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1. Introduction. By using the streamlines iJ/(x, y) = constant and an arbitrary system

of curves <£(x, y) = constant as a pair of curvilinear coordinates, the Navier-Stokes equa-

tions for the steady plane flow of a viscous incompressible fluid of density p and

coefficient of viscosity n may be written as [1]

(voracity),

where co is the vorticity, k = jpq2 is the kinetic energy, p is the pressure and

E = p2wl + hl, F = + co),

G = p2a>l + (h^ + co)2, J = + co) - juco^, (1.2)

in which h = k + p is the energy.

Once solutions co(</>, i/>), k(<f>, 1//) and p(4>, 11/) of (1.1) are found, the flow in the physical

plane is given by

z=*+,'=±J'^i!M7+iK (U)
where

1-Fpj, + EpJ,
 j   + 1^4,

** 2k

&P4, ~ Fp* .
 j   + ^ (1.4)

Following the designation of Martin [2], we shall call a flow confluent if any two of

the following curves coincide in the physical plane:

(a) curves of constant pressure p,

(b) streamlines,

(c) curves of constant speed q,

(d) curves of constant energy h,

* Received January 7, 1980. This research was supported by the National Science Foundation under grant

SER76-08595 to the University of Maryland.
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(e) curves of constant direction 0,

(f) curves of constant vorticity co.

Otherwise the flows are called fluent.

Two types of confluent flows co = co(i/>) and co = to(h) were discussed in [3], Calcula-

tions show that in these flows the vorticity co remains constant along the isovels

q = const. It has also been shown that there exist Prandtl-Meyer flows in which the

vorticity has a constant value along the isovels. Thus the confluent flow co = w(q) pre-

sents itself for investigation, and this article is devoted to the discussion of the solutions

of Eqs. (1.1) with the additional condition co = co(q) or, equivalently, k = k(co).

We distinguish two cases: (i) the streamlines and isobars do not coincide, in which

case we make <j) = p in (1.1), and (ii) the streamlines and isobars coincide, p = p{\p). In

the later case we use orthogonal curvilinear coordinates (/> and tjj. In either case the

requirement k = /c(co) makes the system over-determined.

Systems of partial differential equations and the existance of their solutions were

studied by Riquier [4] and Thomas [5]. Following these methods and using a series of

integrability conditions, we obtain solutions in both cases. It will be shown that in the

first case the flow will be a Jeffery flow [6, 7] and in the second case either the vorticity or

the pressure remain constant everywhere in the flow.

I would like to thank Prof. Martin at this time for his valuable suggestions and the

National Science Foundation whose grant made this work possible.

2. Streamlines and isobars do not coincide. Using the isobars p = constant in place

of the curvilinear coordinates (j) = constant, the system (1.1) becomes

(vor,la,rt

(Gauss)'

(2.1)

where

E = n2co2p + (kp + l)2, F = /i2copco„, + (kp + l)(k# + co),

G = n2wl + (fc^ + co)2, J = nwp(k+ + co) - fuo^kp + 1).

The assumption k = k(co) now implies

k„a^ - k^ajp = 0. (2.2)

We shall assume that cop ̂  0 and ^ 0 since these cases, co = co(i/>) and h = h(a>), have

already been discussed in [3]. Thus by (2.2), we have kp ^ 0 and co^ ^ 0. Now, let

= KIK = ̂ Cp> (2-3)

so that

AcOp, ^pi]/ pp i/^p ^ ^pp' (2 4)

kfj, = Akp, kp<i/ ^p kp A-^pp 5 ^i// i/ ̂ p ^-Ap kp A kpp •

We shall now proceed as follows: the vorticity equation together with the Gauss equa-

tion will yield cop as a function of co and I. The integrability condition on cop and co^
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given in (2.4) will yield a linear equation for Xp and X^. Replacing the derivatives of co in

the Gauss equation, we arrive at another linear equation for Xp and X^. The integrability

condition Xpij, = A^,p will yield the condition X = X(co). In Lemma 2.1 we show that in this

case X must reduce to a constant so that co = co(p + X\jj) and k = k(p + Xij/).

