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Summary. The Clausius-Duhem inequality a(r, t) > 0, a widely adopted axiom in

continuum mechanics, leads to the conclusion that for many materials the entropy s

cannot depend on gradients like the temperature gradient g and the velocity gradient e.

But this is at variance with the received view (since Gibbs) that entropy is a function of

thermodynamic state, however detailed that state description may be. Gradients, and

even higher derivatives of macroscopic variables, may be included as state variables

(although only on macroscopic time scales shorter than or comparable with their natural

relaxation times), and the fundamental property of entropy is its convexity—the more

detailed the specification of state, the smaller is the corresponding value of entropy.

The entropy of a perfect monatomic gas is evaluated via the maximum principle, on

the assumption that g and e are state coordinates, and it is found that s does depend on

g • g and e : e, contrary to statements appearing in many textbooks on continuum

mechanics. The source of the error in these works is shown to lie in applying <r > 0 to

relations involving second derivatives. The correct form of the Clausius-Duhem inequa-

lity contains only first-order derivatives; that is, it must be confined to linear constitutive

relations. In this form the inequality is a consequence of the convexity of s, which is a

somewhat more general manifestation of the second law.

1. Introduction. There is a wide-spread but erroneous belief held by many authors of

papers and books in continuum mechanics1 that entropy is a function of state, which like

any other state function, has a precise value in any prescribed thermo-mechanical phen-

omenon. Clearly functions like the internal energy per unit mass u, the density p, and the

material velocity v can be assigned precise values at a point P(r, f) of a continuum, for

these quantities have physical meanings independent of the extent of the observer's

knowledge of "conditions" at P. These conditions may include space and time deriva-

tives of first, second and even higher order of macroscopic variables, and the difficulty is

that while u, p, v, ... can be assigned independently of such derivatives, the specific

entropy s(r, t) cannot—or at least not without making approximations. The entropies we

use in macroscopic physics are always approximating functions, and the same must be

true of derived functions like the free energy,

\l> = u — Ts (1)

* Received April 3, 1980.

1 E.g., see Eringen (1975), Jaunzemis (1967), Truesdell and Noll (1965) and Leigh (1968).
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where T = T(r, t) is the temperature. (To avoid tainting temperature with the same

uncertainty that is unavoidably inherent in s, we must define it via a state equation

containing only "precise" variables like u and p.)

The rate of production of entropy per unit volume at P(r, (), say <x(r, f), is related to s

and its flux Js by

d
g = pDs + V • Js — Q/T I D = — + v • V

dt ). (2)

where D is the material derivative and Q is the heat supplied per unit volume by

radiation. It is usually assumed that

J s = q IT, (3)

where q is the heat flux vector. Accepting that at best s is an approximating function, we

infer that a and Js in (2) must also lack precision; in fact, it can be shown that (3) is

correct only in a theory confined to first derivatives at P (Woods, 1980).

The second law of thermodynamics requires that the integral of a over the volume V

of the thermomechanical system be non-negative for an appreciable time interval, i.e.

I I <r(r, dt) dr dt > 0. (4)
•u *v

The local form of this inequality, often termed the Clausius-Duhem inequality,

<r(r, t) > 0, (5)

follows from the assumption that (4) holds for all parts P of V and for all time intervals

t2 - ti however small P and t2 — ti may be. For constitutive relations involving first-

order derivatives only, it has been widely and successfully employed (e.g., see de Groot

and Mazur (1962), Haase (1968), or Woods (1975)). In this case the entropy is defined via

a Clausius-Gibbs relation

T ds0 = du + p dp~1 + • ■ ■ (6)

in which s0 = s(u, p, ...) depends only on the equilibrium state at F, i.e. does not depend

on any derivatives at P.

