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Abstract. Solutions of the electromagnetic wave equation are derived in systems con-

taining spherical interfaces when the source field is that of a magnetic or electric point

dipole. Piecewise constant electromagnetic parameters are assumed, but their values as well

as the frequency of the source field are arbitrary. The solutions are obtained in terms of

scalar and vector spherical harmonics. A sphere embedded in full space with a radial or

transverse source dipole is considered explicitly.

1. Introduction. The solution of the electromagnetic wave equation is a central pro-

blem in many fields of applied physics and engineering, e.g., in radio science and geophysics.

The solutions used in practice are often approximate ones. In calculations concerning radio

waves infinite conductivities and high frequency limits are used, while in geophysics a

quasistatic approximation is common practice. In scattering problems the incident field is

usually assumed to be a plane wave even though the field may actually be dipolar.

Attempts to find solutions of the wave equation in analytic form usually involve separ-

ation of variables and looking for the solution as an infinite series. If cartesian coordinates

are used, the general solution requires integration over the parameters of separation. The

spherical coordinate system, on the other hand, allows the field vectors to be expanded in

terms of a complete and discrete set of functions. The coefficients of the expansion can be

uniquely determined from the boundary conditions.

In this article we consider the behavior of spherical waves emitted by magnetic or

electric point dipoles in the presence of a spherical interface. We have in mind geophysical

applications, but our method of solution is independent of the specific properties of the

physical systems which our models represent. The fields are assumed to have harmonic time

dependences, but no restrictions are imposed on the frequency. The electromagnetic

properties of the medium are allowed to change only at the interfaces, but otherwise they

are arbitrary. We first outline the method of solution. Then we proceed to derive the true

wave solution for a spherical region embedded in full space.

2. Method of solution. The electromagnetic potentials are generally determined by the

density p(r, t) of free charge and the total current density j(r, t) through the coupled

differential equations

* Received October 15,1980.
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V2® + ^ (V * A) = - (1)
at e

d2A 8®
vA - W = ~W + v(^e + v " A), (2)

which are equivalent to Maxwell's equations for E and B. It is understood that j includes

terms due to magnetization or electric polarization acting as sources of the field. The

parameter n is the magnetic permeability, and e is the electric permittivity of the medium.

The field vectors can be directly obtained from <1> and A:

B = V x A, E=-V<D-^. (3,4)
at

The total current density is the sum of the primary current density jP, which is imposed on

the system by external means, and the conduction current density,

j = jP + ctE = jP - <t^V0> + (5)

The conductivity is here assumed to be a scalar. By imposing the Lorentz condition

V • A + fie — + na<5> = 0 (6)
dt

on the potentials O and A, they can be decoupled to obtain the wave equations

d2<t> dO p
V ® ~ ^ -TT ~ ^ "T" = - ~ (7)

^ A d\
V A - l* -^2 ~ iw = ~Mp ■ (8)

Assuming the time-dependence to be given by the factor exp( — icot), we obtain for the

space-dependent parts of the potentials the scalar and vector Helmholtz equations

V2<D + fc2<t> = - V2A + k2\ = -nip, (9, 10)
£

where the complex wave number k is defined by

k2 = n<x)(eco + icr). (11)

Thus we allow complex representations of the fields. The physical fields are conventionally

obtained by taking the real parts of the complex fields. Our problem is essentially to solve

Eq. (10) for the vector potential, from which B is directly obtained using Eq. (3). The electric

field is given by Maxwell's equation

ICO
E = -j V x B. (12)

rC

The scalar potential <1> is not needed but can, of course, be obtained from Eq. (6). In

particular, if there are no free charges and if V • A = 0, then O can be chosen to be

identically zero.
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The conditions to be satisfied by E and B throughout the boundary between any two

regions 1 and 2 are

n x (Ei - E2) = 0; n x ( — - — ) = 0, (13)
V/^i Hi J

where n is a vector normal to the boundary. If the boundary is spherical about the origin,

then we can simply take n = er, and the conditions are £ie = E2e, E 1(p = E2v, Hie = H2g,

and Hlv = H2<p.

