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WRINKLING IN FINITE PLANE-STRESS THEORY*

By
CHIEN H. WU anD THOMAS R. CANFIELD**

University of Illinois, Chicago

Abstract. A general and complete formulation is given for the wrinkling phenomenon
in the context of finite plane-stress theory. The planar portion of the true three-dimensional
displacement field, called the pseudo-displacement field, is used as a basis for the necessary
kinematic analysis. It is assumed that the principal directions associated with the pseudo-
deformation field are the same as those associated with the true stress field. The true stress
field is governed by equilibrium and the assumption that one of the principal stresses
vanishes, and hence is statically determinate. The difference between the pseudo-strain and
the true strain calculated from the true stress is a new tensor, called the wrinkle-strain
tensor, and serves as a measure of the wrinkliness of the surface.

1. Introduction. Wrinkling is a phenomenon that is commonly associated with the
deformation of a thin membrane surface. It is commonly assumed that the direction of a
wrinkle is a principal direction. The principal stress resultant along a wrinkle is assumed to
be tensile, while the transverse principal stress resultant is assumed to be zero. This assump-
tion renders the equilibrium conditions statically determinate, and the resulting analysis is
the so-called tension field theory. This theory has been studied extensively in the context of
linear plane-stress theory by many authors [1-8].! The formulations used in these re-
ferences are not quite the same but are all built upon the same basic assumption. The work
reported in [ 7] was obtained without the knowledge of the earlier references and hence is
not published. It should be mientioned, however, that the use of a wrinkle strain to measure
the wrinkliness of a deformation was first explicitly introduced in [7].2 In any case, the
formulation needed for a linear analysis is complete.

When the deformation is finite, the system of equilibrium conditions is still statically
determinate. This leads to the false impression that the necessary nonlinear analysis is just
as straightforward as the linear analysis. But how does one get back to the displacement
field from the stresses? This question cannot be answered without a detailed study of the
kinematics based on physically reasonable assumptions. Formulations applicable to axially
symmetric problems can be found in [9, 10]. The purpose of this paper is to give a complete

* Received September 16, 1980. The work reported here was supported by NSF under Grant CME-7905462.
** Present address: Sandia Laboratories.
! Anisotropic and nonlinear elastic properties were considered in [8].

2 To be sure, the variable Poisson’s ratio and the maximum slope of the wrinkles introduced in [3] and [4],
-respectively, are also measures of the wrinkliness.
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and general formulation of the wrinkling phenomenon in the context of finite plane-stress
theory.

We shall begin by naming the planar portion of the true three-dimensional displace-
ment field the pseudo-displacement field. The main assumption will be that the principal
directions associated with the pseudo-displacement field are the same as those associated
with the true stress field. The difference between the strains calculated from the pseudo-
displacement field and strains calculated from the true stress field is a measure of the
wrinkliness of the surface.

Some mathematical preliminaries, mainly having to do with Schouten’s kernal-index
notation, are reviewed in Sec. 2. This notation is convenient for our purpose, because we
have to deal with several sets of different curvilinear coordinates. Finite plane-stress theory
with wrinkles is introduced in Sec. 3. The presentation of Sec. 3 is somewhat fragmentary
because of the mixed use of several coordinates. Sec. 4 is an attempt to summarize the
equations obtained in Sec. 3. The class of rotationally symmetric problems is solved exactly
in Sec. 5, and some results are presented in Sec. 6 with a set of initial data as parameters.

2. Mathematical preliminaries via Schouten’s kernel-index notation. The objectives of
this paper require the solution of the physical components of various field variables in
different curvilinear coordinates. Schouten’s kernel-index notation [11, 12] appears to be
most suitable for our purposes. The notation uses a kernel letter to identify an object, and
index letters to identify the reference bases. Moreover, the word “component” is always
meant to be the physical component. This is summarized as follows:

Kernel |-7=m--mmmmmrmmmmmmrmnnerees Identifies an object

Letter

..................... Identifies the coordinates
Index

Letters

....... Physical component

Before proceeding, we set forth in Table 1, once and for all, the kernel letters and index
letters to be assigned to various coordinates.
The base vectors associated with a set of coordinate axes are denoted by

€lndex Index = (1, i, A4, a) 2.1
and the associated local Cartesian unit vectors are
iindex = €index/ | €index |- 22)
It follows from our notation (Table 1) that
ilndex = €index fOr Index =1 or i (2.3)
Direction cosines are defined accordingly:

Q15 Index)(2nd Index) = U1t Index) * K2nd Index) (2.4)

where (1st Index) and (2nd Index) are associated with different bases. A characteristic of
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TaBLE 1. Coordinate systems (all subscripts range over the integers (1, 2)).

