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Abstract. An orthogonal curvilinear coordinate system is used to formulate the
Dirichlet problem of potential theory associated with the interior of a general twisted
tube with a uniform non-rotating section. Two solution schemes are presented for a class
of finite and infinite tube geometries. The boundary-value problems associated with a
tube of uniform circular section are discussed as an example.

Introduction. To date the linear boundary-value problems of mathematical physics
associated with the interior of a tube have admitted solutions only for a limited number
of tube geometries. Solutions have been obtained mainly for linear boundary-value prob-
lems which involve a torus with circular section. It appears, however, that solutions do
not exist for boundary-value problems associated with tubes which include the effects of
curvature and torsion and the effects of sections other than circular. Recently [1] it has
been shown that an orthogonal curvilinear coordinate system can be constructed for the
interior of a general twisted tube which has a uniform non-rotating section, and this
coordinate system is employed in this paper to formulate the linear boundary-value
problems.

The method of solution presented in what follows is based on an iterative scheme and
can be used for a wide range of linear boundary-value problems. In the interests of
brevity and clarity, however, we will only consider the Dirichlet problem of potential
theory.

1. The coordinate system. We denote the interior and boundary of a tube in R; by
D; and 0D, respectively. The orientation of the tube is specified by a curve L (Fig. 1)
which has a prescribed unit tangent vector t;(¢!). The coordinate ¢! is the arc length
along L from the origin O to the point O’. The intersection with D; U 0D, of the plane
¢! = const. normal to L which passes through O’ is denoted by D, U dD,.

It has been shown [1] that if the tube section remains undistorted and does not rotate
about t, as ¢! varies then an orthogonal curvilinear coordinate system can be con-
structed when the unit normal to D, which lies in the plane &' = const. is prescribed.
These coordinates are denoted by &, i = 1, 2, 3 where 2 = const. on 4D, for all values of
¢land &3

* Received May 8, 1980.
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FiG. 1.

The orthogonal curvilinear coordinate system is specified by the base vectors a;,
i=1, 2,3 where

cos 6

a; /A, =sinfsin¢ |=t, (1.1)
sin 0 cos ¢
sin 6 sin Y

a,/A,=|cos ¢ cosy —sin ¢ cos O siny |, (1.2)
—sin ¢ cos Y — cos ¢ cos 0 sin Y
—sin 0 cos ¥

a;/As;=|cos¢siny +sinpcosfcosy |, (1.3)
—sin ¢ sin ¥ + cos ¢ cos 0 cos Y

respectively. In Egs. (1.1)}-(1.3) 4;, i = 1, 2, 3 represent the magnitudes of the vectors a;,
i=1, 2, 3 and are the scaling factors for the coordinate system with 4, = A5 = 4. The
angles 0 and ¢ specify t; and are prescribed twice differentiable functions of &!. To
preserve the orthogonality of the coordinate system A must be independent of ¢! and
must be given by

x
Lol

¥ —yYo=— JO j—g cos O(¢") d&', (1.4)

where Y, = y(¢' =0). In what follows it is necessary to introduce two further unit
vectors given by

0

t, = (cos ¢ ), (1.5)
—sin ¢
—sin 6

t, = (sin ¢ cos 6 ) (1.6)
cos ¢ cos 0

respectively. The unit vectors t;, i = 1, 2, 3 are then mutually orthogonal.
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The transformation from Cartesian coordinates x’, i = 1, 2, 3 to the curvilinear coor-
dinates &, i = 1, 2, 3 can be written in the form

x1 0 X!
() = (@) 'O o] + | X2, (17)
x3 u X3
where
1 0 0
Ti(¢)= |0 cos¢p —sing], (1.8)
0 sin¢g cos¢
cos@ 0 sinf
T,(0) = 0 1 0 , (1.9)
—sinf 0 cosf
and
X! 4
XZ) =| ()4 (1.10)
X3 o

The vector in (1.10) represents the point 0’ in D, and the functions u(¢!, &2, &3) and v(¢!,
&2, &%) are given by

u=gqcos(y —yo+ (1.11)
v=gsin(y — ¢o + p), (1.12)
2

where g = (u + v3)"%, qsin u=vy, qcospu=uy, uy(E? 3)=u(0, ¢ &%) and
vo(E2, E3) = v(0, &2, £3). The axes of the Cartesian frame 0'v, 0'u coincide with the unit
vectors t, and t;.