The general solution of Eq. (10) is obtained by adding a particular solution to the

general solution As of the homogeneous equation. The latter can be given in terms of three

sets of vector functions,
oo n

As = I I {W(r) + D:M?(r) + G*Nnm(r)}, (14)
n = 0 m = — n

where V x L™ = 0, V • M™ = V • N™ = 0, and

N: = JvxM;; M" = jvxN™. (15)
k k

We note that As can always be chosen to have zero divergence, since Bs = V x As is

independent of L™. The vector functions can be constructed in many ways from solutions of

the scalar Helmholtz equation. In spherical coordinates the spherical harmonics

Y:(0, cp) = (- 1 r ' Ocos 9)eim*, (16)

where F™ is the associated Legendre function, and the spherical Bessel functions can be

used. We adopt the vector spherical harmonics

p: = er

* -- i^ H^vf1 T- ■) ■+ <

given by Morse and Feshbach [1], and the corresponding vector functions

K=fnP: + Jn(n+ 1)^B"

M™ = J fin + I);, C:,

N: = n(n + 1) ± P: + Jn(n + 1) + f^J B™, (18)

where j„ stands for any of the spherical Bessel functions of order n and the prime indicates

the derivative with respect to kr. The vector spherical harmonics for m = 0 (the zonal

harmonics) have no (^-dependence, and they have the special forms

P „° = erP„; B° = — ee —i=====; CB° = e„ (19)
V"(" + 1) V"(n +1)
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where Pn is the Legendre polynomial. Thus the solution of the homogeneous vector wave

equation can be written in spherical polar coordinates as

i±[ p _|_ V V' J 4mi' -I- Gmntn -I- n

0
A„ = Z 1 A°nf„ + G„° n(n + 1) gj Pn + £ X' jKfn + Gmn n(n + 1) g \

n(n + l)eimv

kr \kr JnJ) " ' L?n (2n + l)sin 9

+ (20)

m(2n +1)
-4— D —  1P

nJn n(n + 1) "

A = Y D° i P1 + y Y' ^ + ^ • ll/4m — 4- rm(la- + m^n + ^ iP"
S« r " r (2n + l)sin 6 {[ " kr+ n\kr Jn)j n(n + 1) "

fn — m + 1 „ n + m

where the prime on the summation indicates the omission of the terms with m = 0. The

terms with A™ are not actually needed, since we may choose V • As = 0. Finally, to obtain

the most general solution we must take a linear combination of two expressions like Eq.

(20) having linearly independent Bessel functions.

In the important case of azimuthal symmetry the general solution (20) reduces to the

terms with m = 0.

The particular solution of Eq. (10) reflects the nature of the primary potential AP, which

is the potential due to jP in a homogeneous space. We consider explicitly two kinds of

sources, a point magnetic dipole and a point current dipole /die"'™'. The vector

potential of a magnetic dipole at r0 in a space with wave number k0 is

/ ifep   1_

\ I r — r012 I r — r01

and that of a current dipole is

A, - £ ( 77^—2 ~ ———3 )ei,Io|r-ro'(r - r0) x (21)

,, I piko\r —rol

AP = ^-dl- (22)
4 7t I r — r01

By definition, \P satisfies Eq. (10) in the region where the dipole is situated; hence in this

region A = As + AP, while in all other regions A = As. We note that for the magnetic

dipole V • XP = 0, but for the current dipole V • \P ± 0.

To be able to determine the coefficients in the expression of As (Eq. (20)) we must expand

AP in terms of the spherical harmonics and Bessel functions. A procedure of finding the

expansions of Eq. (22) and Eq. (21) is given in the Appendix. In the following sections we

apply the general method outlined to specific problems.

3. Radial magnetic dipole and sphere. The geometry of the problem is shown in Fig. 1.

The spherical region has the wave number kl, and the rest of the space has the wave

number k0. The model is a rather elementary one, but represents the first step in the
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Z

Fig. 1. A radial magnetic dipole outside a sphere with electromagnetic parameters different from those of the

surroundings. The vector r represents the general point where the field is to be evaluated.

interpretation of e.g., double-dipole measurements. Without loss of generality we may

choose the origin to be at the center of the sphere and the dipole to lie on the polar axis, i.e.,

ro = (ro > 0, arbitrary) and md = (md, 0, arbitrary).

The expansion of the primary potential is

= e„ —  L (2n + K Pi,, (23)
Wo n = l

where the r-dependence is jn for r < r0 and hn for r > r0. The primary field and therefore the

total field has azimuthal symmetry (no dependence on cp except for the unit vectors). The

general solution As must be finite everywhere; hence inside the sphere its r-dependence

must be given by j„ alone. Outside the sphere and far from the source the field must behave

like an outgoing wave, since there is no other interface to scatter it. Therefore the r-

dependence is given by the spherical Bessel function of the third kind, h„. Thus the total

vector potentials in the two regions are

A„ - e, f D>, />; + e, 4^ £ (2n + DI,h,P'„ (24)
n= 1 47ir0 n=l

Ai=e,f/>;/,?;, (25)
n = 1

where the D-coefficients are to be determined from the boundary conditions at r = a. Since
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in this case E = icoA, one of the boundary conditions (13) is A0ip = Altp. Evaluating B and

applying the second boundary condition easily gives for the coefficients (jn(k0 a) = jn0, etc.)