States
Coordinates Undeformed State Deformed State
Rectangular I is a typical i is a typical
Cartesian Indexed Z, member of z; member of
(I, J,K, L, M, N) (i, j, k, 1, m, n)
Z, =X I=1 Z; =X i=1
Explicit for for
Z,=Y I=2 z;=y i=2
Orthogonal A is a typical a is typical
Curvilinear Indexed X, member of X,  member of
(4,B,C,D, E, F) (a,b,c,d, e f)
X,=U A=1 X,=Uu a=1
Explicit for for
X,=V A=2 X, =0 a=2
X,=P A=1 X,=p a=1
Principal for for
X.=0 A=2 X, =q a=2

Schouten’s notation is that

Q(ls\ Index)(2nd Index) — Q(an Index)(1st Index) *

181

(2.5)

This, however, is merely an identity but not a symmetry property. In terms of the direction
cosines, physical components of a tensor T transform like Cartesian components, e.g.,

T}J = QIA QJB TABa

Tu = Qia QJB 7;3,

etc.

(2.6)°

Let the transformation between the Cartesian coordinates Z; and the orthogonal curvi-

linear coordinates X 4, be denoted by
Z;=2(X4:

Then, since X 4 are orthogonal,

ZI,AZI.B=0 fOI’

The square of a line element dL is

where

(dL)z = le dZ’ = 6XA(SXA

0X,=H;'dX,

3 Summation over repeated subscripts is taken for granted.

4 Subscripts preceded by a comma indicate partial differentiation.

5 No sum is performed in similar situations.

A # B.

(no sum)

XA = XA(ZI)-

2.7)

2.8)*

(2.9)

(2.10)%
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and

H,Il = (ZI,A ZI,A)I/Z = (X1 XaD" 12, (2.11)
It follows from the above that

XA,1=H,2421.A, ZI,A=H;2XA.I‘ (2.12)

We note in passing that X , is nothing but a convenient notation.
Let P be the position vector of a point; then

e,=P, leql =(Z; 4 ZI,A)l/Z =Hy', is=H,e,. (2.13)
We introduce directional differentiation defined by
0 )=Hy( )4 (2.14)
Then
iq=H,e,=H,P ,=0,P, (2.15)
Qu=0Qua=iy4 4 =0,P iy =0,4Z/=H,Z; 4= H,IIXA.I- (2.16)

Some of the most useful identities are:
iA = QAI ila iI = Qm iA’ aA = Q,u 01,
01 = QIA 0,4, 5XA = QAI le, dZI = QIA(sXA- (2'17)

Absolute differentiations in orthogonal curvilinear coordinates are denoted by a semi-
colon, and are defined by

Ti8=0u0s T, Typ.c = Qa1 O8sQck Tiyx, etc (2.18)
It follows from the above and (2.17) that
Tys=05Ts+ Weus Tt Tip.c =0c Typ + Weac Tep + Wepe Tye, etc. (2.19)
where

WCAB = QAI 68 QIC (2-20)

are the wryness coefficients. For orthogonal curvilinear coordinates, the only non-zero
coefficients are

Wsap = —Wapp = 04 In Hy (A # B). (2.21)

This completes the relations needed for the Z — X transformation. Relations pertinent to
the z — x transformation may be obtained from the above by simply replacing all the
subscripts by their lower-case counterparts.

3. Finite plane-stress theory with wrinkles. Let M be the domain of the (Z,, Z,)-plane
characterizing the shape of a membrane surface in its undeformed configuration. We
assume that the membrane is deformed to a wrinkly surface so that the position of a point
(Z,, Z,) after deformation is (z,, z,, z3). The deformation may be represented by a trans-
formation

Z; = Zi(Zl)’ Zy = Z(Zl) for all Z e M, (31)
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where, as throughout this paper, all subscripts range over the integers (1, 2). The transform-
ation (3.1) maps M onto a wrinkly surface m* characterized by the fact that z, is not
identically zero. Physical evidence seems to indicate that the distribution of wrinkles is a
random process. Moreover, creases and folds caused by wrinkling and characterized by
z3 = z(Z,) are difficult to define analytically. To bypass these difficulties, we use the surface
m defined by

m: z; = z{(Z)), z3=0, (3.2)

to give a reference description of the surface m*. The difference between m and m* will be
described by a new strain-like kinematic variable to be defined in the development to
follow. The surface m will be called the pseudo-deformed surface to emphasize the fact that it
is not the true deformed surface. All quantities to be defined on the surface m will be
prefixed by “pseudo-" to give the same implication. It is clear from (3.1) and (3.2) that the
surface m is nothing but the projection of m* on the plane. We do, however, make one
assumption that the projection is one-to-one so that the mapping between (Z,, Z,)and (z,,
z,) is one-to-one.
Let F;; be the components of the pseudo-deformation-gradient tensor F associated with
(3.2), whence
Fy=zy. (3.3)

