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Abstract. The Hankel transform is used to obtain a complete solution for the dynamic

stresses and displacements around a flat annular surface of a crack embedded in an infinite

elastic solid, which is excited by normal compression waves. The singular stresses near the

crack tips are obtained in closed elementary forms, while the magnitude of these stresses,

governed by the dynamic stress-intensity factors, is calculated numerically from a singular

integral equation of the first kind. The variations of the dynamic stress-intensity factors

with the normalized frequency for the ratio of the inner radius to the outer one and

Poisson's ratio are shown graphically.

1. Introduction. Since the dynamic stress-intensity factor approach of linear elastic

fracture mechanics has proven to be very successful in predicting the unstable fracture of

brittle solids, a good many studies of elastodynamic crack problems have been investigated

[1]. Sih and Loeber [2] developed a method for examining the diffraction of torsional

waves by a penny-shaped crack. The method of solution used has also been extended by Sih

and Loeber [3] to solve the problem of scattering of plane-harmonic compressional and

radial shear waves at a penny-shaped crack. They solved the associated integral equation

numerically and obtained results which are valid at low and intermediate frequencies. Mai

[4] has extended the same problems to yield information on the near field as well as the far

field at any given finite frequency. These solutions were limited to two-part mixed

boundary-value problems such that there was no significant difficulty involved in de-

termining the total field at all interesting points both near to and far from the crack. On the

other hand, the problem concerning a flat annular crack in an infinite elastic solid is a

three-part mixed boundary-value problem, which is of considerable theoretical interest and

has innumerable applications in the field of fracture mechanics as well as electromagnetic

and acoustic theory. Jain and Kanwal [5] showed that the triple integral equations can be

reduced to a solution of the Fredholm integral equation, and tried to solve the equation by

an iterative procedure.

In a previous paper [6] we reduced the problem of diffraction of normally incident

torsional waves by a flat annular crack in an elastic solid to that of finding the solution of

an infinite system of simultaneous equations, and obtained numerical results for the dyna-

mic stress-intensity factors at any given finite frequency. In this paper, the discussion is

further extended to the diffraction of normal compression waves by a flat annular crack in
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an elastic solid. The dynamic stresses induced by the incident waves are such that the

diffraction problem is axisymmetric in character. The two surfaces of the crack are assumed

to be separated by a small distance so that during small deformation of the solid, the faces

do not come into contact. Hankel transform techniques and a different method analogous

to that used by Erdogan [7] were adopted in the present analysis to reduce the three-part

mixed boundary value problem to a singular integral equation of the first kind. Using a

modification of the numerical technique described in the paper by Erdogan, Gupta, and

Cook [8], we reduced the solution of the singular integral equation to that of an infinite

system of simultaneous equations. The convergence of the kernel of the integral equation

can be improved by means of a contour integration on the Riemann surface. Numerical

calculations are carried out and the results obtained are discussed in connection with the

concept of dynamic stress-intensity factor, a parameter controlling the stability or insta-

bility behavior of cracks in the theory of brittle fracture. The method of solution is such that

numerical results can be obtained at any desired finite frequency.

2. Statement of the problem. Consider a cylindrical polar coordinate system (r, 9, z)

at the center of the crack as shown in Fig. 1, so that the flat annular crack is located at

z = 0, a < r < b, where a and b are inner and outer radii of the crack, respectively. The

displacement components in r and z directions are ur and uz, while the component ue is

absent because the problem is axially symmetric. For the same reason, derivatives with

respect to 6 are zero. Under these conditions, the displacement components may be ex-

pressed in terms of two wave potentials c/>(r, z, t) and i//(r, z, t), where t is the time, by the

following relationships:

«r = <t>,r~ «S = 0, Uz = (j)z + ^r+- (1)
r

In Eqs. (1), a comma denotes partial differentiation with respect to coordinates. Substitut-

ing Eqs. (1) into Hooke's law for a homogeneous and isotropic elastic solid yields the

following expressions for the stresses:

<rrr = 2/i(0ir - il/Jir + AV2</>, aee = 2/i - {4>iT - itpj + AV2</>,

azr = n (24>,r — <A,z),z + ( <A,r + ^ (2)

azz = 2/i I </>iZ + \p r + — ) + ^V20, aze — <JrQ — 0.