Unfortunately, most writers in continuum mechanics, apparently unaware of the

approximating nature of the functions s, Js and a, have pressed the theory beyond

first-order derivatives, accepting the inequality in (5) as being true without limit on the

extent of the observer's knowledge of conditions at P. The law in (4) is statistical, but a

large volume V and a substantial time interval f2 — tj suppress local fluctuations, so its

violation is extremely unlikely. But (5) is in a much weaker position to withstand fluctua-

tions; the more detailed the knowledge assumed about conditions at P, the more likely it

is that the inequality can be violated via the higher-order derivatives in singular regions

where the first derivatives are negligible.

In Sec. 2 we shall give an example of the misuse of the local inequality (5), employ-

ing it to argue that s must be independent of the temperature gradient. But this is in

contradiction to the fact that there can be no constraints on the dependency of s, other

than that it satisfy the entropy maximum principle. In fact, entropy is like a bottomless

pit so far as its functional dependence on derivatives of higher and higher order is

concerned. Fortunately, the order of the expansion parameter e in this development of s
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is the same as the order of the derivatives, so that approximations in which terms 0(e")

can be ignored also eliminate derivatives of order n and higher. In Sec. 3 we shall

illustrate this point by obtaining the formula giving s as a function of temperature and

velocity gradients in a monatomic perfect gas. Our final conclusion is that the local form

of the inequality holds only for constitutive relations linear in first derivatives, and that

the convexity of s as a function of state should replace the inequality in theories con-

cerned with nonlinear constitutive relations.

1. " Proof " that entropy is independent of temperature gradient. Let

e = Vv, g = VT

be the gradients of interest in what follows. Energy balance at P gives

pDu + p:e + V- q- Q = 0,

where -p is the stress tensor. Hence by (l)-(5)

Ta = — pDij/ — spDT — p : e — g • q/T > 0. (7)

We shall apply this inequality to the case of a perfect monatomic gas in order to

relate the outcome to the kinetic theory to be presented in Sec. 3. What follows is a

simple extension of the argument applied to a " thermoelastic" fluid appearing on

pp. 190-192 of Leigh's (1968) text on nonlinear continuum mechanics, and in many other

places.2 The more general case of a simple material with fading memory was treated by

Coleman (1963). The conclusion that s does not depend on g is quite general—and quite

wrong.

Following a pattern familiar in rational mechanics, we choose p, T, g and e to be

independent variables, and postulate that each of s, ij/, p and q depend on this set, i.e.

s = s(p, T, g, e), ij/ = il/(p, T, g, e),

P = p(A T, g, e), q = q(p, T, g, e).

By continuity and the definition

n = p - p\,

where p is the pressure and 1 the unit tensor, we can write

p : e = pV • v + tt : e = — - Dp + tt : e. (9)
P

This result and (8) enable us to write (7) in the form

Since the balance equations may be used to define body forces and thermal sources, any

choice of Dp, DT, Dg, De is possible. Therefore (10) requires that

Ta = — tt : e — q • g/T > 0, (11)

For a recent example, see Eq. (3.46) of Fosdick and Rajagopal (1980).
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and

dA-JL dA - dA-c\ ^-n n~>\
5 2' aT1 ' a ' a ( )dp p oT eg de

We conclude that i/> and s depend only on p and T; in fact, (1) and (12) yield the

Clausius-Gibbs relation (6).

The main conclusion we wish to note here is that s is independent of the gradients g

and e. Were this result viewed as being approximate only, and the inequality in (11)

therefore correct only to the same order of approximation, there would be no conflict

with the remarks made in the final paragraph of Sec. 1, nor with the analysis to follow.

But the above approach does not lend itself to this interpretation, as no small parameter

is evident in the analysis.