By polar decomposition, F has the representation

cos B —sin ,B]

sin 8 cos 8

(Fil =[zi/]=%A, + /\2)[

cos(2a + B) sin(2a + f)
A, — A 4
+2Ay 2)[sin(2oc + B —cos2a + B) |’ 34
where A| and A, are the pseudo-principal stretch ratios associated with F and
AN, =T =det[Fy], A}+Al=I1=F,F,. (3.5, 3.6)

The angles o and f, depicted in Fig. 1, define the orientations of the pseudo-principal
coordinates (X, = P, X, = Q) and (x, = p, x, = q).* We may now proceed to state our
Assumption I: The projection on the plane of the set of principal coordinates associated
with the true deformation experienced by the deformed surface m* is just the set of pseudo-
principal coordinates defined by F;.

Let AT and A% be the true principal stretch ratios experienced by the deformed surface
m*; then it is convenient to construct a deformation-gradient-like tensor F* by the ex-
pression

[F#%] = (replace (A, A,) by (A¥, A%¥) in (3.4)]. 3.7’

We emphasize that the term “deformation-gradient” here is nothing more than a con-
venient name because F* is not the gradient of a deformation. Nevertheless, (3.7) implies
that

AYAY = J* = det[F}], A¥2 + A¥? = [* = FXF%, (3.8, 3.9)

6 Cf. Table 1 for notation.
7 Unless otherwise stated, an asterisk is used to identify a true physical quantity defined on the true deformed
surface m*.
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22,22

Fi1G. 1. Principal coordinates.

which, in turn, may be used to define the true strain energy density function
U = U(I*, J*). (3.10)
Before proceeding, it is again convenient to introduce a new tensor W defined by
W =F — F* (3.11)

It follows from (3.4) and (3.7) that the principal quantities W, and W, associated with W are
just

W, = A, — A}, W, = A, — A%. (3.12)
Since (A4, A,) are the projections of (A¥, A%) on the plane,(W;, W,) must be either zero (no

wrinkle) or negative. Thus, we assume without the loss of generality that the 1-direction is
always the taut direction so that

Wl = 0, Al = A?, (3-13)
WZ = A2 - A; S 0. (3.14)

Eq. (3.12) implies that
Projection of deformed length — Deformed length

W,=A,— A% = ,
2 2 Undeformed length

which suggests the name wrinkle-strain tensor for W defined by (3.11).
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We proceed to state our Assumption I1: The true principal Piola stresses experienced by
the deformed surface m* are

ou ou ou

Pi=sas = 2o AT+ AL, (3.15)
U  _eU oU
P, =0 0% Ax 1 S As 3.16
2T T A Mt M (3.16)
where
P,=0 if W,<0. (3.17)

In view of the fact that the principal Piola stresses are defined with respect to the unde-
formed surface M, and our Assumption I that the true principal directions are the same as
the pseudo-principal directions, there is no need to differentiate pseudo-Piola stresses from
Piola stresses as far as our notation and terminology are concerned. This leads to the one
exception that an asterisk is not used to identify a true physical quantity, and the (first)
Piola stress tensor is just

[P;/] = [replace (A,, A,) by (P,, P,) in (3.4)], (3.18)
and

cos(a + B)cos & cos(a + P)sin a

sin(o + B)cos «  sin(ax + P)sin a] it P,=0 W <0). (3.19)

[Pil]=Pl[

Isotropy is, of course, presumed in deriving (3.18).
The true Cauchy stress tensor T* (defined on m*) and the pseudo-Cauchy stress tensor T
(defined on m) may be expressed in terms of P, F* and F. They are

_L

T™ = 7 PF*T, (3.20)®
1 T
T= 7 PF’. (3.21)
In particular,
1
T;= 7 Py Fy, (3.22)
where
_f“ = Z",'. (3.24)
The tensors F and f satisfy the relations
1
Jii= 7 eppenkFy, (3.25)
Fiy=Jeyer fu, (3.26)

8 The superscript T indicates transposition.
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where ¢;;, ¢;, are the two-dimensional alternators. We recall that F* is defined by (3.7) and,
as a result, no interpretation of the form (3.3) and (3.24) can be assigned to its components
as well as the components of its inverse. Let (T}, T%) and (T;, T;) be, respectively, the
principal Cauchy stresses and principal pseudo-Cauchy stresses associated with T* and T.
The three sets of principal stresses are related by (3.20) and (3.21), and the explicit relations
are

P =ANTY=A,T, (3.27)
P,=A¥TY=A,T;, (3.28)
P,=T*=T,=0 if W,<O. (3.29)

We note in passing that it is possible to make A, vanish by “wrinkling” an arc element to
zero while keeping A% finite. This is why T¥ is always finite even though the associated T
may be infinite, a situation that appears very often in an actual solution.

