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1. Introduction. In recent years there has developed an extensive literature on the

Fisher equation:

du/dt = d2u/dx2 +f(u). (DE)

An extensive bibliography may be found in Fife [1]. This equation, with appropriately

chosen /'s, may be used to describe populations of diploid individuals as well as certain

flame propagation phenoma. Much of this work concerns the temporal stability of traveling

wave solutions to (DE); for details see Fife and McLeod [2], Aronson and Weinberger [3],

and Bramson [4],

Our concern here is somewhat different. We are interested in the stability, or lack

thereof, of certain nonconstant equilibrium solutions to (DE). We shall confine our atten-

tion to what the geneticists refer to as the heterozygote inferior case, namely the situation

when/is given by

/(u) = u(u — a)(l — u) and 0 < a < j. (1.1)

These equilibrium solutions satisfy the time-independent version of (DE), namely the equa-

tion

—i + u(u — a)(l — u) = 0, x > 0 and 0 < a < j (DE)eq

and the boundary conditions

du
— (0) = 0 and lim u(x) = 0, (BC)
ax

and are given by

6 a e"112*

11 = MeqW= 7 ^ \ 1/2 7 2ea"2x ~ ^

(1+fl)(1 2(1+a)2 J l1+(l-[9a/2(l+a)2])1/2+e
2ai/2*

* Received October 9, 1980. This work was partially supported by the National Science Foundation under

Grant # MCS80-18531.



240 JAMES M. GREENBERG

Our basic result is that the variational operator

def d26

(.L<t>)(x) = ^y(x)- (3u2q(x) - 2(1 + a)weq(x) + a)(p(x) (Var)

acting on functions satisfying

^ (0) = 0 and lim = 0 (BC)
dx

has exactly one positive eigenvalue, call it f.ta, and an associated eigenfunction which is

positive. This result is not new. What is new, and our primary reason for writing this note,

are the estimates for the eigenvalue and the methodology we use to obtain these estimates.

A sequence of algebraic equations for the approximate eigenvalue is obtained and these

equations yield a sequence of approximate eigenvalues {n„a}™=1 which converge monot-

onically from below to the desired quantity. Such results are rare for infinite interval

problems.

Our program for the remainder of this paper is as follows. In Sec. 2 we establish some

qualitative results for the variational operator. These results establish the existence of a

unique positive eigenvalue for the variational operator. In Sec. 3 we develop and analyze

the tools to calculate this quantity. These are the new results.

2. Qualitative results. We start with some observations about the nonconstant equi-

librium solution to (DE) and (BC). It satisfies

d2u/dx2 + u(u — a)(l — u) = 0, x > 0, (DE)eq

^ (0) = 0 and lim u(x) = 0. (BC)
dx

The phase portrait for (DE)eq is shown in Fig. 1. The orbit associated with the equilibrium

solution is the curve connecting (u _ , 0) to (0, 0) lying in the halfspace ux < 0. It satisfies

2 , ^ def u2(3u2 - 4(1 + a)u + 6a) u2(u - u.)(u - u + )
= P(») =  g = 2 ' f2-1)

where

2(1 + a) ( / 9a \ 2(1 + a) ( I  9a

V 2(1 +a)2J< +~ 3 ( + v 2(1 + ay
(2.2)

Rather than analyze the boundary-value problem

d2(f)/dx2 - (3ulq{x) - 2(1 + a)ueq(x) + a)#x) = na(f>(x), x > 0, (DE)Var

(0) = 0 and lim <p(x) = 0 (BC)
dx X-* 00

directly, it is convenient to introduce the change of variable generated by the equilibrium

problem, namely

dn
x = —J73—, 0 < u < u_ . (2.3)

1 p'(n)
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U

Fig. 1.

If we then regard 0 as a function of u, it is a simple matter to show that the problem (DE)Var

and (BC) transforms into

P ^du\P ~du'~ir~ ^ = /Za^' 0 < u < u - , (DE)Var

lim p1/2(u_ — e) -j- (u_ — e) = 0 and lim <p(u) = 0. (BC)
du u -»o+£-0

Again,

/ ^ u2(3u2 — 4(1 + a)u + 6a) m , ,
p(u) =   , p( \u) = 2(u - (1 + a)u + au),

(2.4)
p<2)(u) = 2(3 u2 — 2(1 + a)u + a).