It has been shown that v, + iu, and Ae™ " are analytic functions of the complex
variable &2 + i3 in D, U 0D, for all values of £!. Complex variable methods can be
employed to determine u,, vy, 4 and Y uniquely in D, v 8D, for all values of ¢!.
Moreover, if k(¢') is the curvature of L and Q = maX 2, ¢3¢ op, 4 With kQ < 1 for all &1 then
the scaling factor A, is given by

Ay =1—ub — vé sin 0, (1.13)

where the dot notation denotes the operation d/d&'. Further properties of the coordinate
system are established in the appendix and will be used throughout the analysis.

2. Formulation of the boundary-value problem. Laplace’s equation in the orthogonal
curvilinear coordinate system &, i = 1, 2, 3 has the form

salian) il raaln) =0 e

Employing the expressions for 4; and its derivatives derived in the appendix we find,
after some algebra,
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i %

oV 10V
F.Q.AZV—x[qcosll(%l—z+3A2V)+COS/12' 0

40¢?

. 10V
+ sin /12' 26—63

. ov . ov
+ kq cos lla—él — TKq sin ).15?

N——

1oV . 10V
+ x2q cos l,(2 cos 4, -25&—5 + 2sin 4, - 438 + 3q cos 1, A,V

10V . 10V
— k3¢ cos? l,(cos Ay Za—éz+ sin 4, - yrE qcos A, A, V) =0, (22)
where
L[V Y
V=l +5m)  mmrrv et
¢ sin 6 ov du
Ay=y+ Y —io+v, tan y = 7 tanv=a—ég a—é;’.

The curvature and torsion of L are represented by « and t respectively. Eq. (2.2) must be
satisfied in Dj.

If B denotes the curved part of dD; then the Dirichlet condition can be imposed for
the following four cases:

i) Tube of finite length I. In this case dDj; is the union of B, D, u D, (&' =0) and
D, U 0D, (' = l) and the boundary conditions have the form

V="V, &) on B, (23)
V=V &) on D,udD, (&' =0), (2.4)
V=" ¢) on DyudD, (¢ =) (2.5)

where V,, V; and V, are prescribed functions.

it) Closed tube of finite length |. Here the boundary condition is that given by (2.3).
We also require V(&!, £2, £3) to be periodic in ¢! with period 1.

iii) Semi-infinite tube. 1f D, U 0D, (&' = 0) is one bounding surface of the tube, the
boundary conditions are those given by (2.3) and (2.4) and V must remain bounded
everywhere in D;.

iv) Infinite tube. The boundary condition in this case is that given by (2.3) with V
remaining bounded everywhere in D5. This completes the formulation of the boundary-
value problem.

3. Solution scheme. Since kQ <1 for all &' then, if ¢(< 1) = max. ., kQ and
n' = &1/Q, we can write kQ = ¢, f;(n') where f,(n') is O(1). Moreover, we will assume in
what follows that f,(=df, /dn') is O(1). Also, if #2 n* = &2, &3 and f'= q/Q then, using
(A.13), we have A = Qg where g = ((9f/on*)* + (8f/on*)») /2. If =Q is O(1) for all n! then
we can write 7Q = f,(n') where f,(n') is O(1). Eq. (2.2) can now be written in the form

Vie+ VIV =g fi fes(Vay +3VV) + fic, Vo + fis: Vs = fi [y feu Vi + f1 f2 f51 V4]
— &} f1fe1(2ea Va4 25,V + 3/, VPV) + &3 f1 f2c}(eo Vo + 5,V — fe, VEV),  (3.1)
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where

— 1 L= = W=sla=m Ap3?
( )‘1 = 5( )/(3’7 s ( ).J = g 0,11' > =23 viv= 92 (0'122 * 6’732)

and ¢;, s; = cos 4;, sin 4;, i = 1, 2. We will seek a solution of (3.1) in the form

V=Y g ve (32)