In the absence of body forces, the Piola stresses satisfy the equations of equilibrium

Py;=0 on M. (3.30)

Using (3.23-3.26), we find that the pseudo-Cauchy stresses satisfy the equations of equilib-
rium

7;]‘] = 0 on m. (3.31)

As a further consequence of the fact that no relations of the form (3.24) can be assigned to
F} , the equations

Tk ;=0 are not valid conditions. (3.32)

In linear theory, however, there is no difference between (3.31) and (3.32). This completes
the general formulation in Cartesian coordinates. It suffices to mention that the theory is a
straightforward extension of the conventional membrane theory. The presence of a wrinkly
region is indicated by the additional field equation P, = 0, (3.29), and the wrinkliness of the
membrane is measured by the additional kinematic variable W, .

To apply these equations to boundary-value problems, it is very often more convenient
to introduce suitable curvilinear coordinates. Several curvilinear versions of these equa-
tions are derived in Appendix A.

4. A summary of the equations. The exposition presented in Section 3 is somewhat
fragmentary in that too many sets of related coordinates, including the unknown principal
coordinates, are involved. As a result, it is difficult to tell just which are the independent
unknowns and what are their governing equations. It is therefore desirable to provide a
summary to clarify the situation. We shall do this by employing the explicit notations (X,
Y), (x,y), (P Q). (p, q), etc., identified in Table 1. Certain equations will be repeated for the
sole purpose of putting everything in one place. Also, for the sole purpose of summarizing
and enumerating unknowns and equations, we have found it convenient to interpret the
deformed principal coordinates (p, q) as the independent variables. Thus, quantities in-
volved in this section are all to be considered as functions of p and q.

We begin with Eq. (A21) of Appendix A, the off-diagonal terms of which indicate that

P=Pp). Q=0 (4.1
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It follows from (AS), (A6) and (4.1) that

=L+ ¥V, Ho= (2 +y) 7 42)
dp d
Hp = . (X2 + Y2  Hy= d—(qz (X2 + Y212 4.3)
Using these relations and the diagonal terms of (A21), we obtain
Hp dp 2 2 271
=—-—= X: 2 44
M= ap = L 500 + V) (44)
H, d
A= é = [(x2 + Y2AX2 + Y2]2, 4.5)
q
The kinematic wrinkling conditions, (3.13) and (3.14), are
W, = A, — A%, (4.6)
A, =AY, 4.7)

where Af and A% are the true principal stretch ratios. They are determined from the stresses
in equilibrium via the use of constitutive relations.
The assumption (3.29), together with (3.16), yields
oU* oU*

*
or* A7 OJ*

2 A¥=0 or A% =A*A¥), 4.8)

where A*(A¥) is a root of the original equation, and may or may not have a simple explicit
form. The non-zero principal Piola stress P, may be obtained from (3.15). It is

ou ou
P, = P (A} 2 — AY+ — A% 4.
! l( ) < 01* * aJ* >A2* Ax(Ag*) ( 9)
The two equations of equilibrium (A27), (A28) now become
0 <P ) 0 or —[P XL+ YHUy=o, (4.10)
oP Hy ! ‘
oH
P _ —_ 2 2\—-1/2 —
% =0 or 2 (x_,, +y5) 0, (4.11)

where (4.1) has been used in deriving (4.10). Finally, the two sets of principal coordinates
must be orthogonal. The relations are just

XpXgqtVpVg= 0, (4.12)
X, X, + Y,Y,=0. (4.13)

The ten equations (4.4)+4.13) completely determine the ten unknowns, (x, y), (X, Y), (A,,
A3), (AT, A%), W, and P, as functions of p and q.

It can be easily shown by using (4.11) that the p-(principal) coordinate curves are
straight lines (see, e.g., [1-7]). Let En be the envelope of the family of straight lines; then the
g-(principal) coordinate curves are just the involutes of En. It is therefore sometimes more
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convenient to define p and g through the use of an arbitrary envelope curve En. This will be
illustrated in Sec. S.
We conclude this section by mentioning that for a Mooney material

U=(I*+J* %)+ k(J*? + [*J*73), 4.14)
and Eqgs. (4.8) and (4.9) become
A% = A¥(A¥) = A¥ 12 4.15)
P, = P,(A}, k) = 2/\’{(1 + -:—f><1 - AL}‘:’) (4.16)
In (4.14), k is defined by
k=C,/Cy, 4.17)

the ratio of the two Mooney constants, and U is nondimensionalized by C, H with H being
the constant undeformed thickness of the membrane.