SP wave

Fig. 1. Normal compression waves impinging a flat annular crack.
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The symbols A and p stand for the Lame constants of the elastic material and m is defined as

the ratio between the shear wave velocity c2 and the dilatational wave velocity ct, i.e.

m - c2/cly where

Ci = [(A + 2 ju)/p]1/2, c2 = (ji/p)1'2 (3)

with p being the mass density of the elastic solid. Moreover, in Eqs. (2), V2 represents the

Laplacian operator in variables r and z.

By making use of Eqs. (2), the equations of motion of elasticity yield the following

equations governing the potential (j) and i//:

1 1 1 1
<P,rr + ~ <t>,r + <t>,2z = ~2 </>,». frr + ~ $.r ~ ~2 + fzz = ~2 ^.11 ■ (4)

r Ci TV C 2

An incident normal compression wave can be expressed in the form:

w'1' = 0, u(z° = W0 exp -ip[t+i (5)

in which W0 is the amplitude of the incident wave, p is the circular frequency, and

a superscript / stands for the incident component. In what follows, the time factor

exp[ — ipt] will be omitted from all the field quantities.

The scattered portion of the solution is determined from the free crack surface condition

and the symmetry property of the stress distribution, which require

<r[s)2(r, 0) = -2pP10; a < r < b, u[3)(r, 0) = 0; r < a, b < r, (6)

0) = 0; r < oo, (7)

where Pl0 = - i{^o/^)iP/ci) and superscript (s) stands for a scattered component.

3. Solution procedure. Application of the Hankel transform to Eqs. (4) yields

r\r, z) = a A j (a)J0(ar)exp[ - v j (a)z] da; z > 0,

i/*(s)(r, z) = j" ocA2(oi)Ji(ar)e\p[ — v2(a)z] da; z > 0, (8)

in which

v„(a) = {a2 - (p/cf }1/2 = -i{(p/cn)2 - a2}1/2; n = 1, 2 (9)

and J0 and J ^ are, respectively, the zero and first-order Bessel functions of the first kind.

The branch cuts of the function v„(a) are discussed in Noble's book [9] and are not

elaborated here. The unknown functions Ax(a) and A2(a) in Eqs. (8) can be found from a

system of integral equations derived from the boundary conditions.

The stress state caused by the scattering of normal compression waves from a flat

annular crack is said to be symmetric if the shear stress vanishes on the plane z = 0 in

which the crack is located. From the boundary conditions stated in Eqs. (6) and (7), the

problem can be reduced to the solution of the triple integral equations:
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c2
Jo

a2A{a)J0(ar) da aG(tx)J 0(ar) da + P 10 (1 — m ); a < r < b,

00

aA(a)J0(ar) da = 0; 0 < r < a, b < r, (10)
o

in which the unknown A(a) is related to a) and A2(a) as follows:

AM = —7-; {2(c2 a/p)2 - \}A(a\ AM = 2a(c2/p)2A(a) (11)
viW

and G(a) is a known function given by

G(a) = (1 - m2)a + ( (g) li*2 ~ 2ip/c2)2}2 ~ «2Vi(a)v2(a)]. (12)

The set of triple integral equations (10) may be solved using a different method ana-

logous to that used by Erdogan [7] and the result is

f"
aA(a) = — t/y(t)^i(at) dt. (13)

In Eq. (13), the function t](t) is governed by the following singular integral equation of the

first kind:

1b

n(0
1 1 ,

—: + -r log
r — t 2 r

2(t - r)

(1 - a0)b
+ M(r, t) + S(r, t) dt = P 10/(1 - m2) (14)

satisfying the single-valuedness condition:

b

r](t) dt = 0. (15)

The Fredholm kernels M(r, t) and S(r, t) are given

' 2(t - r)
M(r, t) = — E(r/t) + E(r/'] 1 - y log

r + t r — t 2 r

1   E(r/t) - 1 2Kit/r) 1,
E(t/r) + —     — log

(1 - a0)b

2(t - r)

r < t,

r + t r — t r 2 r

Tit

r > t, (16)

S(r, t) =
1 - m2

(1 - a0)b ''

G(a)J0(ar)J M) da. (17)

Here, K and E are the complete elliptic integrals of the first and second kind, respectively,

and a0 — a/b is the radius ratio of the annular crack.

