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Abstract. It is proved that for apses-to-apses motions which are purely direct (retro-
grade), a Lock-Fowler missile satisfies the Halphen inequality. The result is independent of
all launching conditions.

1. Introduction. In a previous paper, subsequently referred to as (A), Rath and Nam-
boodiri [1] obtained conditions under which a Lock-Fowler missile would have the same
apsidal limits as its simulator (the dynamically equivalent Lagrange gyro). In the present
paper we have considered the precessional advances of a Lock-Fowler missile, as far as
possible without putting restrictions on its launching conditions (as was done in (A)).

Our main observation in this paper (Sec. 3) is that the missile has the same lower apsidal
limit as its simulator for all types of direct and retrograde motions of the missile, indepen-
dent of all launching conditions. Whenever restrictions on launching conditions of the
missile have been imposed to show that it might have similar apsidal limits as its simulator,
they are different from those considered in (A) and are much less stringent (Theorems 3 and
4). So far as the asymptotic motions of the missile are concerned, they are qualitatively the
same as its simulator for purely direct (retrograde) motions and there is an obvious qual-
itative difference in case of the combined (grapevine) motion (Sec. 5). Symbols and notation
of this paper are the same as those given in (A).

2. Basic equations and the apsidal angle. The nutational and precessional motion of a
Lock-Fowler missile may be characterized by the following equations:

(dz/dt)* = 4BH(z), (2.1
do/dt = QA — 2)/2z(1 — 2), (2.2)
where
z = (1/2X1 + cos 9), (2.3)
A= (F + Q)2Q, (2.4)
Q = AN/B, 2.5)

4BH(z) = z(1 — 2)[E; — a2z — 1) — Rz — 1)*] — Q*(4 — 2)?

4
~ -] Bi=Evasn 29
i=1

* Received May 29, 1980.
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¢ and 0 are the angles of precession and nutation respectively, E and F are constants of
energy and angular momentum (see (A), (2.1) and (2.2)), 4 and B are the axial and transverse
moments of inertia and N is the axial spin of the missile. The parameters «, § and s are given
by

o= (Q%2s)1 — 4gs), B =qQ%,

s = A>N*/4Bu(0), 27
where p(0) is a certain aerodynamic parameter with reference to linear angular motion of
the missile.

It may be noted that for real motions z; (i = 1, ..., 4), the zeros of the polynomial H(z)
are real and satisfy the inequalities

2, <0<z, <z<2z351<z,. (2.8)

By defining certain symmetric functions of the roots as

L =[—(z1222324)]"%, 29)
L=[(1—-2z (1 —z01 — z3)z4 — 1)]1/2, (2.10)
it can be shown that
|A|L=L|i-1]. (2.11)
(See (A), (2.22).) From (2.1) and (2.2) we have
¢ QA —2)

dz = 220 = AHEE - 99 (2.12)

say, which shows that the precessional advance during the passage of the body axis of the
missile from z, to z; is given by

o= fzag(z) dz. (2.13)

2

The factor (A — z)/z(1 — z) in g(z) may be decomposed into partial fractions and using (2.11)
we have for Q > 0

® = sign(A)®; + sign(4A — 1)P,, (2.149)
where
P, = fng,{z) dz (i =1, 2), (2.15)
91(2) = L/2z[H(z)]"?, (2.16)
9:(2) = L/21 — 2)[H()]"". (2.17)

3. Precessional advances of the missile in the case of purely direct and retrograde
motion. It is interesting to note that for purely direct (retrograde) motions the missile has
the same apsidal lower limits as that of an equivalent common top. This result has been
established in (A) by imposing certain conditions on the roots of the fundamental quartic
H(z). From the present analysis one can see that such restrictions are not necessary.

To establish the result we state
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ProrosITION 1.
®, =n/2+ P, (3.1
®,=—7n/2+P,, 3.2)

where P, (i = 1, 2) are two positive integrals.