For each /j>0we let ^(u, p) and </>2(u, p) be the unique solutions of(DE)Var satisfying

the terminal conditions

lim 0!(u_ - e, w) = 0, lim p1/2(u_ - e) (u_ - e, p) = 1, (2.5)
£->0+ £->0+

lim 4>2(u- — e, p) = 1, lim p1/2(u_ — e) (u_ — e, p) = 0. (2.6)
£-0+ £-.0+ «u

When p = 0, ^ and </>2 may be calculated explicitly. The result is

i < m 2P (") i ( m 1 i p M<Pi («, 0 = -jij-—<p2(u, 0=1+ ——
P( '(«-) 2

(p(1)(u-)-p(1)(s))^7) (2.7)

for 0 < u < u_ . The function 02(u, 0) has one zero in (0, u_), call it u2(0), and at this point

(d02/du)(u2(O), 0) > 0. Moreover, lim„_0+ 02(u, 0) = — oo. For 0 < p and p small, the func-

tion </>2( • , p) is endowed with similar properties, namely a single zero w2(p) in(0, u_) with
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the property that (d(p2/du)(u2(p), u) > 0. The function /*—> u2(p) satisfies (du2/dp){p) < 0 and

<t>2( ' , obeys the limit relation lim„^0+ <p2(u, p) = — °°. These properties persist so long

as u2(p) > 0. This leads us to define p as the supremum of those numbers p such that

u2(p) > 0. Clearly, if p is finite, then pa is an eigenvalue of the variational operator with

eigenfunction </>2( •, p). That p is finite follows from the observation that for p >

— p<2)(u-)/2, (d(p2/du)(u, p) < 0 and cp2(u, p) > 1 for 0 < u < w_ . That there are no eigen-

values pa with p > p follows from the observation that the associated eigenfunction (j)2{ • ,

p) would have to satisfy

p<2'(m)02(m, p)<j>2(u, p)

p1,2(u)
0 = | W _1/;:7 du (2.8)

and thus have a zero in (0, u_), whereas the integral identity satisfied by (j)2( ■ , p), namely

4>2{u, p) = <t>2(u, p) + (n- p)(t>2(u, p)

1 4>2(s, p)<j>2(s, p) , 1
dt, (2.9)

_p1/2(t)(j)22(t, p) .

<t>2(s, ju)02(s, P) ds
p1/2(s)

and the fact that 02(u, p) > 0 for 0 < u < u_ lead to the contradictary conclusion that for

p> p the function (j>2(■, p) is positive on (0, u_].

3. Eigenvalue estimates. Our goal in this section is to find a solution of (DE)Var and

(BC) of the form:

<f> = Y, [U K* where p0 = 1 and X > 1. (3.1)
„=0 \k=o J

Such a solution clearly meets the boundary condition at u = 0. Moreover, if X > 1 may be
def

chosen so that px — lim„_oo pn satisfies

I PooI < 1, (3.2)

then the series for u~xcf)(u) will be convergent on the interval (—1/1 Pool, 1/1 Pool) w'th

1/| pqo I > M_ , and thus the function (p(-) will satisfy the boundary condition

lim p1/2(u_ — e)-j- (u_ — e) = 0 (BC)U_
£_0+ du

automatically.

Insertion of the representation (3.1) into the variational equation

I2(„\ A. (d<t>\ (P{ '(«)
V'^tu MHr' + H*

3u4 — 4(1 + a)u3 + 6au2) d2(p , , „ , , 2 . , d(f>
 6 lu2 ~ (1 + a)" + aM) ̂

- (3u2 -2(1 + a)u + (p + 1 )a)(j) = 0 (DE)Var
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yields the following relationships amongst the parameters A and p and the coefficients p„,

n = 1,2,

H = X2 - 1, (3.3)

Po — (3-4)0

2(1 + a\X - 3/2)(l + 2)

 mTTm)—• ,3-4)i

and for n > 2

i 2(1 + a) . 5.. . . (n 4- A — 4)(n + A + 1)
a(n + 2X)np„pn_ l -—'-(n + A - |)(n + A + 1 )pn_l +± ^= 0.