3. The dependence of the entropy of a perfect gas on macroscopic gradients. Let

/(r, w, t) dw dr be the number of molecules lying in the volume element dw dr of phase

space; then the fluid velocity at P(r, t) is given by

p\ = I mw/dw, (13)

where the integral here (and those to follow) is understood to extend over the whole of

velocity space, and m is the molecular mass: also the mass density and energy density are

p = mn = | mf dw, pu = | jmc2f dw, (14)

where n is the number density and c = w — v is the random component of molecular

velocity. Shortly we shall also need the entropy production rate per unit volume (Woods,

1975, p. 315)

where

cr= -k | 2f ln(///0)dw= -k J ^jrjdys, (15)

S> = ~+ 'w-^-+'w-~=D + c- V + F- -^-,(F = 'm) (16)
at dr dw dw

is the time rate of change following a bunch of molecules through phase space, k is

Boltzmann's constant, /0 is the equilibrium distribution defined below, F is the body

force per unit mass and (df /dt)ml is the rate of change of / due to molecular collisions,

which by Boltzmann's equation is equal to £>f

The kinetic entropy is defined to within a constant by

ps= ~k | /(In/- l)dw, (17)

and the maximum principle requires this to be maximized subject to any constraints on/

known to exist. As is well known, when this is done with prescribed values of p, v and u,

i.e. with the constraints on /given in (13) and (14), the outcome is Maxwell's equilbrium

distribution

(,8>
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and the corresponding entropy is

ps0= ~k I /0(ln/0 - 1) dw, (19)

which agrees with the value defined in (6).

Now suppose that, if in addition to given values for p, v and u, we have a given value

for the rate a defined in (15)l5 or at least that part of a that depends on the gradients g

and e (cf. 11)). Maximizing ps subject to the constraints in (13), (14) and (15), we find

ln/+a + y*c + Pc2 + tS> In /= 0, (20)

where a, y, P and r are Langrangian multipliers. In equilibrium t = 0, so to solve (20) by

iteration we set zQ = 0(e), where e is small, and expand / in the form

y=e*o+0i+*2 + - (<£„ = 0(e")). (21)

Applying the constraint on entropy production rate to highest order only, we find from

(20) and (21) that

/=/o{l + 0i + (<t>2 + <£i = -tS» ln/o, (22)

provided

/o [0i> (02 + 10?), (03 + 02 01 +£0l), •••] dw = 0, (23)

in order that the constraints in (14) be satisfied to all orders. This can be ensured by

writing a = a0 + + • • •, y = y0 + Yi + '". P = Po + Pi + "'» and using (23) to define
the values of ar, yr, Pr, r = 1, 2,... (cf. Sec. 7.31 of Chapman and Cowling, 1970).

From (15) and (22),

<7 = (Tj + a 2 H 

where

<Tl =- I /O01 (24)
T J

k i*
G2 = - /o(0i 02 + 01 - fr^0i) dv/,

T •'

If a1 is known, then (22)2 and (24)2 yield a value for t, although the physical significance

of t is to be found in (df /dt)col, and is in fact proportional to the mean-free-time between

successive molecular collisions.

To calculate 0! from (22)2 we use (18), plus the adiabatic relations pccT512,

p oc T3/2, which, being correct to O(e), are sufficient at this stage. (See discussion in
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chapter 7 of Chapman and Cowling, 1970.) We also use the equations of continuity and

motion. Hence

®lnf° = ~JkS'(Cf)= ~Wr^c2v' v + c" VT~C' &c)

where

so that

5 k
= $?w — D\ — c • Vv = F — Dv — c • Vv = — VT — c • Vv,

2m

^1 = T(^ -^)c'Vln T-t^(cc-ic21):Vv. (25)

This result can be generalized by noting that the dissipations due to gradients

g = VT and e = Vv proceed on slightly different time scales. Thus g, e), the leading

term in (15), can be split into two independent components, <tu = o^O, e) and

ai2 = 0), and we maximize ps subject to each component being held constant. And

if further we hold the integrands of <ru and a12 constant, the associated Lagrangian

multipliers may be functions of c. This modification replaces (25) by

4>i = r2(c)^ ~^)c • V In r-Tj(c)^;(cc-ic21):Vv, (26)

t2(c), t^c) being the relaxation times for energy and momentum transport respectively.

Then (24)2 is replaced by

°i = k | /o*i 4>ii dw + k | /0t2 l4>\2 dv/, (27)

where (f>l2 is the first term on the right of (26) and </>u is the second. For the purposes of

this paper, there is no real loss in taking T, and x2 to be constants and related by

t2 = ft,; this is the case of Maxwellian molecules, which we shall adopt below.

