 > 0. If /c(0, t; ty) is defined for some interval

0 < r < t0, then Ac(0, x; if/) = g(x) constitutes an equation for the determination of ij/(x)

on some interval 0 < x < x0. The k(x, t) corresponding to this i/f(x) satisfies (9).

We can simplify the problem by replacing the parameter a by x. We note, from the first

equation of (13), that, since k > 0, x is an increasing function of a. Thus we have

two functions

such that

t = t(x, £;i/0, k = k(x, ifr), (14)

dx ^ 1 - n(/#(x))"~' dk /(t)

dx na/c"-1 ' dx na/c"*"1'

subject to the initial conditions

T(&f;*)-0, *(f,£;^) = *(£)• (16)

r and are defined on S(^0) = {0<x<£, 0<£< £0}, where i^(^) > 0 on 0 < £ < £0. If

r< > 0 on S((^0) then (14) determines a function /c(x, r; i/f) satisfying (10). We wish to

determine i//(x) so that k(Q, x\\jj) = g(x)\ in terms of the functions (14) this can be

expressed

k{0, iA) = g(t(0, <S; «A)). (17)

The solution \jj(x) of (17) determines k(x, r) satisfying (9).

We can achieve further simplifications by introducing

F(x, i//) = kn(x, £; ip); 4>(x) = ipn(x), y(x) = g"(x).

Then x and F satisfy

^ = [0(x)]-<«-D/«, x(t,Z; <t>) = 0,
ax na a

(18)

dx a

Eq. (17) becomes

F(O,5;0) = y(r(O,5;^)). (19)
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We can write (18) in the following integral form (here we write t(x, £) and F(x, £),

omitting (f>)\

x(x, 5) = -- f[F(«r, {)]-(--»«« da + - f W)]-0"1""
cc.<x

1 r< (20)
F(x, () = («.;) + - /(t(„, {)) </„

a • x

Using the second equation of (20), we can write (19) as

Hi) = - -1 /(*(<x, 0)+ y(T(°' £))• (21)
a • 0

Eqs. (20) and (21) constitute three integral equations for the functions t, F, and (/>. The

solution of (8) is equivalent to the solution of (20) and (21); if t = t(x, £) is solved for £,

£ = £(x, t), then the solution of (8) is

k(x, t) = [F(x, £(x, t))]1/n, C(x) = i l)/„ • (22)

The solution of (5), (6), and (7) is given by £(x) in (22) and by h(x, t) = k(x, t - ((x)).

2. Discussion of the results. In Sec. 3 we discuss the case /(t) = / = constant and in

Sec. 4 the case f(r) not constant. When /(t) is constant we consider two cases,

g(z) = g = constant and g'(r) < 0. When /(t) and g(i) are both constant we have explicit

solutions, as is evident from (20) and (21). The free boundary t = ((x) is given by (23),

0 < x < ag"/f and h(x, t) by (24). It is clear that there is a steady state after t = ng/f with

h(x, t) given by (24) and h{agn/f t) = 0, t > ng/ f When gr(x) is not constant we get the

differential equation (27) for </>(£); in (27) T is the function inverse to y. This differential

equation has a solution on some interval 0 < £ < £0, on which </>(£) is a decreasing

function with (j)(Q0) = 0. The free boundary t = £(x) is then given by (22). For further

discussion of this case we refer to [7, 8]. There is also, in [7, 8], a discussion of the case

/(x) constant, g(r) = g = constant on 0 < t < T, g(t) = 0, t > T.

In the case/(t) not constant we use a fixed-point argument. We prove, in Sec. 4, that

there is a £0 > 0 such that (20) and (21) have a unique solution in S(£0). But this is only a

local existence theorem. It is plausible, however, that </>(<!;) exists on 0 < { < £0, is a

decreasing function, and = 0- We give a brief discussion of the existence of t. , F«

and 4>' and the inequalities t<(x, £) > 0, </>'(£) < 0; again all of this is local.

In Sec. 5 we formulate a model based on the full momentum equation.