By means of (2.2), the Gauss equation in (2.1) becomes

H2(ol + (Kj, + Co)2 H2o)pco^ + (kp + l)(k^ + co)

k(u)cop - coJ
= 0

<!>k(cowp - coj

which may be simplified, by using (2.4), to

kcowp(XpF - X^E) - (co - X)2(Xkp + co)(/ccop)p

+ ka>p(co - X)[co(kp + l)Xp + Xkpp + cop] = 0. (2.5)

On the other hand, the vorticity equation in (2.1), with the help of (2.4), reduces to

Xp(kp+ 1) XpE-X,E

p + cop(co - X) cop(co - Xf ' (Z°>

co E

2k J

kp+ 1

Using (2.5) to eliminate the last term in the above equation and adopting the nota-

tion ' = d/dco, so that

kp = k'cop and kpp = k"co2p + k'copp, (2.7)

we may rewrite (2.6) as

[/i2co2 + (co - X)2(k'2 - 2kk") + A2/c'2]cop + 2[(co - X)(k - co/c') + cok']cop + co2 = 0.

(2.8)

This is a quadratic for cop and is not an identity, since co ̂  0 by our assumptions.

Thus cop may be solved as a function of co and X, so that

cop = rj(co, X), co,p = X tj(co, X) by (2.4). (2.9)

The integrability condition a>pil/ = co^,p on (2.9) will now yield

(n + Xih)Xp - rhXf = 0. (2.10)

We eliminate the derivatives of k from Eq. (2.5) using (2.7) and the derivatives of co using

(2.9) to get a second linear equation for Xp and X

{(co - X)[(k'r] + 1 )t] - (co - l(f/A] + t][n2Xt]2 + (k'rj + l)(Xk'rj + co]}Xp

- >;|>V + (k'r\ + l)2]^ = ^[^2(k'2 - kk") + t](cok' - k) + cofcf/w]. (2.11)

The determinant of the coefficient matrix of (2.10) and (2.11) is given by

-[(k'ri + 1>7 - (co - X)r]x]2 - /iV,

which obviously is non-zero. Thus Xp and X^ may be solved as functions of co and X :

Xp = A • , -V = A(rj + Xrfa), (2.12)
where

A_rj(a)- X)2[Xt]2(kk" - k'2) + rj(k - cok') - cokt]m]

kco[(k'rj + l)t] — (co — X)r]A]2 + ii2kcorjA
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We may now apply the integrability condition Api/, = A^p on (2.12) and use (2.9) and

(2.12) to eliminate the derivatives of co and A to arrive at the equation

= \>*12 + 2A 2rjf + A wa,

which, by rearranging the terms and dividing by A2rj3, may be written as

{-) "(-)\ilu \&*iL
(2.14)

Thus Eq. (2.14) is a necessary condition for the over-determined system (2.1) and (2.2)

to be compatible. It involves A and co only and thus, if (2.14) is not an identity, A may be

solved as a function of co.

Now, if A = A(a;), then tj = t](co) so that by (2.12) we have

Ap = A'cop s 0,

so that A = constant. We shall state this as a lemma:

Lemma 2.1 If the function A given by (2.3) depends only on the vorticity co, then

A = constant and

co - co(t), k = k(x),

where t = p + Xip.

We shall now show that under the assumptions already made, (2.14) cannot be an

identity.

Since (2.14) involves \/r\, we shall divide (2.8) by coj and solve for l/a>p. Thus

J__ 1
co \a>!

± (2.15)

where

e.^.+«+c. ,.(
(2.16)

Some useful relations involving these are:

Aco2 + Bco + C = - ju2, 2Aco + B = — 2kk'/w2, B2 — 4AC = 4^2A + (4k2k'2/a>4).

(2.17)

The first of these relations shows that A, B and C cannot vanish simultaneously for

viscous flows.

We note that if Q = 0 then A = A(<y) and by Lemma 2.1, it reduces to a constant.