(3-4)„

The possible limits of the sequence {p„(A)}®=0 are the roots

(3'5)

of the polynomial equation

2 2(1 + a) _ _ 1
ap ~ —3— P + 2 = °- (3-4)*

These roots are related to the nonzero roots < u+ of p(u) (see (2.1) and (2.2)) by

p = — and p = —. (3.6)
u+ «_

The results of section 2 imply there is at most one X > 1 such thatlim,,^ pn{X) = p. Our

task is to show how to find such a X.

For N > 3 and X e (1,2] we let

KW = P, and (3.7)jy

3(n + X - 4) 1
Rn-lW-

4(1 + a\n + X - 5/2) / _ 3a n(n + 21) N

2(1 + a) (n + X — 5/2X" + A + 1) "U

2 < n < N. (3.7),

It is easily checked that the numbers {R*(X)}"= t satisfy (3.4)„ for indices n = 2, 3, ..., N. To

guarantee that (3.4)x is satisfied, we must show that for each N > 3 there is a number XN

such that

2(1 + aXA„ - 3/2XA* + 2)
Rdlx) 3«d+21„) ' (3-8)"

We shall discuss the solvability of (3.8)^ later, but first we record some properties of the

sequence «(A)}?=1.
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Lemma 3.1. For each N > 3 and X e(l, 2], the sequence {/CW}«=i satisfies

0 < RN2(X) < RN3(X) < - <Rn„-,(A) < RNN(X) = p, (3.9)

R?+\X) < R?(X), 2 < n < N. (3.10)

Proof. We start by examining the properties of the function

, def 3fo-4) 1
F(n, X, p) = ~77~.     ; 2 Tl \ (3-11)

4(1 + a\p - 5/2) (^ 3a P ~ X

2(1 + a) (pl - 3p/2 - 5/2)

when

4<„, IS1S2, ° < p < p - ( i^)(l - - ^~f). 0<«<i.

(3.12)
The sequence {R^(A)}*= {is generated by the recurrence relation

j(A) = F(n + X, X, R"(X)), 2 < n < N and R%(X) = p. (3.13)

The following facts are easily verified for parameters p, X, p, and a satisfying (3.12):

p2 — X2 . 9 a ap ,
0 < —7   rr < 1, 0<— -j < 1, 0<- -<|

f 2 3p 5^ 2(1 + a) (1 + a)

2|" 2 2/

3a (p2-X2) , 3a (p2 - /2) .
1 — ttt-;— i rr p > 1 — ~ ■—-7   7\ P > (3-14)

2(1 + a) / 2 3/i 5\ 2(1 + a) / 2 3p 5N
^2 2) V 2 2

The constraints (3.12) and (3.14)4 guarantee that

dF
0 < F(p, X, p) < F(p, X, p) and 0 < — (p, X, p) (3.15)

dp

for 4 < p, 1 < X < 2,0 < p < p, and 0 < a < When p = 4, F(4, X, p) = dF/dp(4, X, p) = 0.
We also have

(3J6)

2(1 + a)

To establish the veracity of (3.16) it suffices to show that

1 ,3J7)

and this in turn is true if and only if

aP- < . 1 ,2 = ^ + ), 72v (3.18)
1 + a 4 + 3p-X2 3(p + 1) + (1 - X2
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But (3.12) and (3.14) imply that

_at

1 + a " 3 3 " 4 + 3/j - I2
ie^<i and ^<-£±1

and thus (3.16) is true.

The next inequality establishes the monotonicity of F in p on 4 < p, 1 < X < 2,

0 < p < p, and 0 < a <

0<~(p, X, p). (3.19)
dp.

To establish (3.19) it suffices to show that

^ U -... w ..V ̂  > o.