3. The case f(z) =/= constant. We assume first that g(z) = g = constant also. Then,

from (20) and (21) we get

m = y - (/£/«), Hx, Z) = y- (/*/4
, ,i n-i i jx?" I /q1/n
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SO

WZ) =
ftgn~ —

a.

I In

k(x, £) = n fX
g

1 In

I P\ "~l
r(x, () = -— Mr-Mr

We note that in this case £0 = ag"/f since the depth ip(£) > 0 on 0 < ( < ag"/ f and

\jj(u.g"l f) = 0. From (22) we get, since F(x, £) is independent of

fx^i" In fX
9 

a

l/n n

«-)-7k{x, t) =

and, from (23), since /c(x, t) is independent of t,

/j(x, t) =
n /X

0"- —
a

1 In

(24)

The free boundary beyond t = «#// is x = <xgn/f [7]; h(ccg"/f t) = 0, t > ng/f. h(x, t)

above t = £(x) is given by (24).

In the case/(t) =/= constant and g'(z) < 0 we get from (20) and (21)

m =-—+ y(t(o, a f(X, o = -f + ̂ t(°' w
a a

r (X,z)=jm)]lln-j M) + l(Z-x)
1 In 1 .4

+ - [</>(ct)]""(',-1,/" da.

(25)

Let T be the function inverse to y. Then, from (25),

r(^K*"-7 /
From (26) we get the differential equation

4> + —
a

ln + -C[(t>(a)]-{n-l)ln da. (26)
a * o

■ 1) In

Thus

-nf2r^<p + <n 1'" + «/</.-<"-1""

na/r|<£ +^J - a^-<n-1)/n - a(tf> + ^j
-(n- l)/n (27)

The initial condition is <£(0) = y(0) = g"(0). The denominator on the right of (27) is

negative (since T' < 0 and (f) > 0) and the numerator is positive. Thus <p(£) is a decreas-

ing function of £. The solution of (27) exists (at least) on 0 < £ < £0, where (f>(£) > 0 on

0 < £ < £0 and <£(£0) = 0.

4. The case/(t) not constant. In this case we use a fixed-point argument. We assume

0 </(t) < b. Let T(p be the right side of (21). Specifying the positive continuous function

</>(£) on 0 < £ < £0, to be determined, we calculate F(x, S) and t(x, £) by (20), or

equivalently (18). Then F(x, £) and t(x, £) are defined and continuous on S(£0)> and



92 B. SHERMAN

</>*(£) = T<t> is defined and continuous on 0 < £ < £0. We note, from (18), that F(x, £) is a

decreasing function of x on 0 < * < £■ From (21) we see that </>(£) < y(0) on 0 < <!; < £0

implies < 7(0) on 0 < £ < £0 ; this follows from /(t)>0, y'(z) < 0. Suppose

</>(\) >a>OonO<^<^0- Then, since F is positive on S(£0), we get, from (20),

t(0, 0<-f [(t>(o)]~(n~1),n da <—a-{n-1)ln (28)
a -'o

on 0 < £ < £0. From (28) and f(z)<b we get

</,*(£) = T(/> > (29)

The function of £0 on the right side of (29) is decreasing, has the value y(0) for £0 = 0,

and is negative for sufficiently large c0. Therefore, if a < }>(0),

Ho^ Ito -(„ 1-7 —" 1

a \ a
a-("-i)/"l = fl (30)

has a unique root £0(a)- Thus if £0 < £0(a), (29) implies </>*(£) > a on 0 < £, < £0. Then, if

£o ^ £o(a)> ̂ e class Bi(^0) of continuous functions 0(£) satisfying a < 0(£) < y(0) on

0 < £ < is carried, by T, into the class of continuous functions 0*(O satisfying

a < **(£) < y(0). If B(<^o) is the Banach space of continuous functions/(£) on 0 < £ < £0

with norm \\ f\\= max|/(0| , 0 ^ ^ ^0' then is a closed subset of and is,

therefore, a complete metric space. Subject to the choice (a), T maps Bi(£0) into

itself. If we can further restrict £0 so that T is a contraction on 0), then <£* = T(f> has

a unique fixed point; i.e., the equation <p = T(p, which is (21), has a unique solution.