The system of equations for V™, n > 0, is
VO, + VYO =, (3.3)
together with
VO, + VYO = oD s (34)
where U~ 1 is given by
UD = fifey (V5D + 392V D) 4 fie, VD fys, VY
— il e VDA AL S VY = 26, VD + 25, V72
+ 3, VVO D) + 12l (VY + 5,V — fe, VIV ), n > 1,
(3.5)
with V', and all derivatives of V™, identically zero when m < 0. Eq. (3.3) can be
considered as Laplace’s equation for a cylindrical coordinate system (n', n% n*) with
scaling factors 1, g, g and is solved subject to the given Dirichlet boundary condition.

Egs. (3.4) are Poisson type and are solved subject to homogeneous boundary conditions.
We introduce a Green’s function G(n', #% n*; #*, 2, #*) which satisfies
o(n' — ') 8(n® — 7*) 3(n® — #°)

G.ll + VZG = g2 (3.6)

The boundary condition imposed on G is that it vanish on the bounding surfaces of the
cylinder with section D, and generators n* = const. In cases (iii) and (iv) above G and
0G/on' must approach zero uniformly as ' becomes infinite.

With the aid of Green’s theorem, Egs. (3.3)-(3.6), and the boundary conditions we
obtain for case (i)

V(O)(,:,l, '7,2 ’7’3)

3G
= o Vo dn' dn’ + H Vzgzdnzdn I alVlgzdn dn?,
n2=const Qnt=l1 nt=0
(37)
and
Ve, i, i) = [[[ GUe~g? dn dn? dn,n 2 1, (38)

where the volume integral is evaluated throughout the interior of the cylinder. For cases
(ii), (ili) and (iv) the solutions for V™, n > 1, are again given by (3.8). The solution for
V@ in case (ii) has the form
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oG

VO, 72 7*) = = Vo dn' dn?, (3.9)

n* = const.

since V and G are periodic in ' with period I/Q. In case (iii) the solution for V¥’ is given
by

" oG 1 o 0G s " ,
-J on? 2 Vo dn' dn’ — 'J ant Vig*® dn” dn’, (3.10)

n2 =const. nl=0

V(O)(,‘,,l’ ’—,,2’ ’—13) —

since the integral over the surface Qn' = | in (3.7) approaches zero as | — co. Similarly, in
case (iv), the solution for V'© will be given by (3.9).

When 1Q < 1 for all n' we can write 1Q = ¢, f5(n') where ¢,(< 1) = max. ., 1Q and
f>(n) is again O(1). Eq. (2.2) in this case has the form

Vir + V3V =gy (fife(Vay +3VV) + fie, Vo + fi5: Vs
—fifife V) +eer fifa 5,V — el fife(2e2Vy + 25,V
+3e, VPV + e} f1f2ci(c: Vo + 52 Vs — fe, VPV). (3.11)
Using the summation notation of the tensor calculus, we can write the solution of (3.11)
in the form

Z eV, r+s=n. (3.12)

The system of equations for V%, n > 0, is

VR 11+ VIV =0 (3.13)
and
VO LIV = U pps=n n>1, (3.14)
where
U™V = fife, (Vi + 3VAVES0) + fiea Vi,
+ 18 Vs — il fe VESR L + 12 S VT
—[1fe e, Vi + 25, VTR + 3fe, VAV 22s))
+ 112 VT2 + 52 Vsl — fo, VAV (3.15)
with V{P, i + j = m, and all derivatives of V{7 identically zero when either i <0 or j < 0.

The solution of (3.13)-(3.15) subject to the Dirichlet boundary condition is formally
the same as the case when 7Q is O(1). For brevity we can omit the details.

4. The general twisted tube with uniform circular section. For a tube with a uniform
circular section the functions u and v are given by [1]

uln', n?, n*) = ae" sin(n® — (¥ — ¥o)) (4.1)

and

o(n', n% n*) = ae" cos(n® — (¥ — o)), (42)
where a is the section radius, Y — y, is given by (1.4) and n* is the angle between O'P
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u
4

v
FiG. 2.
and i (see Fig. 2). The vector i is defined by
i=cos(Y — Yolt, —sin(y — Yo)ts, (43)
and does not rotate about t, as n* varies. Moreover, 7> =0 on B and 1> = —o0 on L.