We note that the kernel function S(r, t) (Eq. (17)) is an infinite integral which has a

rather slow rate of convergence. To evaluate the integral in Eq. (17), we consider the

contour integrals:

/C1 = O L(£, vlf -v2)J^r)H\l\^t) dt; r < t.
Jci

lC2 = | UL vl5 v2)Jo(M2XZt) dt; r < U (18)
JC 2
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i r.' i r.i

-iIt/~\rij±» 1
TTrVT^ryiRe!
-i t: -i r. f.j

Fro. 2. Contours of integration for integrals in Eqs. (18).

where

L(£, vl5 v2) = 5 + 2 2 [R2 - i(p/C2)2}2 - £2viv2]. (19)
VP/^2) v2

In Eqs. (18) Ct and C2 stand for the contours as illustrated in Fig. 2, and H[l) and H(2) are

respectively the first-order Hankel functions of the first and second kind. Letting

yM) = {e -ip/cn)2}112, y'n(0 = {(p/cn)2-e}1'2; «= 1,2, (20)

the value of v on the real £-axis is defined as illustrated in Fig. 2. Since/C1 + IC2 — 0, we get

the relation

UZ, v1; v2)J^t)Jo^r) d£
pic 2

Plci

0

'p/c 1

Plc 2

2- i
71

2{£2 — (p/c2)2} 2^y2

y'i(p/c2)2 (p/c2)2_
Ntft) + (1 - m2)&M{r) ] Jo(^) ^i«t)]] Jo(

2{euT/Y+(i - H +^ «

m, i{(P/Cl)2 + ey>2, i{(P/c2)2 + ey^Kmio^r) (21)
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Therefore S(r, t) for r < t can be finally written as

S(r, t) = int(p/c2)2 f   ^-775 [M2m2a2 - l)2J0(par/c1)//(11)(pat/c1)
Jo I1 — a J

+ 2(1 — a2)a2J0(par/c2)H(i '(pat/c2)] da

'(2m2a2 + l)2
2«(p/c2)2 — 2m3a2(l + m2a2)112 - m2(l — m2)a

2(1 + a2)1/2

x K1(paf/c1)/0(par/c1) da; r < t. (22)

S(r, t) for r > t can be also found:

S(r, t) = int(p/c2)2

ri 1
[j(2m2a2 - ifH^iptxr/c^Jiipat/Ci)

Jo (1 — a2)1'2

+ 2(1 — oc2)a2Hi01)(potr/c2)J 1(poct/c2)] da

(2m2a2 + l)2
+ 2 t(p/c2) r — 2m3a2(l + m2 a2)1'2

2(1 + a2)1'2

— m2(l — m2)a]11(pat/c1)K0(par/c1) da; r > t. (23)

In Eqs. (21H23), I0,1UK0 and represent the usual modified Bessel functions.

For the sake of convenience, we perform the following non-dimensionalization:

P = bp/c2, R = r/b = i(l - a0)s + i(l + a0)> T = t/b = i(l - a0)r + Kl + a0);

<t>{x) = rlm-m2)/Pio. (24)

The revised singular integral equation of the first kind (14) and single-valuedness condition

(15) are shown to be

I ^ t + 1 4 R° log'T ~ s' + 2 ̂  M°^' ̂  + 2° S°^s' dr = l' (25)

1

<D(t) dx = 0, (26)
-1

in which the Fredholm kernels M0(s, z) and S0(s, r) are

M0(s, z) = — E{R/T) + log | t — s |; s < z
R + T R-T 2 R

- —l £(r/R)+,®s , >, (27)K + T v ' ' R — T R 2R

kTP2
S0(s, t) =

1 - m2
' 1 {^2(1 - a2)1^2 Jo(PaRm)H{l)(p*Tm)