5. Rotationally symmetric problems—exact solution. In terms of the polar coordinates
(R, ®) and (r, 0), the class of rotationally symmetric problems is defined by the relations

r = r(R) R = R(r)
{9 —@+¢R) {@ =0 — ®(r) 6D
We shall study this class of problems in detail, and show that the system of equations may
be reduced to quadratures. The required deductions parallel to those used in [10] for
axially symmetric problems. Indeed, symmetric solutions are just special cases of (5.1).°

Since the p-coordinate curves are straight lines (Fig. 2c), the transformation between (r,
0) and (p, q) are given by (B10) and (B11) of Appendix B. We shall use (5.1), (B10) and (B11)
to simplify the set of equations obtained in Sec. 4 to suit this particular class of problems.
The explicit forms of the equations outlined in Sec. 4, however, are not always the most
convenient ones to use for a given situation. Thus, when a citation is made of an equation
from Sec. 4, we do not necessarily mean the explicit form of that equation, but rather one of
its many equivalent variations.

We begin by substituting (5.1) into (B10) and (B11) to obtain p and g as functions of R
and ©. The results are

Pp=0 +po(R), q=0 + qo(R), (5-2)
where
ate 1, 2\1/2
Po=|D(r)—cos™ =+ —(r"—ri) s (5.3)
r re r=r(R)
1 Te
go=|®(r) —cos™" = . (5.4)
T lr=rm)

° In linear elasticity, the term “ rotationally symmetric solution " is exclusively reserved for the situation r = R,
0 = © + ¢(R).
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It follows that
[ R
2 1/2
o A I
Eq. (B12) now becomes
H,= rle’ = ;;(po—l—-z)j' (5.7)

For the undeformed principal coordinates, we use (4.3), (5.1) and (5.2) to obtain
dp B ap 2 1 1/2 (dp0)2 1 1/2
He 0p = [(a;z) *7| “|\@r) TR - (58)
dq ap 2 1 1/2 3 (dqo 2 1 1/2
Hy— 20 [<8R> + Rz:l =1\Zr + Rl - (5.9)

The conditions (4.11) and (4.12) are identically satisfied by the choice of (p, q) defined by

(B10) and (B11). The condition (4.13), after applying (4.1), (5.1) and (5.2), now becomes

Opdqg 1 dpydge 1

GROR"R* dR 4R " R? =0 (5.10)

A convenient expression for A; may be obtained from (4.4), (5.7) and (5.8). It is

e (), L]
A= re'H,, P |:<dR> + RZ] . (5.11)
In view of (4.7), the principal Piola stress P, defined by (4.16) is
P, =P\, (5.12)

where the functional form of P,(A;) depends on the choice of the strain energy density
function, and may or may not be an explicit expression. Integrating the first form of (4.10)
yields

Pi(A) = < jg)HQ (5.13)

where the quantity in front of H, is taken as the arbitrary function of integration, and hence
K is an arbitrary function of Q. In view of (5.9) and the fact that P, can only be a function of
R for rotationally symmetric problems, K can at most be a function of R. This, however, is
impossible because R is a function of both P and Q. It follows that K is a constant.

We proceed to convert the governing equations to a system of uncoupled ordinary
differential equations with A, as the independent variable. Applying (5.8), (5.10) and (5.11)

to (5.9), we get
dq _ dpo
H, dQ_A /( R dR) (5.14)
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Substituting (5.14) into (5.13) yields

er_Pg_K__/}_n__

RIR =K By (5.15)

which, in turn, may be substituted into (5.11) to obtain

K 2 r, 2
R = [Pl(m)] * (A_> ‘ (16)

This is the relation that will be used to convert functions of R to functions of A;. In
particular, applying (5.16) and (5.15) we obtain

dpo _ dpo dR
dA, ~ dR dA,

K[t ot d [ A d [ e PaAY)
-”e{ Pi(Ay) T 4 dA, [Pl(Al)]}UdAl[‘a“ KA, ] (5.17)

Similar substitutions may be applied to (5.10) to yield

dgy r.Py(A)  d 1 T Py(AY)
A, - KA, Taa, P TKka, (5.18)

These are the two equations that must be integrated. Depending on the form of P(A,), they
may even be explicitly integrated, as in the case for a Mooney material which will be
presented at the end of this section.

Egs. (5.3) and (5.4) may be solved for r and ® in terms of p, and q, . They are

r=r[l+(po — 401", (5.19)

n 1
==+ qo —tan~' , 5.20
) 9o Po — 4o ( )
which, in view of (5.17) and (5.18), are again functions of A,. Finally, A, is determined from
(4.5),(5.7) and (5.12). It is

Az =7 (Po — doP1(A)). (521)

The solution to the two equations (5.17) and (5.18) involves four arbitrary constants: r,,
K and two more from integration. All other variables are expressed in terms of py, g, and
the “independent variable ” A, by algebraic relations. We have thus completed the general
solution.