Also Q=a,q=A=ae" and u=v=n/2—n*sothat A, =, =y + ¢ —yYo+n/2 -
n=Ac=c;=cands; =s,=s5.

For convenience we introduce 7, r, ¢ where n = n', r = ¢"* and ¢ = &, Then, using
standard techniques [2], the Green’s functions for the four boundary-value problems can
be written in the form

(i) G=22

el
i[v]s

Sm(mnlan )sin(ﬂlaﬁ)cos n(é — &)

—

n

na
K,

y ))I"(mnar)ln(mnar) _ H"(mnar’mnar) ’

-3

I a l l

3
]

n

|

O<ni<la, O<ri<l, 0<¢i<m (4.4)

(i) G=2 % 3 cos| T tr =) Joos nic - )

T[l n=0 m=0

K, ( 2ml1ta )

2mna
’"( )

0<ni<la, O<rr<l, 0<&E < 2m, 4.5)

"( 2m;tar ) I ( 2m;tar ) _H, ( Zm;tar ’ 2m;tar ) ,
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(iii): G = % Y. cos n(¢ — &) l sin an sin aﬁ( Ky) I (ar),(oF) — H,(ar, a?)) da,
T n=0 Y 1,,(0()
O<npii<oo, O<ri<l, 0<&E<2nm (4.6)
1 LR = Kn(a) - _
(iv): G=— Y cosn(é—¢) ‘ cos a(n — 5)( 1(ar)](«F) — H,(ar, ocr)) do,
T n=0 ‘0 1,,(a)
—o<pp<o, O0<ri<l, 0<¢E<2m, (4.7)

where
H,(oy, o0y) = I(0t)K,p(a2), 0<a; <a,,
= I (02)K, (o), 0<a, <oy (4.8)

and I,, K, are the modified Bessel functions of the first and second kind respectively.
The methods of Sec. 3 can now be employed to obtain the solutions of the boundary-
value problems once the tube and boundary data are given.
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Appendix. If N denotes the principal normal and B the binormal to L, the Serret-
Frenet equations have the form

t; = kN, B= —«xN, N = —«t, + 1B, (A.1-A.3)

where k and 7 denote the curvature and torsion, respectively, of L. Moreover, from [1],
we have

t; = ¢ sin 0t, + Ot;, (A4)
t, = —¢ cos Oty — ¢ sin Ot,, (A.5)
t; = —0t, + ¢ cos Ot,, (A.6)
so that
kN = ¢ sin 0t, + 0t,, (A7)
and, since B=t; x N,
kB = —0t, + ¢ sin 6t;. (A.8)
Therefore k% = ¢ sin? § + #% and the angle y can be defined by
O=xcosy, ¢sinf=xsiny. (A9)
After differentiating (A.8) we find, using (A.2), (A.5)-(A.8), and (A.9),
T=—9— ¢ cos 0. (A.10)

The scaling factor 4, may be written [1]
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A;=1-—kqcos iy,
where A, =y — Yo + p — 7. Therefore, using (1.4) and (A.10), we obtain
0A,JOEr = —kq cos A, + tKq sin A,.
The scaling factor A is given by [1]

-

so that the angle v can be defined by
0y /08> = Asinv,  0Ouy/0¢% = A cos v.
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(A.11)

(A.12)

(A.13)

(A.14)

With the aid of the equations ¢ sin u = v, and g cos p = u, together with the Cauchy-

Riemann equations for u, and v, we can show that
q(04,/0E?) = q(0u/0E*) = A sin(v — p),
q(02,/0&%) = q(0u/0&%) = — A cos(v — p),
0q/0E* = A cos(v — p),
0q/0&> = A sin(v — p).
Finally, Eqgs. (A.15)-(A.18) enable us to prove that
0A,/0E* = —KA cos 4,
and

0A1/663 = —kA sin ).2,

where A, =y — Yo+ v —17.

(A.15)
(A.16)
(A.17)
(A.18)

(A.19)

(A.20)