+ 2a2(l - a2)ll2J0(PaR)H[1\PaT) > da
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2

n Jo

(2m2a2 + l)2 3 , , 2 1/2

2(1 + tt2}i/2 - 2w ad + w a ) '

m2( 1 — m2)a| K1(PaTm)I0(PaRm) da

1 r (2m2 - l)2

S < T

nTP2

1 - m 2(1 - a2)1'2
//o \PaRm)J j (Pa Tm)

+ 2a2(l - a2)1/2H(01)(PaR)J1(PaT)| da

2 f°° f(2m2a2 + l)2 3 2 2 2 1/2+ ;J„ { 2,1 + W

— m2(l — m2)a}1l(PaTm)K0(P<xRm) da s > t. (28)

The solution of the singular integral equation (25) subject to the additional condition

(26) can be obtained by means of the Gauss-Chebyshev integration formula. Let us expand

the unknown density 3>(t) in the following series:

<D(t) =
(1 - T2)

2\l/2 Ao + E An T„(t)
n = 1

(29)

where T„(t) are Chebyshev polynomials of the first kind and An(n = 0, 1,2,...) are unknown

constants. With Eq. (29), it follows that the condition (26) gives A0 = 0. Substituting

Eq. (29) into Eq. (25) and taking account of the orthogonality relations of Chebyshev

polynomials [6], we finally have the following system of linear algebraic equations for the

unknown constants:

00

Z [An + ykn + QJA = "At (30)
n = 1

where 5k„ is the Kronecker delta and

Ikn = 12nn° | Uk~1^1 ~ s2)12 ^ dS'

Ckn = - 1 2 ° I Vk-M\ - S2)1/2 ds
n J-i

1 1

(1 — T2)1'2

x {M0(s, t) + S0(s, t)} dr. (31)

In Eqs. (31), U„(s) are Chebyshev polynomials of the second kind, and all integrals are of

Gauss-Chebyshev type and may easily be evaluated by using proper quadrature formulas.

4. Dynamic stress distribution around the crack. From the fracture mechanics point

of view, the desired information is the stress-intensity factor which measures the load

transmission of the crack. Mathematically this parameter is defined as the amplitude of the

stress singularity at the tip of the crack. Thus the dynamic stress-intensity factor may be

obtained by determining the stress expressions and then expanding them asymptotically

around the crack tip.
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Combining Eqs. (2), (8), (11), and (13), we will obtain the singular portion of the stress

field by expanding the integral expressions asymptotically for large values of a and then

carrying out the integration. By using the theorem [10] on the behavior of Cauchy integral

near the ends of the path of integration and after some manipulations, we obtain the

dynamic singular stress representations as

~ (27r Sin(0"/2,{1 - cos(0a/2)cos(30»/2)}

+ ~2 cos(0„/2){l + sin(0fc/2)sin(30„/2)},
V-Pb)

ffrz ~ nK\"ii2 sin(0a/2)cos(0a/2)sin(30„/2) + sin(Oi,/2)cos(0ft/2)cos(30il/2),
\^Pa)

+ <7$ + <7<s> ~ 2(1 + v) -%72 sin(0a/2) + K'i,2 cos(0b/2)L(2 pj1" w (2 p„Y

^rr - ~ n^'i/2 sin(0a/2){ 1 - 2v + cos(0fl/2)cos(30a/2)}
\^Pa)

+ ^172 cos(0fc/2){ 1 - 2v - sin(06/2)sin(30i>/2)}, (32)

where Kla and Klb are the dynamic stress-intensity factors at the inner and the outer tips of

the crack, respectively, and are defined by the following equations:

Kla = 2,Pi0b^y £(-l)M„,

Klb= -2nP10bi,2(^—^y t*n- (33)

In Eqs. (32), (pa, 6a) and (pb, 6b) are the polar coordinates defined as

Pa = {(r — a)2 +z2}1/2, 0a = tan-'l^-^J,

Pb= {(r - b)2 + z2}112, 6b = tan (34)

5. Numerical results and discussion. Numerical results have been calculated for the

dynamic stress-intensity factor as a function of the normalized frequency P with various

ratios of a0. The infinite system of simultaneous equations (30) is solved by an approximate

method in which only the first N equations containing only the first N unknowns are taken.