Thus, assuming that Q ^ 0, we have

(1 = (4AC - B2)/4Q3'2. (2.18)

Further, from (2.13), after eliminating rj and its derivatives by means of (2.15), we have

l/A^ = T/VG(-2AVe±e,), (2.19)
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where

T = cj3(B2 — 4AC)/2k, Qt = AxX2 + + Cx,

A>=2{jc--2(f)c+ic' '220>

We are now in a position to calculate (2.14) with the help of (2.18) and (2.19). Thus, using

co as a subscript to denote partial differentiation with respect to a>, we have

4^Q[-T'Q + TQW] ± 2Qa>[a>T'Ql - 2TQl - coTQUci] + co2TQ1QUul

kT
= -^[-2Ve±co2Ci]2,

or, by rearranging the terms,

4 ve
kT

TQ0>-TQ + —Q1
CO

4/12kTO
= ±a)2TQ1Q0> + 2coQ[coTQl-2TQl-wTQu„]--^-wkTQl (2.21)

We wish to show that (2.21) is not an identity so that by Lemma 2.1, X will reduce to

a constant. However, if (2.21) is an identity, since the right side of this equation is

fourth-degree in k, we may conclude that either JQ is linear in X or that the left side of

(2.21) is identically equal to zero. Thus,

either

(i) B2 - 4AC = 0,
or

kT
(ii) TQ„- T'QT — Qi =0, (2.22)

CO

and

4 i2UTO
± co'TQ.Q^ + 2coQ[coT'Qi - 2TQ, - coTQUa] - - cokTQ2 = 0. (2.23)

However, if B2 — 4AC = 0, then in order that y/Q may be real, A must be nonnega-

tive. But the last equation in (2.17) then implies that both A and k' must vanish. From

the expression for A in (2.16) we conclude that k = 0 and we excluded this case by our

assumptions at the beginning of this section. Thus, under the assumptions already made,

Eq. (2.14) is an identity if and only if (2.22) and (2.23) are satisfied simultaneously. Here

two cases may be distinguished by the choice of the sign in front of some of the terms.

Accordingly, choosing the second sign in both the equations, we have from (2.22),

kT
TA' - T'A + — A, = 0,

(O

or, replacing At by means of (2.20),

_ ™ „ 2k loo i'
2TA - T'A +— -

co \ k
)ta = 0,
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and similar expressions with B and C in place of A. These may be integrated to yield

A=al-y/T,B = b1-jT,C = c1-jT, (2.24)
CO CO CO

where au bj and are constants, not all zero.

Assuming that al =j= 0 so that A =J= 0, we may write B and C in terms of A and, using

(2.20), write and C1 in terms of /I, so that (2.23) will now become

4a A2kTA
co^yX1 4- by}. + c1)[2A(coT'A1 — 2TAj — coTA\) — coTAtA' — kTAf]  —3 = 0.

If both bi and are zero, we revert back to the first case, B2 — 4AC = 0. Thus, a

necessary condition that the above may vanish identically is TA = 0. But this means that

T = 0 and by (2.20) this implies that B2 — 4AC = 0.
We shall now choose the first sign in (2.22) and (2.23). Eq. (2.22) will vanish iden-

tically if and only if

rT' + 2(~}t = 0,
k \k,

which may be integrated to yield

T = dk2/co2, d = constant. (2-25)

By (2.20), we have

which may be used to eliminate Qw from (2.23) to yield

k<»TQi(j) + <o(a>TQ1 - 2 TQ1 - coTQu M) + = 0.

This is a quadratic in X and the coefficients must all vanish. Hence

kcoT^jJ A! + co(u>T'A1 - 2TA1 - coTA\) + ~~r = °> (2-26)

/cwt(|| B, + a}(coT'Bl - 2TBX - coTB\) = 0,

/cwrjlj Cj + co(coTC1 - 2TCj - coTC\) = 0.