Then with the definitions

, 5 k 5
H = pz1, k = --pz2=-cvn, (28)

2 m 2

and the linear constitutive relations

qi = —kVT, it, = — 2/iVv, (29)

(26) and (27) yield

Toi = -ttj : e — qj • g/T, (30)

which should be compared with (11).
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By (17), (19), (21) and (23) we find that

ps = ps0 + ps2 + ■■■

where

ps2 = ~?kj f0<pl dw,

P*3 = | /o(</>2 + %<t>l)<t>i dw, (31)

= ~k I fo(i<t>22 + Ui + <Pi<t>3 + 4>\4>i) dw,

Thus by (26)

P* = ps0 -jfrlVT ' VT + x\ V°v : V°v) + 0(£3). (32)

Notice from (27) and (31) that

ps2 = -itidn-it2a12 (t„ t2>0), (33)

a result recently obtained (Woods, 1980) by a more general if less precise argument not

restricted to the case of a perfect monatomic gas. The constraints on and t2 follow

from the convexity condition ps < ps0. Only if terms 0(e2) can be ignored is it true that

entropy is independent of VT. Eq. (32) is not new; it was obtained by Shavit and Zvirin

(1970) by a somewhat different route.

It is a reasonable inference from the above example that if in the constitutive relations

for any medium, terms non-linear in the space derivatives of macroscopic variables are

retained, then the entropy must be a convex function of these derivatives.

4. The restriction on the Clausius-Duhem relation. Our remaining task is to find the

error in the theory presented in Sec. 2 which gave s independent of VT in contradiction

to the correct result given in Sec. 3, also of course in contradiction to the quite general

fact that minus entropy is a measure of our knowledge of the " state " of a system, and

" state " can depend on the derivatives of macroscopic variables of any order.

We start by observing from (24) that cx > 0, but that <r2 may have either sign. In

general \a2 \ because a2 is a factor e smaller than <Tj. However, if (f>l = 0 in a small,

singular region, then in that region

dw

a = a2 = -$k J f03xt>\ dw, (34)
01=0

which is unrestricted in sign, i.e. the Clausius-Duhem inequality in its general form (5)

does not hold. In fact, it is clear that the only valid form of this inequality we can take is

<T1 > 0, (35)

which means that (11) is correct only if a, n and q are replaced by nt and qt (see

(29)). The terms involving the second-order derivatives Dg and De in (10) must be
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omitted and the conclusions in (12)3 and (12)4 do not follow. The author has also shown

(35) to be the correct form of the Clausius-Duhem inequality by less precise arguments

not involving kinetic theory (Woods, 1980).

From (31) we see that even when </>, is zero and a unconstrained in sign, it still

follows that s < s0, for in this case

ps = ps0 - psA - ■■■ = ps0 - $k I f0<j>l dw - ■ ■■ .

This convexity of s is an entirely reliable form of the second law of thermodynamics.

Indeed, the inference that > 0 follows from convexity in the form s2 < 0 plus the

relation between ax and s2 given in (33). And if one traces the origin of the Clausius-

Duhem inequality (e.g. see Woods, 1975, Sec. 12.3) one finds that it is based on Clausius'

inequality, which involves increases in entropy, but no time derivatives. These increases

are a consequence of requiring our thermodynamic systems to be stable; they imply that

the greater the constraints on the system the smaller the entropy, and this is equivalent to

requiring entropy to be a convex function of its arguments. The introduction of (a) time

derivatives and (b) infinitesimally small systems are each recipes for destroying the

underlying inequality, even though averages over long times and large systems still obey

the law of entropy increase. Fortunately (35) remains, but this is all.

It is curious that the convexity of entropy as a function of state is quite ignored in the

works of Noll, Coleman, Truesdell, Eringen and the many others, who have been content

to accept the Clausius-Duhem inequality (in its general, nonlinear form) as a suitable

axiom for their exercises in rational continuum mechanics.
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