In the calculated results, it is found that the value of N needed to achieve a particular level

of accuracy is strongly dependent on a0 and the truncation after N = 16, 12, 10, 8 and 6

gives practically adequate results at any desired finite frequency for a0 = 0.1, 0.3, 0.5, 0.7

and 0.9, respectively. As the wavelength of the incident compressional wave becomes very

long, P approaches zero and the dynamic stress-intensity factor Klb at the outer tip of the

crack in the case of a0 = 0 simplifies to the static solution Kls = (4/7i)pPl0b112 ■ Kis de-

notes the stress-intensity factor for the infinite solid with a penny-shaped crack of radius b

and the dynamic stress-intensity factors are normalized by Kls.
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0.0 1.0 20 3.0 40 5.0
P

Fig. 3. Dynamic stress-intensity factors at the inner tip of the crack versus P.

Graphs of | Kla/Kls \ plotted against P for a0 = 0.1, 0.3,0.5,0.7,0.9 and a Poisson's ratio

of 0.25 are shown in Fig. 3. | Kla/Kls\ becomes very large as a0—> 0 and tends to zero as

a0—> 1. The same kind of results for | /C ls | are shown in Fig. 4, in which the dashed

curve is the result for the case of penny-shaped crack by Mai [4], | /Cn,//Cls | tends to the

result for a penny-shaped crack as a0 —> 0 and tends to zero as a0 —► 1. When a0 tends to 1.0,

both \KiJKu \ and | Kl b/K,s| approach to the normalized dynamic stress-intensity factor

for a Griffith crack of length b — a m the plane strain state. As P approaches zero,

\KJKU\ and |X16/iCls| tend to the static solutions for the annular crack, respectively.

0.0 1.0 2.0 3.0 AO 5.0
P

Fig. 4. Dynamic stress-intensity factors at the outer tip of the crack versus P.
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0.0 1.0 20 3.0 4.0 5.0
P

Fig. 5. Effect of Poisson's ratio onKla and Kn factors fora0 = 0.5.

Similar results in the static case have been already obtained by Shibuya, Nakahara, and

Koizumi [11]. Some of their results are not in agreement with the results obtained here.

This may have been caused by the computational difficulties in the evaluation of the

improper integrals. The results of good accuracy are obtained in the present case. Numeri-

cal results for the case a0 = 0.1, 0.3,0.5, 0.7,0.9 and v = 0.25 show that | Kla/K ls | is always

larger than | Klb/Kis | in the range of 0 < P < 4.6. It follows from this that the form of the

annular crack is unstable for the range. And then the development of the crack for a

monotonic increase of the vibrating load P10 applied at infinity starts at points of the inner

tip and the annular crack transforms into a penny-shaped crack of radius b. The maximum

value of the dynamic stress-intensity factor for a penny-shaped crack exceeds the corre-

sponding static value by 48% [4], From the present numerical results, the maximum values

of \ Kia[Kls \ and | Klb/Kls\ for a0 = 0.1 and v = 0.25 are 75% and 41% larger than the

static values, respectively. Unlike the case of the torsional problem [6], the maximum value

of \Kla/Ku\ at a0 = 0.1, 0.3, 0.5, 0.7, 0.9 is always larger than that of \Klh/Kis\, and is
produced at higher frequencies than that except a0 = 0.5. As a0 increases, the maximum of

\Kla/Kls | and | Klb/Kls | is shifted to the higher frequencies and decreases. The variations

ot\KJKu\ and | Klb/Kls \ with P become gentle as a0 increases.

Exhibited in Fig. 5 is the effect of Poisson's ratio v on the values of the | KxJKis | and

\KJKU\ curves for a0 = 0.5. The curves for Kla show that larger values of v produce

greater peak values. Note that the changes in Poisson's ratio have a greater influence on the

graphs.
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