To prove the proposition, we shall apply the method of complex integration. Let us
regard Rz as a complex variable; this makes g;(z) (i = 1, 2) and [H(z)]** double-valued
functions of z, but they are uniquely defined on the Riemann sheets bounded by the cuts ¢;
(j = 1, 2, 3) and the circle ¢, with its center at the origin (see Fig. 1). If we write

z—zx=ri exp(ibs), 0 < Ok < 2 k=1,...,4), (3.3)

the signs of [H(z)]"/ on the cuts have been fixed and are shown in Fig. 1. Now integrating
g{z) around the contours cp—c;—c,—c3 and applying Cauchy’s residue theorem we have

J gi(z) dz — j —J —I = 2miR, (3.4)

where R represents the sum of residues of the integrand concerned.
As usual, {,, g;(z) dz = 0 when the radius of the circle ¢, becomes infinitely large and
the contributions due to the remaining integrals are

r z1
=| 9.2 dx, (3.5)
Jey [l o]
r ”23
= gi(z)dz= -20,, (3.6)
ve2 Vvz2
r (o
=| 91(2) dz. (3.7
Je3 Jza

_,o_.r } {22«\92 |

F1G. 1. Riemann sheets for g(z) and g; (2).
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Similarly, for g,(z) we have

_ j 4:(2) (38

=J 92(2) dz = —20,, (39)
Jea z2

__ j 0:2) dz. (3.10)
Jec3 zZ4

The residues of g,(z) at z = 0 and g,(z) at z = 1 are 1/2i and — 1/2i respectively. Now, using
integrals (3.5—(3.10) in (3.4), we have (3.1) and (3.2) where

(o zy
P, =% 91(2) dz“%J\ g1(z) dz > 0, (3.11)
and

r»

zy e

g,(2) dz — % f go(z) dz > 0. (3.12)

Z4

P2=

1
2) -«
Thus, Proposition 1 is proved.

Based on the above results we shall prove the following:

THEOREM 1.
b < —7n/2 when 4 <0, (3.13)
D > 7/2 when A > 1. (3.14)
To prove the above theorem, we shall first consider 4 < 0. Now from (2.14) we have
D= —(D, + D,y
=—-n2—-P, —®, (due to (3.1)
< —7/2 (since ®,, P, > 0). (3.15)

However, when A = 0, the precessional advance defined by the integral [%3 g(z) dz degener-
ates to

= Qdz
*- —Jz 21 — ILHEI (3.16)

2

Evaluating the integral (3.16) around the contour (given in Fig. 1) we get
Qdz
b= —7/2 - J j , (3.17)
2 — o (1= 2[H@]'"?

where we note that Res(1) = (Q/2)[H(1)]'/? = 1/2i.
As the last two terms in the r.h.s. of (3.17) are positive, it now follows that

® < —7n/2 when A=0. (3.18)
Thus (3.15) and (3.18) together establish the first part of Theorem 1, i.e. (3.13).
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Coming to the second part, we note that when 4 = 1
O =09,
=n/2 + P,, (Proposition 1)
> /2 (since Py > 0),
and when 4 > 1
=0, + O, (due to (2.14))

=n/2+ P, +®,
> 7/2 (as Py, @, > 0).

Hence Theorem 1 is established.
In case of purely direct and retrograde motions the following two theorems may also be

proved.

THEOREM 2. @ > mwheneverl < A<z, .

THEOREM 3. ® < —mwhenz;, < A< 0.

The result given in Theorem 2 is true in the case of the equivalent common top [2], whereas
Theorem 3 is peculiar to the missile itself. We shall proceed to prove Theorem 3.
Integrating g(z) over the contour (Fig. 1), we have straightaway

—20 + f g(z) dz — f g(z) dz = 2miR, (3.19)

- A
where

R=R(1)+ R(0), R(1)= —Q4 — 1)/2[H(1)]*. (3.20)
But [H(1)]'? = +iQ| A — 1] (see (2.6)). Since arg[H(1)]/* = n/2 in the present case we
choose the positive square root. Since A — 1 < 0 by stipulation, we have

R(1) = —Q(A — 1)/2i| A — 1| = 1)2i. (3.21)
Similarly,
QA .
| R(0) = :-im = 1/2i, (3.22)
since arg[ H(0)]'/? = 3n/2. Hence R = 1/i and finally from (3.19) we have
d=—n-0Q, (3.23)
where
zZ1 Q0
0=_ f N f 4(2) dz > 0, (3.24)
- zZ4

for z; < A < 0. Hence ® < —n, which proves Theorem 3. Theorem 2 can be proved sim-
ilarly.
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4. Precessional advances in the case of grapevine motion. In the case of grapevine
motion there exists qualitative differences in the two systems [3]. In particular, when
0 < A < 1, ® has been observed to be negative [see (A), Sec. 8], and hence no precise lower
bound for @ can be claimed. However, the following result appears to be interesting.