The two equations of (2.27) may be integrated to yield

B{ = bT/kw, = cT/kco, (2.28)

where b 0, c =f= 0 are constants. The equation (2.26) may be rewritten as

(Aikco/T)' = 2k2/Tco\

(2.27)
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Replacing T by means of (2.25), this equation may be integrated to yield

2k k
A, = z+a—r, a = constant. (2.29)

or or

Since (<x>/Ac)^41 = (Aa>2/k2)' by (2.20) and similar expressions hold for and Cu we may

now calculate A, B and C from (2.28) and (2.29). Thus

^2 j^2 J^2
A = —r (a, ft)2 — aa> + 1). B = ^(b,co — bd), C ——x (c^co — cd). (2.30)

to ft) ft)

Thus in order that (2.14) may be an identity, the expressions on the right side of (2.30)

must equal the corresponding expressions in (2.16), giving us three differential equations

for k as a function of to. We shall show that these equations are incompatible. The first

equation of (2.17) with A, B and C replaced by (2.30) will yield k as a function of co given

by

k2 = — n2co3/[aiU>3 + (br — a)co2 4- (1 — bd + cjco — cd\. (2-31)

We note that the coefficients of co in the denominator of (2.31) cannot all vanish simul-

taneously. Further, the second equation of (2.17) yields

2k' bd - 2 . .
— = 2 fljco + (2a — bt).

k ft)

This may be compared with the derivative of k from (2.31) and we find that in order that

co ̂  constant, one of the following conditions must hold:

(i) al =0, 2a = bx ̂  0, bd — 3, = 2, c = 0,
or

(ii) aj = 0, a = bi =0, bd — 4, c = 0,
or

(iii) aj = 0, a = bi = 0, bd = 5, <?! = 4.

Yet the expressions for C given by (2.16) and (2.30) do not become equal in any of the

above three cases. For example, in the last case, we have from (2.31) and (2.16),

C = ~n2 + (/c2/4co2),

but by (2.30) and (2.31)

C = — n2 + (4k2/co2).

Thus we conclude that (2.14) is not an identity and 1 may be solved as a function of co

so that by Lemma 2.1, we have the following theorem:

Theorem 2.1. If the streamlines and isobars do not coincide in the steady two-

dimensional flow of an incompressible viscous fluid and if the vorticity remains constant

along the isovels, then there exist constants y and X such that

k - k(yp + At/') and ft) = w(yp + liI/).

Here we have introduced the constant y to include the case co = co(i//). However, in

what follows, we shall assume that y = 1 and k = k(z), w = co(r) where i = p + AiJ/.
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The Gauss equation in (2.1) may now be written as

d lG-AF

)-°,dx \ kJ
so that

(A/cp + u>)/ka>p = c, c = constant. (2.32)

If c = 0, then it follows (Eq. (1.5) of [3]) that k = k(a) and the flow will be a special case

of the Prandtl-Meyer flow discussed in [3]. We note that the stream function is first

deduced by Jeffery [6] and eliminate this case from further discussion and assume that

c =}= 0.

We shall rewrite (2.32) as

co(k' + t') = ck + (a> — A)k'. (2.33)

Similarly, the vorticity equation (2.6) may be written as

S7-> + <»" <134)
or

0>(k' + T') 2(fc' + T')(*" + T")

k(0)-il)~ n2 + (k' + z')2 ' [ '

Using (2.33) to replace the numerator of the left side of (2.35), we may integrate this

equation to yield

k' + r' = ± ^/b(co — Afk - n1, b =(= 0, constant. (2.36)

Using (2.33) again to replace k' + x' in (2.36), we may integrate this equation to

obtain k as a function of a>:

± ^b{w - Afk - ^=ycco((D- A)c - ^ + a if c=f=-l,

= | In |(co - A)| ^ c=-1. (2.37)

where a = constant.