(3.20)

2(p-i)2\ 2(1 + a)(p - f)(M + \)J 4(1 + a)\p — f/ dp \(p — |)(/i + 1)

Moreover, (3.20) is true if and only if

3 ap 3(p2 - A2) + (3p + 5 - 2X2)(p - 4)

2 4(1 + a) [_(/; - i)(p +1) (P- i)(p + 1)

(3p + 5 — 2X2)(p - 4) 3(p - 4)'
(p+ l)2 + l) J

and (3.21) is true if and only if

ap ^ 2 p3 — p2 — Sp — 5

> 0 (3.21)

1 + a 6p3 - 3p - (14 + lOX2)p - 40 + 25X2

=i+ 5^2 - m. -   (3 ̂
3 6p3-3p2-(\4 + \0X2)p - 40 + 25X2' v" '

But

aP „ a£ _ 1 « ^ ,2
< ~r~~— < z, 0<X2-l, 3 < 2p - 5,

1 + a 1 + a 3

6p3 - 3p2 - (14 - 10A2)^ - 40 + 25A2

= 3(p — X)(p + X)(p + 1) + (p — 4)(3p2 + (10 - 4X2)p + 3X2),

3p2 + (10 - 4/12)p + 3X2 > f|(A2 - 1)(5 - 21)(5 + 2k) > 0,

i + m- 5> > 1 (3 23)
3 6p3 - 3p2 - (14 + 10A2)p - 40 + 25X2 ~3 K ' '

and therefore (3.22) holds for all p, X, p, and a satisfying (3.12).

We now turn our attention to the inequality (3.9). Eq. (3.13) with n = N — 1 yields

Rnn.1(X) = F(N+ X, X,p) (3.24)

and (3.15) and (3.16) imply that 0 < R^-ii'1) < P• We now make the induction hypothesis

that

R%- i(X) < R?(X), k = n + 1,..., N and n > 3. (3.25)
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The inequalities (3.15), (3.19), and (3.25) imply that

0 < F(n + X, X, R?(X)) < F(n + 1 + X, X, RNn+,(/)) (3.26)

and (3.26) together with (3.13) yields

RNn^(X)<RNn(X) (3-27)

which is the induction hypothesis at stage n.

The inequality (3.10) follows from a similar argument and the observation that

K + 1W < P = KW- (3.28)

Lemma 3.2. For each integer N > 3, the equation (3.8)N has a solution in XN e (1, f). More-

over, the numbers XN satisfy XN < XN+1.

Proof. We start with the observation that solving (3.8)^ is equivalent to solving

(1 + «) U + 3*A - ii 31/.+ 3K2/+I*/-2|

RM - pM - —a ^ 16(1 + OKA + 2)(A + 1HA -1)- ,3'29)»

We treat the case where N = 3 first. The function

R3fn d:f 3(A - 1) 1 

' 4(1 + a)(X - |) (x ap 9(3 + 2k)

(1 + a) 2(X - m + 4)

satisfies lim,^ Rl(X) = 0 and R2(X) > 0 for 1 > 1, whereas p2() satisfies lim^! p2(X) =

(2 - a)(l - 2a)/6a(l + a) > 0, 0 < a < and limA_(3/2)- p2(X) = - co. Thus there is a

number X3 e (1, such that (3.29)3 holds. We now suppose that (3.29)k is solvable for

k = 3, 4,..., N and that the solutions satisfy Xk e (1, 4) and Xk < Xk + x, k = 3, 4,..., N — 1.
The inequality (3.10)2and Eq. (3.29)^, imply that p2(XN) = R2(Xn) > R2 +1 (XN) > 0 and this,

combined with limA_(3/2)- p2(X) = — oo, implies that (3.29)N + 1 has a solution XN + 1 e (1N,|).

This is the induction hypothesis at stage N and completes the proof.

If we now let {p„(X)}™=0 be the coefficient sequence defined by (3.4), then for each integer

N > 3

RN„(XN) = pn(XN), 1 < n < N. (3.30)

def

If we let Xx = lim^^oo XN, then (3.30) and the results of Lemma 3.1 imply that for n > 2

0 < P„{XJ < pn+ X(A J < p = —, (3.31)
- m +

and thus the function

#<)= 1 (3-32)
n=0 \k=0 J

is the eigenfunction of the variational operator which satisfies the boundary conditions

(BC) at u = 0 and u = u_ . Again, the function u~Aco<£(u) is analytic on( — u+ , u+).
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