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Abstract. An orthogonal curvilinear coordinate system is used to formulate the

Dirichlet problem of potential theory associated with the interior of a general twisted

tube with a uniform non-rotating section. Two solution schemes are presented for a class

of finite and infinite tube geometries. The boundary-value problems associated with a

tube of uniform circular section are discussed as an example.

Introduction. To date the linear boundary-value problems of mathematical physics

associated with the interior of a tube have admitted solutions only for a limited number

of tube geometries. Solutions have been obtained mainly for linear boundary-value prob-

lems which involve a torus with circular section. It appears, however, that solutions do

not exist for boundary-value problems associated with tubes which include the effects of

curvature and torsion and the effects of sections other than circular. Recently [1] it has

been shown that an orthogonal curvilinear coordinate system can be constructed for the

interior of a general twisted tube which has a uniform non-rotating section, and this

coordinate system is employed in this paper to formulate the linear boundary-value

problems.

The method of solution presented in what follows is based on an iterative scheme and

can be used for a wide range of linear boundary-value problems. In the interests of

brevity and clarity, however, we will only consider the Dirichlet problem of potential

theory.

1. The coordinate system. We denote the interior and boundary of a tube in R3 by

D3 and dD3 respectively. The orientation of the tube is specified by a curve L (Fig. 1)

which has a prescribed unit tangent vector t^1). The coordinate is the arc length

along L from the origin 0 to the point 0'. The intersection with D3 u dD3 of the plane

tj;1 = const, normal to L which passes through 0' is denoted by D2 u dD2.

It has been shown [1] that if the tube section remains undistorted and does not rotate

about tj as ^ varies then an orthogonal curvilinear coordinate system can be con-

structed when the unit normal to SD2 which lies in the plane = const, is prescribed.

These coordinates are denoted by i = 1, 2, 3 where £2 = const, on 8D2 for all values of

and £3.

* Received May 8, 1980.
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Fig. 1.

The orthogonal curvilinear coordinate system is specified by the base vectors a;,

i = 1, 2, 3 where

(cos 9 \

sin 9 sin J = tl5 (1.1)

sin 9 cos (f) J

(sin 0 sin ^ \

cos </> cos \j/ — sin <f> cos 9 sin ip I, (1.2)

— sin (p cos ij/ - cos (p cos 0 sin «// /

— sin 9 cos ijj \

cos (f) sin t/> + sin 4> cos 9 cos , (1.3)

— sin (p sin + cos </> cos 9 cos )

respectively. In Eqs. (1.1)—(1.3) A{, i = 1, 2, 3 represent the magnitudes of the vectors a;,

i = 1, 2, 3 and are the scaling factors for the coordinate system with A2 = A3 = A. The

angles 9 and (f> specify ti and are prescribed twice differentiate functions of l;1. To

preserve the orthogonality of the coordinate system A must be independent of c1 and t//

must be given by

»A — <Ao = — | ~jT[ cos 0(<P) (1.4)
• o "C

where \l/0 = i= 0). In what follows it is necessary to introduce two further unit

vectors given by

t2 = cos (p , (1.5)

\ — sin (pi

I - sin 9 \
t3 = I sin 4> cos 9 I (1.6)

\ cos (j) cos 9 J

respectively. The unit vectors t, , i = 1, 2, 3 are then mutually orthogonal.
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The transformation from Cartesian coordinates x', i = 1, 2, 3 to the curvilinear coor-

dinates i — 1, 2, 3 can be written in the form

lx2\ =T1(0)-1T2(0)"1M + |*2j, (1.7)

where

/ 1 0 0 \

Ti(<t>)= |0 cos 0 — sin (/> I , (1.8)
\0 sin (f> cos 0 J

I cos 6 0 sin 9 \

T2(0) = 0 10, (1.9)
\ — sin 9 0 cos 9

and

|*2j =J\1(?1)d?1. (1.10)

The vector in (1.10) represents the point 0' in D2 and the functions u(£*, c;2, £3) and v^1,

£2, £3) are given by

u = q cos(i/a — ij/0 + n) (1 11)

v = q sin(v> - ij/0 + n), (112)

where q = (uq + vl)1'2, qsmfi = v0, qco&n = u0, u0(£2,£3) = u(0, £2, £3) and

v0(£2, £3) = u(0, £2, £3). The axes of the Cartesian frame 0't>, 0'u coincide with the unit

vectors t2 and t3.

