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Abstract. We show that it is possible, for a certain case of a traveling crack problem, to

obtain an explicit solution, in the entire region of interest, in terms of elementary functions.

This affords a simple way of constructing level stress curves in the entire region, in contrast

with the general case when simple expressions are obtainable at best along a particular axis.

1. Introduction. In a recent paper [1] we presented a general method of constructing

closed-form solutions for a class of elastodynamic problems. In particular this class con-

tained special cases considered by Singh, Moodie, and Haddow [2], who used dual integral

equation techniques. In general the methods of [2] have wide applicability, but tend to give

simple explicit expressions for the unknown quantities only along a particular axis. In [2]

the authors concentrate on the values of the stresses and displacements along the x-axis and

compute the stress intensity factor at the crack tip. Since, in a case which appears to be of

some practical importance, the method of [1] gives explicit expressions in terms of el-

ementary functions throughout the region of interest, we present this particular result,

together with the level stress curves.

2. Equations and solution. Consider a slab of elastic material with cross section occu-

pying the strip — oo < X < oo, — h < Y < h of the X — Y plane, where OXYZ is a fixed

rectangular coordinate system. We assume a crack of width 2a is propagating in the

midplane of the strip with velocity v in the positive X direction, in the presence of anti-plane

shear. For reference to such problems see Sih and Chen [3] or Sneddon and Lowengrub

[4].
Assuming that there is a single non-vanishing component of displacement in the Z

direction, we have

U = V = 0, W = W(X, Y, t), (2.1)

where U, V, W are the displacement components in the X, Y, and Z directions respectively.

Then

ax — °y — az = Oxy = 0, (2.2)

W nx\CXZ — H ^ . <*YZ — ft '

where n is the shear modulus and we employ standard notation for stress components.

* Received July 1, 1980.
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The equations of motion then reduce to

82W d2W 1 82W

8X2 + 5Y2 ~ b2 8t2 ' ( ' '

where b = (n/p)112 is the shear wave velocity and p the constant density. If it is further

assumed that all quantities are functions only of X — vt, and Y, set

x = X — vt, y = sY, t = t. (2.5)

Then (2.4) becomes

(,d2 W/dx2) + (d2 W/dy2) = 0 (2.6)

provided we define s2 = 1 — v2/b2, v < b. For future reference we define ayz = p(dW/dy),

axz = n{dW/dx).

The problem now reduces to finding a solution of (2.6) in( —oo, oo) x ( — /is, hs) such

that

W(x, 0) = 0 | x | > a, oyz(x, 0) = 0, | x \ < a, (2.7)

together with appropriate conditions on the edges of the strip.

If we suppose the displacement prescribed on the edges, we have

W(x, ±hs) = ±p(x), — oo < x < oo. (2.8)

Next introduce a harmonic function W ̂ x, y), odd in y, such that

W,(x, ±hs)= ±p(x), (2.9)

and set

W=W1 + W0. (2.10)

Then, using symmetry, (2.7) to (2.9) reduce to finding an harmonic function W0(x, y) in

( — oo, oo) x (0, hs) such that

W0(x, hs) = 0, — oo < x < oo,

(x, 0) = -q(x), | x | < a, (2.11)
dy

W 0{x, 0) = 0, | x | > a,

where q(x) = (dW/dy)(x, 0).

The conformal transformation

a> = £ + itj = tanh(cz), z = x + iy, (2.12)

with c = n/2hs, transforms the given problem into one for the upper halfplane, r] > 0, such

that

H/o(£0) = 0, |£| > a,

I«l<". e,3,

with a = tanh(ca).
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The appropriate solution, for q even, is provided by the function of a complex variable

[Gakhov [5]],

Ju>2 -
Q(a>) = x + iW o =

ni

with

P( T) = - ~
C

a2 f* P(z) dr

-« sjx1 — a2(r — <w)
(2.14)

1 <?(£) dt

tSI • (2-15)o 1 ~ s

In the above and following we adopt the convention that where branch points occur the

function is taken real and positive for £ large, >7—► 0+.

In the case of practical interest when p(x) is a constant p0,

q{x) = p0/hs, Wj(x, y) = p0y/hs. (2.16)

By carrying out the integrations in (2.14), (2.15) making use of suitable contours we find the

explicit expression

a(co) = - In j T+ / 2 21 • (2-17)
cfo (.^1 - a2 + y®2 - a2 J

3. Stresses in the strip. We focus attention on the quarter strip 0 < x < 00,0 < y < hs.

The form taken by the curves below in the remaining sections of the strip are easily seen by

symmetry considerations.

Since
8W dW

dy ' ~ ^ dx '
ayz = n — , axz = n — , W = W0 + Wlt (3.1)

Gv

it follows from (2.17) that

_ Wo J\ sinh(cz)

'yz hs j[sinh2(cz) — sinh2(ca)]1/2j '

m J sinh(cz)
hs j[sinh2(cz) — sinh2(ca)]'

For computational purposes we introduce the new variables

x = cx, y = cy, a = ca,

a 1 = hsffyjfipo, o2 = hs<TxJnp0, (3.3)

so that

ffi = 3tF(z), 0 < x < 00, a2 = 0 < y < n/2. (3.4)

To obtain representative graphs we have set a = 1, and plotted level curves of al, a2 in the

(x, y) plane as shown in Figs. 1 and 2. These have been curtailed atx = 2 since the behavior

beyond this line is obvious. Evidently the two sets of curves are orthogonal trajectories of

each other.

4. Remarks on a second problem. A second problem of interest is that in which the

shear stress is given on the edges
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2.00
2.0 H.8

Fig. 1. Level curve of <r,.

dW
— (x, ±hs) = p(x)/ns. (4.1)
dy

It is slightly more convenient to pose the problem in terms of ( = d\V/dy, in which case we

require a function harmonic in the strip with

£(x, ±hs) = p(x)/ns, — oo < x < oo,

£(x, 0) = 0, I x | < a, ^ (x, 0) = 0, I x I > a. (4.2)
dy

If again we set C = Ci + Co< where £i is harmonic, even in y with (d£i/dy\x, 0) = 0, (i(x,

± hs) = p(x)/ns, we reduce the problem to finding a harmonic function Co > with

C0(x, hs) = 0, — oo < x < oo,

C0(x, 0) = -q(x), | x | < a, ^ (x, 0) = 0, | x | > a, (4.3)
dy

where q(x) = £i(x, 0), and symmetry has again been used.

Proceeding as before, we obtain

Q(co) = X + iCo = - z (~2—
n \co

iy/2 r. / 2_ 2\i/2 d

?) Ln^r) r^- (4-4)
where co = £ + iy = tanh(cz), z = x + iy, and a = tanh(ca). If again p(x) = p0, a constant,

g(x) = Po/^s then
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Fig. 2. Level curves of o2.

Po j 1 1
Sz = — I 1 - - '

si n

co2 - 1

CO2 - a2

1/2 t2 — a2\1/2

t2 — 1 / T — CO
(4.5)

It is possible to formally write (4.5) as

Po J, 2
ayz ~ 1

S I 71

(co2 - oc2)1/2(a>2 - 1)1/2 (n a2 \ /V - «2Y/2

2, 2 7 — I —1co / V
nU, - —2.a - ® -2—r K(a)

(4.6)

where K, n denote complete elliptic integrals of the first and third kinds, respectively. There

does not appear to be any further reduction to elementary functions, and care must be

taken to interpret the integrals as principal value integrals when co is real, | co \ < a. The

corresponding level curves would then be more difficult to obtain numerically.
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