These expressions may now be used to integrate equation (2.36) so that t = p + Aip is

given as a function of to:

b(co — A)c+ l(cw + 2A) b(u> — Af(co) + A)2 a2 + f,i2 acw

1 2c(c + l)(c + 2) 4c2(c + l)2 b(a> - A)c + c + 1 +

if c+-l or -2, (2.38)

ba> b(4a>-A2) b a2 + n2 2 , j
= - — — +  7t4 - - In co - A r la} - AY + d if c = - 2,

4(a) - A) 16(co - A)2 2 1 1 b v 7

= (b — a)(co — A)ln |a> — A j — ̂  (co — A)[ln | <y — A | ]2 + | a — b — ^ ^ j(co — A)

ba>2

aw

+ d if c= -1.
4(ct> — A)
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In order to determine the flow in the physical plane, it is convenient to change the

independent variables p and ^ in x, y and a to the variables t and p so that ip = (x - p)/k

and

dx(x, p) 1 dx(x, p) 1
= xp--x

dp " A *" dx X*» , .X,/,,

and similar expressions hold for y and a.

From (1.4), with (f> replaced by the pressure p, we have

1
a> = 2k

-j+^P
1

2k

G-j +

which, when simplified, become

_ Xp2co + c2k2 c Xp2a> + c2k2

~ 2Xiik(w - X) °)p ~ V41' ct* = 2pk{w-X) 03

so that

da Xp2(x> + c2k2 da c

dx 2Xpk(co — X)a>p' dp 2Xp (^-39)

To facilitate the calculation of x and y we write these formulas in yet another form

using the vorticity equation (2.34), which may be written as

d_

dx

k' + x' H2(jl>u>p + ck(kp + 1) Xp2a> + c2k2

2k3l2(co - X) 2Xk3l2(co - X) 2Xjk by ^132^Jk

Thus (2.39) now may be written as

da . d Ik'+ x'\ c da c

!h~ J dx\ njk ) + Wn Tp~~2k~n' ( *
From (1.3),

dx 1 IF
cos a-sina

dx Xj2pk\J

dx _ 1 / (k' + t')

)•

dp kjlpk
cos a + sinin aj.

The second equation may be integrated and compared with the first by means of (2.40).

Similar calculations may be made for y, so that we have

2
z = z° + L" - '(*' + zo — x0 + iy0 = constant.

If (r, 9) are the polar coordinates of the point (x, y), then this expression together with

(2.36) yields

, . c2pr2

and by (2.40),

e-tj ^4a ~ ̂ kp- <242)
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The relation (2.41) shows that co — co(r) so that the flows will be Jeffery flows [6],

The integral in the right side of (2.42) may be evaluated using (2.37). co and p may be

eliminated from the resulting expression using (2.41) and (2.38) and an expression for the

stream function in polar coordinates is thus obtained as

= — 9 - ^ . r2 + A ■ r2 + (2lc) + B • lnr + ip0 if c =t — 1 or —2,
c 4(c + 1) 1

= — [id + Ar + ^2 ^ r2 + B lnr + 0 if c = — 2,

= — 2^9 — ~ r2 + A lnr + B(lnr)2 + if c = — 1,

where A, B and iJ/0 are constants.

We conclude this section with the following theorem:

Theorem 2.2. If the streamlines do not coincide with the isobars in the steady two-

dimensional flow of a viscous incompressible fluid, and if the vorticity is constant on the

isovels, then the isovels are either (i) concentric circles and the flow is a Jeffery flow, or

(ii) straight lines and the flow is a plane Couette flow.

The second case arises out of a special case of co = (0(1//) discussed in [3],

3. Streamlines and isobars coincide. In this section, along with our assumption

k = k(a>), we also assume that p = p(\p) so that the streamlines and isobars coincide. We

now use the system (1.1) with the curvilinear coordinates (j) = constant taken as ortho-

gonal to the streamlines \p = constant so that F = 0. As in the last section, we assume

that 0)4, ̂  0. Thus we now have an overdetermined system of five equations for three

unknowns a>, k and p given by:

(vor"ci'rt (31)

(fx) *° <Gauss)- (32)

k,- k^Wj, = 0, (3.3)

P.4, = 0, (3.4)

a>^(n2 + k'2) + k'(p^ + co) = 0 (orthogonality, F = 0), (3.5)

where, ' - d/dco, E = u>l(n2 + k'2) and J = po)^(p^, + co).
We note here that if J = 0, then it may be easily proved along the lines given in [3]

that the vorticity must remain constant. In what follows, we will assume that vorticity is

not a constant in the flow.