It has been shown that v0 + iu0 and Ae~"p are analytic functions of the complex

variable £2 + i%3 in D2 u dD2 for all values of £l. Complex variable methods can be

employed to determine u0, v0, A and t/> uniquely in D2 u 8D2 for all values of c1.

Moreover, if k(^) is the curvature of Landg = max^, ^)edD21 «Q < 1 for all£', then

the scaling factor Ax is given by

Al = 1 — u9 — v(f> sin 9, (1-13)

where the dot notation denotes the operation d/dFurther properties of the coordinate

system are established in the appendix and will be used throughout the analysis.

2. Formulation of the boundary-value problem. Laplace's equation in the orthogonal

curvilinear coordinate system i = 1, 2, 3 has the form

8 [A2 8V\ 8 I 8V l 8 I dV\ _ n n

Employing the expressions for Ax and its derivatives derived in the appendix we find,

after some algebra,
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82V
w + A,v~"

, /32V ,t I , 13V
q cos + 3 2 /+ cos A2' aW

, 1 3V
+ s,n l,-lw

. dV . . 3 V
+ Kq cos /, —r - xxq sin —T

C7(J og

13V ... 13V
+ K2q cos A,( 2 cos A2 + 2 sin X2 ■ — ̂  + 3q cos A, A, V

\ /13^ /4 3£

- kV cos2 Ajjcos X2 ■ + sin X2 ■ - 1 cos A2 v| = 0, (2.2)

where

1 I d2V d^V

A2 \3i^22 + 3£
A2V-~2 —22 +^-j-2 , Aj-y + i/r-i/^o +/<,

... U/ OlXl t/

/l2 = y + lA - lAo + V, tan y = —^—, tan v = 3e2 ,
0 sin 0 t _ 3u0 / 3u0

~3^ / 3^

The curvature and torsion of L are represented by /c and t respectively. Eq. (2.2) must be

satisfied in D3.

If B denotes the curved part of 3D3 then the Dirichlet condition can be imposed for

the following four cases:

i) Tube of finite length I. In this case 8D3 is the union of B, D2 u 8D2 (£' = 0) and

D2 u 8D2 (i= I) and the boundary conditions have the form

V = V0(s1, £3) on B, (2.3)

V=V1(^2,^3) on D2 u SD2 (s1 = 0), (2.4)

V = V2(£2, £3) on D2udD2(C = l), (2.5)

where V0, Vx and V2 are prescribed functions.

ii) Closed tube of finite length I. Here the boundary condition is that given by (2.3).

We also require V(£}, £2, £3) to be periodic in with period /.

iii) Semi-infinite tube. If D2 u 8D2 (<i;1 = 0) is one bounding surface of the tube, the

boundary conditions are those given by (2.3) and (2.4) and V must remain bounded

everywhere in D3.

iv) Infinite tube. The boundary condition in this case is that given by (2.3) with V

remaining bounded everywhere in D3. This completes the formulation of the boundary-

value problem.

3. Solution scheme. Since xQ < 1 for all q1 then, if £t(< 1) = max=ie(_ kQ and

I1 = V"!Q, we can write kQ = ej f^r]1) where f^rj1) is 0(1). Moreover, we will assume in

what follows that /i(=4/i/^'/1) is 0(1). Also, if rj2, t]3 = £2, £3 and/ = q/Q then, using

(A.13), we have A = Qg where g = ((3//3>?2)2 + (3//3^3)2)1/2. If xQ is 0(1) for all t]1 then
we can write xQ = /2(f/') where f2(t]i1) is 0(1). Eq. (2.2) can now be written in the form

V„ + V2V = etifi /ci(Vn + 3 V2 V) +j\c2 V2 + j\s2 V3-fj1fcl V, +flf2fsl V,]

-sj fife, (2c2 V2 + 2s2 V3 + 3/c, V2 V) + 4 f\ f2c2(c2 V2 + s2 V3 — fc, V2 V), (3.1)
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where

(),i -d()/dtl\ (h-ggj> J 2-3- V2F_^|^22+-
1 ld2V d2V

W2

and c{, Si = cos sin A;, i = 1, 2. We will seek a solution of (3.1) in the form

V = £ e", F'"'. (3.2)
n = 0

The system of equations for VM, n > 0, is

K(0) + v2 y(°) = o, (3.3)

together with

J/W + y2 J/W = jjin- M ^ (3 4)

where t/1"-1' is given by

^<n"1) =/i/c1(^!n1) + 3V2V^l)) +f1c2V%~1> +fls2V%~1)