We now give an examination of the physical meaning of the constant K. The pseudo
Cauchy traction vector acting on an arc element rd6 in the pseudo-deformed surface m is in
the direction of the p-coordinate (Fig. 2c). The magnitude is

% cos Y(r) rd0 = K do (5.22)
2
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(a) (b) (C)

F1G. 2. Principal coordinates for rotationally symmetric problems.

where Fig. 2c, (5.2) and (5.21) have been used in the derivation. Since the p-coordinate
curves are tangent to the circle r = r,, the resultant moment of the traction on a circle is

2n
C= f r.,K do = 2nr, K. (5.23)
0

For axially symmetric problems, r, = 0 and K/r is simply the pseudo Cauchy stress result-
ant in the radial direction (cf. [ 10]).

The principal coordinates (P, Q) in the undeformed configuration may be characterized
by a single function W(R) and a constant R, ((B1) and (B2) of Appendix B). Differentiating
the first of (5.2) and using (B3), we get

dp _dpo 0R 00

. dpo 1 .
1P~ 4R 6P+E’P R sin ‘P[ cos ¥ + — sin ‘P]. (5.24)

dR R

Egs. (5.11),(5.24), (B4) and (5.15) now yield

_rePy(Ay)
tan ¥ = KA, (5.25)
The P- and Q-curves may then be determined from (B1) and (B2) by completing the
integration. However, there is no need for such a direct integration. Using (5.25) and other
relations, we find from (5.24) that

dp/dP = 1. (5.26)
Similar calculations applied to the second of (5.2) yield
dq/dQ = 1. (5.27)

The two reference radii r, and R, may be conveniently adjusted to satisfy the relations

r.=rR, or R,=R(,). (5.28)
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Then, in view of (5.26) and (5.27), the undeformed principal coordinate curves are:

P=P.:0 =P +[¢R,)— po(R)], (5.29)
0=0.:0=0 +[¢R,) — qo(R)]. (5.30)
The images of these curves in the deformed configuration are, respective]y,
p=P.+ $(R): 0 =[P, + $(R,)] + cos™* '7 S =, (5.31)
q=0.+ ¢(R,): 0=[Q + ¢R,)] +cos” 1(re/r). (5.32)

Finally, for a Mooney membrane surface with the P, function defined by (4.16), both
(5.17) and (5.18) may be integrated. The results are:

po = Co Fi(Ay, k) + W(Ay, k, Co) + ¢, (5.33)
1
qO = Z:—O FZ(Ala k) + \P(Ah k, CO) + cq, (5‘34)
where
1| k(1 +k) 1 2A + 1 k3
B I S A — In(A k
l(Al, ) 2 [\/3(1 + ka) tan \/3 k3 n( 1+ )
1 2+ k—k? 2A, ]
- lA—l—————l AP+ A+ D)+ , (535
R Dy AT A DR RS O
k 1 k
= — 5.36
F,(Ay, k) Z[In A — A — 4+ A +4A4:|’ ( )
_1 Pi(A k)
Y(Ay, k, Co) = tan™ ! ————, (5.37)
(Ay o) Coh,
Pi(AL,k)=2A, {1+ L)(l — -1—> (5.38)
1 1s 1 Al /\% )
Co = K/r, = C/2nrZ, (5.39)

and c,, ¢, are two integration constants. The four arbitrary constants involved in the
complete solution arer,, K, ¢, and c,. If we setr, = 0 and treating p, as r, (5.33) reduces to
the result obtained in [10] for axially symmetric problems.

6. Rotationally symmetric initial-value problems. A wrinkly region is in general coup-
led with a taut region. A complete solution would then require the solutions to both
regions. While we have solved the equations exactly for the wrinkly region, no such explicit
solution is expected for the taut region where the full finite plane-stress equations must be
applied. To bring out some of the physical features of the solution obtained in the previous
section, we decided to consider the initial-value problem in detail.

Let the undeformed membrane surface M be defined by

M:R>R,. (6.1)
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We assume that after deformation the pseudo-deformed surface m is
mr>r,. 6.2)
For convenience, we scale all the length quantities by the radius r, and define
ro =r/r,, Ry = R/r,. (6.3)
It follows that
M: Ry >R, m:ro > 1. 6.4)
To complete the initial data, we let
AL = A, 0—-0O=¢,=0, at R,=R,r,. (6.5)

The quantity C, defined by (5.39) is treated as a parameter.
We shall restrict ourselves to the explicit solution obtained for a Mooney material. The
quantities p, and g, defined by (5.33) and (5.34) now become

Po — @0 = ColFi(Ay, k) — Fi(A, k)] + W(Ay, k, Co) — (A, k, Co), (6.7)
do— ¢o = CL [F2(Ay, k) = Fa(A, k)] + W(Ay, k, Co) — (A, k, Co), (6.8)
0o

where ¢, is the initial value of both p, and g, by (5.3) and (5.4). Egs. (5.16), (5.19), (5.21),
(5.20), (4.7), (4.15) and (4.6) become

ro = {1 4+ [(po — ¢0) — (do — Po)1*}''%, (6.9)
CO 2 1 2)1/2
v~ {l ) < ()} (610
1
Ay = C_o Py(Ay, K)[(Po — ¢0) — (@0 — ¢0)], (6.11)
n 1