To prove that £0 can be chosen so that T on B^o) is a contraction let

A = sup | f'(z) |, B = sup | y'(z) |, z > 0.

We assume A and B are finite. For a continuous function /(x, £) defined on S(^0) we

define ||/|| = max|/(.x, £)| on S(£0). Let (pj and 4>2 be two functions in B^0) with

(t1; Ft) and (i2, F2) the corresponding functions determined by (18). Then, from (20),

|Fi(x, £)- F2(x, Z)\ < |<M0 - <M0l +-J A |tj((7, 0 - t2(ct, do-

and therefore

^ ||0i — 02 II + I

||Fl-f2||<||01-02||+^£||Tl-t2||. (31)

Also from (20) we get

|ti(x, ^ - t2(x, 0| <—I -—-a"(2n_1)/'l|F1(ff, 0 - F2(«t, 0| do-
na Jx n

1 f«n - 1

a-
a (2n 1)/n 10i(o) — <^2(o) | do

< D£0(i ||Ft - F21| + ||0, -021|
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where

D(a) = "^a-(2n-1,/n,

na

||t. - t2 || || + 11^-^11). (32)

From (31) and (32) we get

IKi ~ II < DZ0( 1 + ^ )||tf>, ~4> 11 1 °^oA

from which we get, assuming D£IA < na,

£>£o«(k + 1)

na - D^A

From (j)* = T<p we get

2 H + "T1 - *2 ">

I- <33>

W-«|s(^ +«)!'!-'! II- (34)

Combining (33) and (34) we get

|<£?-0?||<G(£o,«)||<£i-<M. (35)

where

Thus if £0 is chosen, for a given a, 0 < a < y(0), so that

0<£o<£cM 0 < G(£0, a) < 1, (36)

then T is a mapping of Bi(^0) into itself which is a contraction. The inequalities (36) can
be written, after a brief calculation,

0 < £0 < £o(4 0 < £0 < H(a),

where

4An(n + 2) \1/2H(j) _ Ba(n + l)
H(a) ~ 2^T2)

j 4An(n + 2) j1'"'

\ + D(a)B2a(n + l)2/
(37)

0 < £0 < min(£0(a), H(a)). (38)

When g(t) = g = constant, B = 0, so we get from (30) and (37)

£o(a) = 7 (y ~ a), H(a) = na[/4(n + 2)(n - 1)]"ii2aa"~1)/2n.
b

It is easily seen, in this case, that the right side of (38) is maximum when a is selected to

be the root of £0(a) = H(a).
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We give a brief outline of the proof that zi, F(, and (/>' exist, and that z?(x, £) > 0 and

</>'(£) < 0. On assuming the existence of t«, F*, and (/>' we get, from (20),

T*(x' $=m)]'ln~1)ln+">Sr 0F(ff' ^]"t2n" 1,/nf>' d<T'

f«(x, o=+~/(o) + * f o (39)

and, from (21),

m = - "/(0) - - f 7'(t(«x, OK'K £) da + /(t(0, £))r<(0, 0- (40)
a a -'q

We may write (39) equivalently as

p~(2n~ 1)/nF«, t4(«,€) = —[0(«)]"(""1)/".

ax n'ot no.

-i/'(t)T„ F,(£, £) = </>'(£)+ ̂/(0). (41)

We use a fixed-point argument on (20), (21), (39), (40), as follows: writing

4>'(£) = co(£), </>(£) = }'(0) + I tu(cr) da, (42)
'0

we consider the Banach space of continuous vector functions (a>0(£), co(<^)) on 0 < £ < £0

with norm |jct>0 || + ||co||, £0 to be determined. The set of vectors (0, u>) is a closed subset

Bi(£o) of that space. We may interpret the right sides of (21) and (40) as a mapping T of

Bj(^0) into itself. More precisely, if co is specified then <j) is known from (42); then r and

F are determined from (18), and r( and F, from (41), where, in (41), </>' is replaced by a>.