To find functions «(</>, \j/), k(<p, \)/) and p(i/z) which satisfy the above five equations, we

shall apply a series of integrability conditions as in the last section. From the Gauss

equation (3.2) and the orthogonality condition (3.5), we calculate and co^ and apply

the integrability condition co^ = co^ to obtain an expression for co involving k, p and

their derivatives. This, together with (3.1) and (3.4), will enable us to conclude that the

pressure must remain constant everywhere.
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Thus, if p ^ constant, the Gauss equation (3.2) yields

pk(p + co)

* p(/ + k'2)

where ' = d/dil/ and/is an arbitrary function of cf>. Further, by (3.5),

_ k'(p + t»)

* p2 + k'2 ■ ( >

The integrability condition co^ = co^ yields

(kk" — k'2)p(p + co)2 — cok(p2 + k'2)'p = 0. (3.8)

On the other hand, when (3.6) and (3.7) are used to eliminate the derivatives of co, the

vorticity equation (3.1) reduces to

2k'2p(p + to)2 + 2k(p2 + k'2)p - co(p2 + k'2)p = 0. (3.9)

Eliminating p from (3.8) and (3.9), we have, since p =f= 0,

2(kk" — k'2)(p + co)2 + 2cok'2(p + w) — co2(n2 + k'2) = 0.

This is a quadratic for p + a> whose coefficients are functions of co and clearly it is not an

identity. Thus we may conclude that p + co must be a function of co. Since p = p(\I/) and

a> =j= co(il/), this would only mean that p = constant so that by (3.8) we have

kk" - k'2 = 0,
which may be integrated to yield

k = k0ea"'-, k0, a = constant.

However, when this value of k is used in (3.9), we get

a2ko(p + co)e2a'" — n2co = 0,

which implies that co = constant.

Thus we have the following theorem:

Theorem 3.1. If the vorticity remains constant along the isovels in the steady two-

dimensional flow of an incompressible viscous fluid and if the streamlines and isobars

coincide, then either (i) the vorticity is constant everywhere or (ii) the pressure is con-

stant everywhere.

If the pressure is constant everywhere, then the Gauss equation (3.2) becomes redun-

dant and (3.6) is no longer valid. However, the vorticity equation (3.1) may be simplified

as

(H2 -I- k'2)co^ + (2k'k" - p2 - k^yo^co^ + k' + ~ (p2 + k'2) co^ = 0.

When and co^ are eliminated from this equation using (3.7), we get

H2 + k'2 = 2 kk",

which may be integrated to yield

c2

1k = ~ (co + b)2 + p2/c2\ b, c = constant, c =j= 0. (3.10)
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Using (3.10) to replace k from (3.5) and integrating, we have co as a function of tf) and \p

given implicitly as

b | . 4/i2
co + ^ In | | +^4 In

co

co + b

2
+ = if b# 0

c

c2 2fi2
-z-w ~ —
2 c to

(3.11)
— to — 3—I- ij/ = O if b = 0.

where <5 is an arbitrary function of <f>.

To obtain the flow in the physical plane, we have, from (1.4),

a =
r doj

J 2k'

so that by (3.10)

a — a0 = arctan a0 = constant. (3-12)

By means of (3.5), (3.10) and (3.12), we may now calculate z = x + iy from (1.3):

o

z = z0 H 7= [2jU In | co | + i{2\\) + c2(co + b In | co |)}], z0 = x0 + iy0 = constant.

2^v 2p
From this we have co as a function of x and y as

co = exp|^~|\4(x - x0) + B(y - y0)]|, A2 + B2 = 1,

and the streamfunction

•A = ~ *o) + - »)] - y expj^p[/4(x - *0) + B(y - y0)]|,

where

be2 be2
A, = — B — —— A and B,=A — —-B.

1 2/i 1 2 fi
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