To be precise, we shall prove the following:

THEOREM 4.
®>n wheneveri<ic<l, 24 > (24 — 1)
To prove the theorem we have from (2.14)
=0, -,
=n+P,—P, (due to Proposition 1). 4.1)
Now an elementary transformation shows that

P, —P;= (L/2)Jw[(1 — Rz — 1)[z(z = D{HE@)}'*17" dz

+(L/2)] [(1 —R):z+ 1][z(z + 1){H(—z)}”2]"l dz,
|21l
where R = I'/L = |(1 — A)/A|(due to (2.11)).
A sufficient condition for P, — P, > 0is now

0<1—|1—-A/A| <z,
which is same as
za 2 AQR2A—), for 12<i< 1. 4.2)

Hence Theorem 4 follows from (4.1).

It may be observed that /(21 — 1) has the minimum value 1 and tends to co as A— 1/2.
Thus as A approaches 1/2, z, must be indefinitely large, whereas when A— 1, z, may
possibly tend to 1, which is its minimum admissible value. In such a case there is a
possibility of asymptotic motion where ® — co. One may expect that when 1/2 <A< 1,
®(A)— o as A— 1 — 0. But, as we shall see in the next section, this assertion cannot be
established.

5. Asymptotic motions: continuity and existence of conjugate motion. When we say
D(4) = D(z,) — D(z3) = |22 g(2) dz (advances in precession), @ is not defined as such when
A = 0 or 1, except by the integral jj; g(z) dz, which becomes divergent at these points where
the motion is asymptotic. For continuity of asymptotic motions at these points we must
have

O ()= (1) = ®(1) = oo,

®*(0) = ®(0) = B0) = — o, (ER))]
where

o ()= Lt ®4), O ()= Lt ¢4),

A=1+4+0 A=1-0
and ®*(0), ®(0) are similarly defined. To test the continuity of asymptotic motion across
A = 1 (for definiteness), we give a positive variation to 4 so that
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D) =1 + 12— 1) =) + (A — D) + -, (5.2)

where @'(1) = [ (dz/2z[H(z)]"*) > 0 and A — 1 > 0. This implies that ®*(1) > &(1) and
therefore ®*(1) = co. Similarly, it can be shown that ® ~(0) < ®(0) and therefore ® ~(0) =
— 0.

The left-hand continuity across 4 = 1 and similarly the right-hand continuity across
A = 0 for asymptotic motions cannot be as easily established; as we see from (5.2), (1)
and similarly ® ~(0) assume the indeterminate form co — co. However, if the system admits
of conjugate motion (across 4 = 1) as in case of the common top, continuity may be
established, [2]. But the present system does not admit of any such motion. This may be
seen from the following.

PRrROPOSITION 2.  If the three parameters F, Q and E represent the motion of the missile with
the fundamental quartic H(z), then the parameters F; = Q, Q, = F, E;. = E + (Q* — F?)
determine the conjugate motion (across A = 1) if and only ifg = 0.

To prove the result, choose general initial conditions z = z,, z’ = z;, which determine
F,Qand E (dependent on F and Q) and H(z,). Thus we have from (2.1) and (2.6)

z¢ + Q*(A — zo)?
E =
zo(1 — zo)
Now we choose another set of constants F; = Q, Q; = F (depending on the same initial
conditions) and claim that there exists an E,, (depending on F and Q) such that F;, Q; and
E,. generate the same quartic H(z,). From this, we must have
E. — zg + Qi — 20)°
e —
zo(1 — 2o)

¥ 2zo — D[ + 2B2]. (5.3)

+ 2(zo — Doy + 28,20], (54)

where
Ay = (F + Q)/(2F), ay = Q/2s(1 — 4gsF?/Q?),
B, = qF?, sy = s(F?/Q3). (5.5)
It is assumed that
1(0) = BQ?/4s = BF?/4s,. (5.6)
Now subtracting (5.3) from (5.4) and using (5.5), we have after some simplification
E,. = E + (F* — Q*[4q(zo — 1)*> — 1]. 5.7

Thus the proof of Proposition 2 is obvious from (5.6).

In view of the above analysis and the example given in Sec. 8 of (A) which claims that ®
need not be positive when 0 < 4 < 1, it is futile to look for left-hand continuity of asympto-
tic motion across 4 = 1 for the present system.
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