D0 = Wo k0 md (2n + Ho.inoUnl + MA) ~ VljnlUnO + K aj'n0)

4?ir0 " mjAKo + k0ah'n0) - n0hn0(jnl + aj'nl)'
(26)

Di = ino k0 md + ndnoiKo + k0ah'„0) - nAoUro + k0afn0)

47tr0 " Hijni(h„0 + k0 ah'n0) - /i0 hn0(jnl +k1aj'„l)'

These expressions are enough to calculate the " homogeneous " part of the field at any

point in space to the accuracy desired. The primary field can, of course, be obtained from

the exact expression (21).

4. Transverse magnetic dipole and sphere. The model is the same as that of Fig. 1

except that now the dipole is perpendicular to the polar axis, md = (md, ti/2, 0). The field is

no longer azimuthally symmetric. The expansion of AP can be calculated as outlined in the

Appendix, and its spherical components can be written as

APr = iC0 r0 X (2n + 1 )/„ h„ P„\
V 1

sin co 00
^ = iC0 ——- E./AWoPUi - (2« + 1 )rPl„ + {n + l)r0^-i}. (27)

r sin tf i

COS CD 00
AP<P = —iC0 . Y.JnK{nrP1„+t - (2n + l)r0Pl„ + (n + 1 )rPl-t},

v sin u i

where C0 = n0 mJ4nro • We shall also need the 8- and cp- components of BP = V x AP,

cos cp 00
Bp0 = iCo —— E K{n(2j„ + k0rj'n)P1n + 1

r sin 6 i

-k0r0(2n + 1 ]j'nPln + (n + l)(2j„ + /c0r/;,)/,„1_1},

BP<p = -iC0 Z K{nr0(njn ~jn ~ rj'n)Pln +, (28)

+ r(2n + 1)(2jn + k0 rj'n)Pl„ - r0(n + 1 )(nj„ + 2jn + korj'JP^^.

Since the ^-dependence is linear in cos (p or sin cp, it is clear that it is enough to take the

terms with m = 1 in the expansion of the homogeneous field, Eq. (20). Furthermore, instead

of the factor exp(/(p) we must take i sin cp in Asr and As0, and cos cp in AS(t> to be able to

satisfy the boundary conditions. Thus we arrive at the following expressions:

= i Z n(n + 1)G„ ̂  Pln sin q>,

''sf ? {(£+J")STT ~ <"+ + ,29>

" IS? ? {»■ iT+T <»2p;" " <"+ + (t+'-h 4
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CO '

K = k X n(n + 1 )Dn ± P\ cos q>,

B- ="I {fe+J-) srrr <"2p- -,n+1)!p-'-'} + «■ G-4 (30)

B =_jfeSin^L Gi f„2ol , „2D1 1 , (L
s« sin

The boundary conditions give a set of equations for the coefficients which may be solved

recursively. All the first-order coefficients vanish, and the second-order coefficients are

ijiAK fohij\o - h2(2j2 + k0aj'2)} + fcj — I j2- +j'2 )(ah2j20 - r0/i,710)
o 5C0 ^ \M 'DV = -

koj2i(-r^ + h'2j-ki—h20(-~-+j'2
\k0a ) Hi \kia

M P~ + h2 )(ah2j20 - r0hj10) + iVi20{fc0r0/iii'io - h2(2j2 + /c0a/2)}
Di = _ \«ofl /  

3a , ■ ( h2 , , VO , ( jl

(31)

koj211 , + h'2 I — /ci /i2o( . +72
\K0a / /i! v^! a

^2 — — p j^l ^ j2l(a^ljl0 — r0^2j20)
5aF I

- - ( r1- + j'2 ) {a/ii(2j'i + fc0 fl/i) - r0 h2(4j2 + fe0 a/2)}

G2 = — {koh2o(ahljU) — r0h2j20)

i ( h2
- - I 7— + h'2 ) {ahiilji + k0 aj\) - r0 h2(4j2 + k0 a/2)}},

a \k0a )

where

F = K — + ^2) - k0h20(-^-+j'2
Ml \k0a J \kxa

The electromagnetic field due to a general magnetic dipole in the presence of a sphere

can, of course, be calculated by resolving the dipole into a radial and a transverse compo-

nent.