-fjjcr V%~ " +j\f2 fs, V%~11 —/i/cx(2c2 Kj"2" 2> + 2s2 Kj"" 2»

+ 3/Cj V2K(""2)) +/f/2cf(c2F(r3) + s2^r3' -/c^F'""3'), n > 1,

(3.5)

with V{m), and all derivatives of F<m), identically zero when m < 0. Eq. (3.3) can be

considered as Laplace's equation for a cylindrical coordinate system (tj1, tj2, t]3) with

scaling factors 1, g, g and is solved subject to the given Dirichlet boundary condition.

Eqs. (3.4) are Poisson type and are solved subject to homogeneous boundary conditions.

We introduce a Green's function Gfa1, rj2, r]3\ fj1, fj2, fj3) which satisfies

CH + viG.W-iW-jW-j3) (36)
G

The boundary condition imposed on G is that it vanish on the bounding surfaces of the

cylinder with section D2 and generators r\2 = const. In cases (iii) and (iv) above G and

dG/drj1 must approach zero uniformly as tj1 becomes infinite.

With the aid of Green's theorem, Eqs. (3.3)—(3.6), and the boundary conditions we

obtain for case (i)

Vm(ij\ fj2, fj3)

= J1 0 V° ̂ ^ + JJ Iff F2^ dv>2 ^ ~ IJ Vig2 dr]2 dt]3'
t] 2= const Ql1=l »/1= 0

(3.7)

and

V(n)(fj\ rj2, q3) = f [[ GU(n~ V dtj1 dr\2 dtj3, n> 1, (3.8)

where the volume integral is evaluated throughout the interior of the cylinder. For cases

(ii), (iii) and (iv) the solutions for VM, n > 1, are again given by (3.8). The solution for

F(0) in case (ii) has the form
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Vm(fj\ f]2, f) = JJ V0 dtJ1 dt]\ (3.9)
t]1 = const.

since V and G are periodic in r\x with period l/Q. In case (iii) the solution for F(0) is given

by

V(0)(fi1,ri2,fi3)= () V0 drj1 dt]3 — )| ^ V^2 dtj2 dt]3, (3.10)

tj 2= const. //1 = 0

since the integral over the surface Qt]1 = I in (3.7) approaches zero as I -* oo. Similarly, in

case (iv), the solution for K(0) will be given by (3.9).

When xQ < 1 for all rjl we can write xQ = e2 J2(l1) where e2(< 1) = max., e, xQ and

is again 0(1). Eq. (2.2) in this case has the form

Kn + V2K = £1(/1/c1(F1i + 3V2K) +f\C2V2 + f\S2 V3

~fjjc1 Ki) + el£2fJ2fSl VA - e2f2fCl(2c2V2 + 2s2V3

+ 3fClS/2V) + e3f3f2c2(c2V2 + s2V3 -fc,V2V). (3.11)

Using the summation notation of the tensor calculus, we can write the solution of (3.11)

in the form

00

V = I r + s = n. (3.12)
n = 0

The system of equations for n > 0, is

n°(],ii + V2K(ooo» = 0 (3.13)

and

where

I/^;n + V2^ = U%-l), r + s = n, n> 1, (3.14)

= fi fc 1 (K"-u, i i + 3v2n":,V) +f1c2v(;sl\),2

+ /i52 -fjjc, V{r"~is]i + fj2 fs! V("J2SL ltl

-f\M2c2 Vl"S2]2 + 2s2 V^22s]3 + 3/Cl V2F<r22))

+ /?/2^(c2 F?_-3i>2 + s2 V?-"^ — /ci V2«), (3.15)

with Vff, i +j = m, and all derivatives of FjJ* identically zero when either /' < 0 or j < 0.

The solution of (3.13)—(3.15) subject to the Dirichlet boundary condition is formally

the same as the case when xQ is 0(1). For brevity we can omit the details.

4. The general twisted tube with uniform circular section. For a tube with a uniform

circular section the functions u and v are given by [1]

u(t]\ t]2, tf) = ae"2 sin (r/3 - (i/r - i/>0)) (4.1)

and

v(rj\ t]2, rj3) = ae"2 cos(t]3 - (i/t - ^0)), (4.2)

where a is the section radius, ij/ — \J/0 is given by (1.4) and t]3 is the angle between O'P
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Fig. 2.

and i (see Fig. 2). The vector i is defined by

i = cos(i^ - iA0)t2 - sin(iA - lAota. (4-3)

and does not rotate about tj as tj1 varies. Moreover, rj2 = 0 on B and rj2 = - oo on L.