OD—b =—b =" — b¢) — tan ™! . 6.12
o=@ — ¢o 2 + (g0 — ¢o) — tan (Po — bo) — (o — o) (6.12)

At =A,, A=A (6.13)

W, = A; — AS. (6.14)

The above quantities are computed as functions of A; with A and C, as parameters. The
data ¢, = @, is not needed in the computation, but only appears in the final interpretation
as a rigid body rotation.

Two sets of results are presented in Tables 2 and 3—Table 2: the initial data are k = 0.1,
A = 1.5 and C, = 4.0; the deformed principal coordinates are given in Fig. 3; Table 3: the
initial data are k = 0.1, A = 3.0 and C, = 11.0; the deformed and undeformed principal
coordinates are given in Fig. 4. For both cases the images of the wrinkles in the undeformed
state are almost straight. This fact can be observed from the relation

tan ¥ = [(A; Rg)> — 172 (6.15)

derived from (5.16) and (5.25). The P-curve would be straight if A; were constant (cf. (B.9)).
The variation of A, is rather small for the two cases calculated.
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TaBLE 2. Initial-value problem (k = 0.1, A = 1.5, C, = 4.0).

R, ro -0, A=A} A} W,
1.897 1000 0.000 1.500 0817  —0817
2000 1013 0.142 1.463 0827  —0.740
2.502 1346 0.638 1338 0865  —0487
3.002 1868 0857 1.265 0889  —0.344
3497 2427 0958 1218 0906  —0.256
3993 2994 1012 1.185 0919  —0.196
4504  3.576 1.044 1.160 0929  —0.152
4983 4117 1.064 1.142 0936  —0.122
5486 4681 1.077 1.127 0942  —0097
5983 5233 1.087 1115 0947  —0079
6435 5786 1.093 1.105 0951  —0064
6960 6308 1.098 1.097 0955  —0052
7447 6837 1.102 1.090 0958  —0.043
7928 1359 1.105 1.084 0961  —0035
8.484 7958 1.108 1078 0963  —0027
9017 8530 1.110 1.073 0966  —0.021
9499 9046  L111 1.069 0967  —0016

10040  9.624 1112 1.065 0969  —0012
10490 10110 1113 1.062 0971  —0.008
10990 10630 1114 1.059 0972 —0.005
11550 11.220 1115 1.056 0973  —0.002
12000 11640 1115 1.054 0.941 0.000

TaBLE 3. Initial-value problem (k = 0.1, A = 3.0,C, = 11.0)

R, ro Od-®, A, =A} A} W,
1872 1000  0.000 3.000 0577  —0.577
1900 1003  0.080 2.960 0.581  —0.537
1950 1027 0221 2.890 0588  —0.467
2000 1069 0349 2.824 0595  —0.403
2050 1127 0462 2.782 0602  —0345
2100 1197  0.561 2703 0608  —0.290
2150 1277 0.646 2.647 0615  —0.240
2200 1363 0718 2.59% 0621  —0.193
2250 1454 0.780 2.544 0627  —0.150
2300 1550  0.833 2.496 0633  —0.110
235 1649 0879 2.450 0639  —0072
2400 1748 0917 2.407 0645  —0038
2450 1848 0951 2.365 0650  —0.006
2459 1866 0957 2.359 0.651 0.000
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Appendix A: Equations in orthogonal curvilinear coordinates (cf. Table 1 for nota-
tion). Let[X ,] = [U, V]and [x,] = [u, v] be, respectively, the curvilinear coordinates in
the undeformed and deformed configurations. They are related to the Cartesian coordi-
nates [Z;] = [X, Y] and [z;] = [x, y] by the relations

Zi=2Z(X,, Xi=XZ)p), (A1)
zi=12X),  Xa = X,[z). (A2)
These relations satisfy the orthogonality conditions
Z4Z;3=0 for A#B, (A3)
2i,2,5=0 for a#b. (A4)
It follows from (2.11) that
Hy=(Z14Z )71 Ho=(ziaz0" ' (A5, A6)

With respect to the orthogonal curvilinear coordinates, the components F,, of the
pseudo-deformation-gradient tensor F may be obtained from the Cartesian components Fj;
via the transformation

FaA = Qai QAI F. (A7)

Using (3.3), (2.16) and the Q,-counterpart of (2.16), we obtain from (A7)