5. Radial current dipole and sphere. The current dipole/dl = —Id lez = — Ml(er cos 0

— e0 sin 6) is placed inside the sphere at r0 = (r0, 0, arbitrary), as shown in Fig. 2. The

primary field has azimuthal symmetry, and its expansion is obtained from Eqs. (22) and

(A2),
00

Ap = C:(er cos 9 - e„ sin 9) £ (2n + 1 ]jn hn P„, (32)
0
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Fig. 2. A radial current dipole inside a sphere.

where /ct Id 1/4tt. Since V • AP ̂  0, we must use Eq. (12) to obtain EP,

BP = evClt(2n+lVn~Pln, (33)
i r

l", . 00 L . 00 I.'

Ep = eracil (2" + !)"(" + l)/n "7 Pn ~ e» 77 Q £(2n + l)/„ — P*. (34)
Ki 1 r *1 1 r

The homogeneous field is evidently

As = e, | G„ n(n + 1) £ />„ - e„ £ G„ J Pl„, (35)

00

Bs = %YJkGnjnPl (36)
0

Es = er ico | G„ n(n + 1) ̂  P„ - ee to | G„ + f}) Pi (37)

Outside the sphere we must use hn instead of j„ in Bs and Es. The boundary conditions

for Hv and Ee at r = a yield

k i ^— — ( j" + 7
i^Idi _ Unl kl a a \k,a 1

G» = —71— (2" + ro) T \ 77 

koKo(^+j'^- — kijnl(-J1- + h'ri
\ki a J Hi \k0a , ^

1 TJ1 K0 "nO , , + "n
i/ii fci Idl , , feifl ^ a \fco«

G„ = ; (2n + lj/^/cj r0)

" lir+V--kMir
ki a J Hi \k0a
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Using these coefficients and the expansions (36) and (37) the field vectors can be calcu-

lated everywhere. In applications the quantity actually measured is often the potential

difference between two points 1 and 2, i.e., the line integral of E from 1 to 2. Such an

integration can be done numerically.

The field due to a transverse current dipole can be calculated in a way analogous to the

treatment of Sect. 4.

6. Discussion. The solutions of the vector wave equation derived above are given as

series expansions in spherical wave functions. Otherwise they are analytical and exact.

Their practical usefulness depends, of course, on the rate of convergence, which in turn

depends on where the field is evaluated and on the geometry and parameters of the

particular problem. The solutions have certain advantages as well as restrictions. They are

quite general with respect to the frequency, and hence they should be as applicable at the

very low frequencies used in geophysical measurements as at radio frequencies. The materi-

al parameters are assumed to be piecewise constant scalar quantities—a conventional

approach in electromagnetic field problems. The wave equations (9) and (10) remain valid

even if e and a (but not n) depend on r continuously. However, the solution of Eq. (10) can

be given as in Eq. (20) only for a constant k. The confinement to dipolar source fields is not

a serious one, since higher multipoles are usually not used in practice, and the plane wave is

actually easier to treat than the dipolar field.

The most severe limitation from the point of view of modelling is the requirement of

spherical boundaries. Our method of solution can be used also in a problem having several

spheres. However, if they are not concentric, use must be made of the transformation

formulas of the scalar and vector spherical harmonics in a translation of the origin [2],

Mixing boundaries having altogether different characters, e.g., planes with spheres or cylin-

ders, presents formidable difficulties. The mathematical tools needed to carry out the

coordinate transformations in a form required to satisfy the boundary conditions are yet to

be developed.
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Appendix: Expansion of dipolar fields in terms of spherical harmonics and Bessel func-

tions. Let a harmonically oscillating point dipole be located at r0 = (r0, 90, (p0) in a

homogeneous space having the wave number k0. The field of the dipole at r = (r, 9, cp) can

be expressed with the help of the well-known expansion

^ = 4i r<" m
n — 0 m = - jJKfoMkor), r > r0

where and hn are the nth-order spherical Bessel functions of the first and third kind,

respectively. Eq. (Al) represents an outgoing spherical wave emitted by the dipole. In the
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following we assume that the dipole lies on the polar axis, i.e.,0o = 0- Then Eq (Al) reduces

to

g'fcolr-r

= ik0 £ (2m + l)j„hnPn (A2)
I r — r0 I 0

and

r — r0 = ex r sin 9 cos cp + ey r sin 9 sin <p + ez(r cos 9 — r0)