Thus the right sides of (21) and (40) are determined. With appropriate restrictions of £0,

T is a contraction; this requires further regularity conditions on/and y. It is clear, from

the first equation in (39), that the sign of t* in the neighborhood of the origin is deter-

mined by the first term on the right of (39). This term is positive, so t^x, ^) > 0 on S(s0)

for £0 sufficiently small. From (40) we see that the sign of </>'(£) in the neighborhood of

£ = 0 is determined by the first and third terms on the right of (40). The first term is

negative and the third term is < 0. Thus (p'(£) < 0 on 0 < t, < £0 for sufficiently small £0.

5. Dynamic models. The model discussed in this section is an extension of the

model for the breaking of a dam discussed in [10, p. 313]; in [10] S, Sf, q, and/are all 0.
We consider a channel with q = 0 for all x, /= 0 for x < 0, and / time-dependent but

independent of x for x > 0. When x < 0 a piston fitting the channel and moving with

constant velocity u0 > 0; to the left of the piston there is uniform flow with u = u0 and

h0, where

S - (uZ/Cho) = 0. (43)

Because of (43), (1) has the solution h = h0, u = u0 in x < u01, t < 0. At time t = 0 the

piston is at x = 0; for t > 0 the piston moves according to x = s(t) so that the height of

the water at the piston face is 0, h(s(t), t) = 0, and because the water is in contact with the
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piston face, u(s(t), t) = s'(t). Let t = £(x) be inverse to x = s(t). Then for x < s(t), t > 0 we

have, from (1),

I um \
h, +(uh)x=-f(t - i(x)), u, +uux +ghx = g\S (44)

To (44) we add the conditions on t = £(x)

h(x, £(*)) = 0, u(x, £(x)) = [£'(x)]~ \ (0) = 0, (45)

and the initial conditions

u(x, 0) = u0, h(x, 0) = h0, x < 0. (46)

Eqs. (44), (45) and (46) constitute a free boundary problem for h, u, and £. The character-

istics of the hyperbolic system (44) are

dx/dt = u — (gh)1/2, dx/dt = u + (gh)1/2. (47)

It seems plausible, physically, that if t;(x) were specified, then (44), (46), and the

second equation of (45) would be sufficient to determine u and h. But, because £(x) is not

known, the extra condition in (45) is necessary in order that (44), (45), and (46) determine

u, h, and Mathematically, we have to consider the characteristics issuing from a point

on t = <^(x) [2, pp. 471-475], We note that on the free boundary t = £(x) the two charac-

teristic directions coincide (because h = 0 in t = £(x)), and it is evident from the second

equation of (45) and from (47) that the free boundary is a characteristic. Thus it is not

clear mathematically that (44), (45), and (46) is well posed, but it seems plausible on

physical grounds that it is.

Assuming the existence of a unique solution of (44), (45), and (46), we know h(0, t).

This, we may reasonably suppose, is a decreasing function of t. Using h(0, t) as the g(t) of

Sec. 4, we will then be in position to compare the free boundary of the kinematic wave

model with the free boundary of the dynamic model (44), (45), and (46). In particular, the

comparative dependence on S and C can be investigated.

If/ is a positive constant then it is reasonable to expect that the solution of (44), (45),

and (46) tends to the solution u(x), h(x) of

(uh)x = -/(x), uux + ghx = g^S - ^J, (48)

on — oo < x < x0, where f(x) = 0, x < 0, f(x) =fx> 0. We determine x0 as follows:

uh = u0h0, x < 0, and uh = u0h0—fx, x > 0. Since uh cannot be negative we get

x0 = u0h0/f Referring to Sec. 3 and noting (43), we see that this x0 is equal to <xh"0 If,

which is the position of the free boundary at zero depth in the kinematic wave model

when j — /iq . Since /iq ̂  Mo, t) > h(0), this suggests that if h0 — h(0) is small and if g(t)

in the kinematic wave model satisfies h0 > 9(t) > h(0) then the kinematic wave model is a

reasonable approximation to the dynamic model (44), (45), (46).
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