Also Q — a, q = A = aenl and = v = n/2 — t]3 so that = A2 = V + _ "Ao + rc/2 —

?73 = A, Cj = c2 = c, and Sj = s2 = s.

For convenience we introduce rj, r, £ where t] = t]1, r = e"1 and £ = £3. Then, using

standard techniques [2], the Green's functions for the four boundary-value problems can

be written in the form

/- 2a v v • Imnarl \ • Imnafj\
° = T, )cos „({ - {)

1K t—\
m7rar m7ca r<

S /
i ' /

0 <r\,t] < l/a, 0 < r,r < 1, 0 < £,<!; < 2n, (4.4)

(ii): G=— £ £ cosl2^ (ri - fj)\cos n(£ - £)
711 n = 0 m = 0 \ 1 '

K i2mna 1

"\ / I I2mnar\ l2mnaf\ I2mnar 2mnar\

0 < r],fj < l/a, 0 < r,r < 1, 0 < < 2n, (4.5)
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2 00 • ® / \

(iii): G = —= Y cos n(£ — £) I sin arj sin am—I n(otr)I „(<xr) — Hn(oir, ar) dot,
n n = 0 J0 \ Ma) /

0 < ?/,>/ < oo, 0 < r,r < 1, 0 < < 271, (4.6)

i °° _ . °° IK (oc) \
(iv): G = -j X! cos "(£ - £) I cos a(l - 5) -~-/„(ar)/n(aP) - tf„(ar, ar) da,

71 n = 0 '0 ' Ma/ /

— oo < rj,r\ < oo, 0 < r,r < 1, 0 < £,£ < 271, (4.7)

where

tf„(a„ a2) = Uai)K„(a2), 0<ai<a2,

= /^azJX^aj), 0 < a2 < a1; (4.8)

and /„, K„ are the modified Bessel functions of the first and second kind respectively.

The methods of Sec. 3 can now be employed to obtain the solutions of the boundary-

value problems once the tube and boundary data are given.
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Appendix. If N denotes the principal normal and B the binormal to L, the Serret-

Frenet equations have the form

tt = kN, B = — kN, N = — /ctj + tB, (A.1-A.3)

where k and t denote the curvature and torsion, respectively, of L. Moreover, from [1],

we have

tj = (j) sin 0t2 + &t3, (A.4)

t2 = — (j) cos 0t3 — </> sin 0tl5 (A-5)

t3 = — 0^ + </> cos 0t2, (A.6)

so that

and, since B = tj x N,

jcN = (j) sin 012 + 0t3, (A.7)

kB = -dt2 + 4> sin 0t3. (A.8)

Therefore k2 = (f>2 sin2 0 + &2 and the angle y can be defined by

$ = k cos y, (j) sin 0 = k sin y. (A.9)

After differentiating (A.8) we find, using (A.2), (A.5)-(A.8), and (A.9),

t = — y - (j) cos 0. (A.10)

The scaling factor At may be written [1]
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A1 = 1 - Kq cos ku (A. 11)

where k1 = ijj — if/0 + n — y. Therefore, using (1.4) and (A. 10), we obtain

dA1/d£l — — kq cos kt + tKq sin kx. (A. 12)

The scaling factor A is given by [1]

I du0 »2 I *2 / \2
A1 = +(£H£M&)- <A13»\d£2)

so that the angle v can be defined by

dv0/d^2 = A sin v, du0/d^2 = A cos v. (A. 14)

With the aid of the equations q sin n — v0 and q cos /u. = u0 together with the Cauchy-

Riemann equations for u0 and v0 we can show that

q(dkl/d£2) = q(dn/d£2) = A sin(v — /(), (A.15)

q(dkjd£3) = q(dn/d£3) = -A cos(v - ft), (A.16)

dq/d£2 = A cos(v - /x), (A.17)

dq/di;3 = A sin(v — yu). (A.18)

Finally, Eqs. (A.15)-(A.18) enable us to prove that

dA1/d£2 = —kA cos k2 (A. 19)

and

dAi/d^3 = —kA sin ki, (A.20)

where k2 = ^ — il/0 + v — y.