= er(r - r0 cos 9) + e0 r0 sin 9. (A3)

Noting that

_ j_ _a_ = ^koir roi / iko _ 1

7T0 d cos 9 |r - r0| \|r-r0|2 | r — r013

differentiating term by term, and using the properties of the Legendre functions

dPm
sin2 9 -—= (n + l)cos 9 P: - (n - m + 1 )P™+15 (A5)

a cos 9

(2n + l)cos 9 P™ = (n — m + 1 )P™+, + (n + m)P™_ „ (A6)

(2n + l)sin 9P™ = P^l - P™~ i

= (n + m)(n + m - l)P™~? - (n — m + l)(n - m + 2)P™+i, (A7)

we obtain

'»•«■ <as>

Let the moment of a magnetic dipole be m,, = (md, 9d, 0), since we can choose (pd = 0

without loss of generality. Then

(r — r0) x md = — er md r0 sin 9d sin 9 sin <p + ee md sin 9^r — r0 cos 0)sin <p

+ md sin 9d{r cos 9 — r0)cos <p — eipmdr cos 9d sin 9. (A9)

The expansion of the potential of a magnetic dipole is given by the product of Eq. (A8)

and Eq. (A9). That of an electric dipole can be obtained with the help of Eq. (A2).

The expansions of the dipolar fields can be written compactly in terms of the vector

functions L™, M™ and N™ (see Eq. (18)). For m = 0 and m = 1 these functions are

L °n=eTj'nPn-eeJfrPl

M °n=evjnPl (A10)

Nn° = ern(n+1) ^ P„ - e9(^
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L1 = e /" PleiQ +   J—
n rJn n (2n + l)sin 9 kr

• {ee{n2Pln + l ~(n+ 1 )2Pln_t} + e„i(2n + l)Pjy,

Ml = — +Jh - {eei(2n + 1 )P„1 - e,{«2P;+1 - (n + l^P.1^}}*", (All)

n • = eMn+l)kpy. + ̂ -^(k+l

• Mn2Pln + 1 - (n + ifPl-J + e„i(2n + 1 )Pj}e*.

Comparing the vector potential of a radial magnetic dipole (see Eq. (23)) and Eq. (A 10)

we see immediately that

iHoko, ,w m,0 /A,„,
AP = — L (2n + l)hn M„. (A 12)

4nr0 r

To obtain the expansion of the potential of a transverse dipole, we replace cos q> and

i sin <p in Eq. (27) with el(p. To get the r-component right, the expansion must obviously be

00 00 2n + 1

AP = lM„ Ml + Co r0 k0 £ ——- hn N.1, (A 13)
1 1 nKn + 1J

since V • AP = 0 and the L-functions are consequently not needed. To match the 6-

components we must have

I iMJ.Pl + C0r0k0 £ hn(j^ Pl+1 - Pl-i^j

00 7

= Co Z K - {ronPl+i + r0(n + l)Pl-t - (2n + l)rP,J}. (A14)
1 r

Using the properties of the Bessel functions

(2n + l)j'n = «y„-i — (h + 1 )/„+i, (2n + l)Jj^=jn_1 +jn+1 (A15)

and collecting the coefficients of j„ Pi, we obtain after some algebra

Mn=XV +i^n ~ k°r° h"+^' (Ai6)

This coefficient also gives the correct (^-component. Thus the expansion of the potential

of a transverse magnetic dipole is

AP = £ C^+1)1) + Vhn~ k0r0hn + 1}Ml + k0r0hnNln}. (A17)

The potential of a current dipole can also be expanded. For example, the potential of a

radial dipole, Eq. (32), can be written as

A P = erCi Z;A{(" + 1)^ + 1 + "Pn-1} - eeCi fj„ hn(Pln+l - (A18)
0 0
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Using Eq. (A 15) it is easy to show that

(n + 1)L°+1 + N„°+1 = er(n + 1 )jnPn+l - eej„Pln + l

- nL°_, + N„°_ t = er nj„ t + tejn P\.,; (A19)

hence

Ap = Cx £ {(n + 1)L°+! + N„°+1} - C, £ (nL„°_, - N„°_,)
0 1

oo oo

= Cj X « + Nn°) - C, Z {(« + 1)L° - N°} (A20)
0 0

oo

= Cx Z (2N° - L„°).
o

These expansions in terms of the vector functions are particularly useful when coordi-

nate transformations are needed in order to satisfy the boundary conditions.