(Fud =2 2| o sum)
Hy 0u H, du
_[Fuu Fo|_|H.0U H, ov
B Fuy Fuv]= ﬂﬁ &60 (A8

H,oU H, oV
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The pseudo-Cauchy stress equations of equilibrium, (3.31), now become
Tav; = 0 Top + Weap Top + Wepp Toe = 0. (A9)
Using (2.20) and (2.21), we obtain

HyoH, . H,0
HuT;m.u+Hv7:w.v_2F ov H (T;w_’l:m)_o’ (AIO)
H, 6H H, 0H
anvv"'HuT:wu_zH du T +H v (T;m_’r;)v)zo (All)

To derive the Piola stress equations of equilibrium, (3.30), we begin with the transformation

PaA;A =040 Qu Pil,.l' (A12)
By repeatedly applying the chain rule of differentiation and (2.17), we finally arrive at

Pop;a=04Pas+ WepsaPap + Woae Fey Py (A13)
The two equations of equilibrium now become
HU PuU.U + HV PuV.V - —z—:f aal-lljv ul Z:’ a;:/U uV
R R P Fuar Pl + 3 Gt PP+ P Pud =0 (AL9
HyPyy+ HyPuyy— Z; aal-ll/u W g_:% Py
R Fu P+ FuuPu) + 1 B2 [Py P+ FuPud 0. (A1)

We conclude this appendix by specializing these equations to suit two special sets of

coordinates.
Polar coordinates ([ X ,] = [R, ©],[x,] = [r, 6)).

a1
F.r F,e 0R R 0O
F,= = , Al6
el = [FOR Foe] 3 r o (A16)
JR R 00O
1 1
Tr"r‘r +; 7:'0.0 + ; (T;‘r - T(;G) = O, (A17)
1 2
" Too0 + Tro., +; T,y =0, (A18)
1 1 1
PrR.R+EPr6.O+EPrR_;[FGRPGR'*'FOOPOO]=0’ (A19)
1 1 1
EP08,8+POR,R+—§P0R+;[FOOPr8+F0RPrR]=O- (A20)
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Principal coordinates ([X 4] = [P, Q], [x.] = [p, q]).

Hp Op Hq Op
F,p FQ] [A, o] H,0P H,dQ
F,J= p p p p , (A21)
[Fedl [FqP FqQ 0 A, H”@ EQ@
H, 0P H,d
P
T, T T, 0 A_1 0
2
[Ta]=[“’ ""]=[‘ ]= ; (A22)
"LT, T L0 Tl P2
A,
Pyl
T* T% T+ 0 A%
[T]—[ ]=[ ]= , (A23)
T Ta 0 T3 o P2
A%
U o
P, P P, 0 oA}
p.g=| e pQ:|=|:1 ]= , (A24)
[ A] [PqP PqQ 0 P, 0 a_U
OA% ]
T, H,oH
H,,a ﬁ‘f—a—"(Tz—Tl)=O, (A25)
oT,  H, 0H
—4"2(T, — T,) =0, A26
a H, aq(l 2) (A26)
0P, Hp0oHg ,  H,0H, Ho %
=1_Zr = p,= A27
»op He P 1T H, op H,00 *=0 (A27)
dP, Hg 0H, H, 8H, Hp dp
£ p =0 A28
290 ~ H@QPZHaHpaPl (A28)

Appendix B: Principal coordinates for rotationally symmetric problems. In terms of
the polar coordinates (R, ®), the most general representation for the principal coordinates
(P, Q) associated with a rotationally symmetric problem may be written as

R cot ¥
P=®+J. g%dp, (B1)
Re

R
Q=®—Lm—n-imdp, (B2)
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where W(R) is the angle between P and R (Fig. 2a) and R, is a constant reference radius. It
follows that

R . O0R .
6—P=Rsm‘l’cos‘l’, aQ——Rsm‘}‘cos\l‘,
a _ . 2 -6_9- — 2
op = Sin Y, 20~ cos® V. (B3)
Hp = _1 H, = 1 B4
P"Rsin¥ ¢  Rcos ¥ (B4)
Similar relations may be obtained for the deformed coordinates (r, ) and (p, g), viz.
" cot
p=0+f29_!@dp, (BS)
re p
"t
_o— J tanylo) , (B6)
e P
or . or .
$=rsm¢cos¢/, aq-——Rsmn//cos://,
0 ., 00 5
i sin® , 20 cos” i, (B7)
| 1
" rsiny’ " rcos Yy (B8)

where y(r) is the angle between p and r (Fig. 2b), and r, is a constant reference radius. If the
p-coordinate curves (¢ = constant curves) are straight lines, then (Fig. 2c)

re

tan Y(r) = (—rz i (B9)

| 2\1/2 -1 7
p=0+ iy (r*—r2)"* —cos o (B10)

1 Te
q =0 — cos . (B11)
Moreover,

1 2 2\1/2 1

H,=-, H = -r)"= (B12)




