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Abstract. Estimator expansions in terms of orthonormal Hermite polynomials show

particular promise for variance reduction in Monte Carlo computer simulations. This

paper briefly describes some new adaptive refinements to the basic variance reduction

procedure so that the acceleration towards convergence of multi-parameter Monte Carlo

computations is further improved. Simulation results using the adaptive algorithm are

presented for a five-parameter model problem.

Introduction. The point of view taken in this paper is to regard Monte Carlo compu-

tations as an approximate form of numerical integration [1] since, for multi-parameter

problems ( > 5 to 10 random variables for example), the necessary integrals describing

the stochastic system can rarely be evaluated either in closed form or by conventional

numerical integration routines. Monte Carlo methods are then applied quite often to

high-dimensional problems and, as a result, techniques for variance reduction (or, equi-

valent^, convergence acceleration) are of considerable interest.

A rather promising variance reduction procedure was first proposed by Chorin [2] in

1971 for problems with one random variable. The technique is based upon constructing

approximations to the desired estimate in terms of orthonormal Hermite polynomial

series expansions. The basic Chorin approach has now been extended and refined by the

present authors to include:

(i) multi-parameter problems [3];

(ii) use of so-called equidistributed random numbers [3];

(iii) symmetrizing the original Chorin estimate C and obtaining the symmetric

Chorin (SC) and trisymmetric Chorin (TSC) estimates by averaging [3, 4, 5]. In

this way the available data is used more effectively; it is shown in [5] that the

TSC estimate yields a universally smaller Monte Carlo error variance than the

basic C estimate;

(iv) an adaptive series selection algorithm [4, 5] so that only those coefficients

determined with sufficient precision are retained in the Hermite polynomial ex-

pansion of the estimator;
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(v) a new adaptive refinement so that the tolerance level (Tol) for acceptance or

rejection of an individual term in the estimator expansion is continuously ad-

justed for each value of N (the number of sample trajectories) used in the

computations.

The purpose of this paper is to briefly review the symmetrized Chorin estimators, to

describe the adaptive procedures currently in use, and to illustrate all aspects of this

method with simulation results from a one-dimensional model problem for a ballistic

reentry trajectory having random perturbations in the dynamics. For this so-called

"bullet problem", initial results with only the C estimator appear in [3, pp. 358-365];

highly refined estimates obtained using the adaptive symmetrized procedures are pre-

sented here.

Finally, it should be emphasized that these advanced estimators were developed

originally for application to multi-parameter trajectory dispersion studies. In particular,

estimates of increased precision were desired for such quantities as range, impact point,

and dispersion velocities. The present version of the computer program [6] has been

applied to boost, deployment, and reentry trajectory simulations involving up to 40

random input parameters.

Accelerated estimators. A wide variety of methods has been developed for reducing

the error variance in Monte Carlo computations. The specific technique to be described

here belongs to the general class of methods called control variate.

The ordinary (or direct D) Monte Carlo estimate is defined by

/= jy (/l + fl + +/v) = Y, f I1)

where the function / =/(x;) depends upon a Gauss vector x of p independent

components

xr = [x(l)x(2)... x(p)] (2)

all of which have mean zero and variance one. The control variate estimate is given by

fcv = E[g] + ~ X (f ~ 9i) (3)

where the function g is chosen so that it closely approximates/and, moreover, permits a

closed-form determination of £[#]. For direct Monte Carlo, the error variance is

allc = o2/N ± a2D (4)

where a2 = Var[/] = E[f2] - (£[/])2. For the control variate estimate, the corre-

sponding Monte Carlo error variance is

oltc = rtv/N (5)

with olv = Var[/— g]. For a suitably chosen approximating function g, we have

alv < g2, yielding variance reduction.

The fundamental problem of the control variate method is then how to determine a

suitable approximating function g. This is especially true for problems of high dimension-

ality (i.e., multi-parameters). Following Chorin [2], we assume the general function space

expansion
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0 = £fli®i(x) (6)
0

where 0,(x) are orthonormal Hermite polynomials so that £[$,■ <£,] = and x is a

Gauss vector of p uncorrelated components. For p — 1, we have

(Do = 1, 0>! = x, 02 = (x2 - 1)/21/2, 03 = (x3 - 3x)/61/2, (7)

while for p > 1, the general orthonormal Hermite polynomial is of the form

<Dll(x1>D,2(x2) - • Oip(xp) with a restriction on the total order such that

+ I2 ■+■ "' + lp ̂  "i-

With these preliminaries, the basic Chorin estimator fc is given by Eq. (15) in [3] as

1 M m

fc —f~ a/o = — (8)
1V1 i = 1 k= 1

where A/0 is an estimate of the residual / — £[/], a* are coefficient estimates to be

precisely defined below and m — m(m, p) = (m + p) \/m\p\ is the series truncation point

defined by the order restriction m and the number of parameters p. The "corrector

series" A/0 is then a zero-mean multi-dimensional Hermite polynomial expansion model-

ing the stochastic fluctuations in / resulting from the random inputs x(.

The estimator fc is obtained by first dividing N = 2M statistically independent

samples into two sets

S = {X(, i = 1, 2, M}

S' = {x;,i=l,2,...,M}

and then using the set S' to estimate the coefficients

1 M

^=77 (10)
iVi 1 = 1

by ordinary Monte Carlo. Next, the set S is used to form the final estimate fc = fc(S, S')

given by Eq. (8) above. As shown in [3], the exact Monte Carlo error variance for the

Chorin estimator is

where

a2c = 2AN'1 + 4BN~2 (11)

A = <r2 - £ a2k, B = Y. Var[aJ. (12, 13)

The quantity A, which is the dominant term for large N, is sometimes referred to as the

mean square remainder Rm where, by orthogonality,

Rm = A= f>2. (14)
m + 1

Thus we see how the corrector series leads to variance reduction.

In order to make better use of the available samples, two symmetrized estimators

have been introduced [3, 4, 5]. By reversing the roles of the sample sets S and S' and

repeating the previous two-step procedure, two Chorin estimators
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fi =fc(S, S'), f2 = fc(S\ S) (15)

are obtained. Their average then yields the symmetric Chorin (SC) estimate

fsc = i(/i +fi) (16)

with the corresponding Monte Carlo error variance [3]

a2Sc = AN~1 + 2(B + C)N~2. (17)

As a result of using all the available samples more effectively, the factor of 2 in the

leading term of Eq. (11) has now been eliminated. However, an additional second-order

penalty term

m m

C = HWJ (18)
i i

has arisen.

Searching for further improvements, we next partitioned all N Monte Carlo samples

into three statistically independent sets of M samples each (N = 3M now). Adding the set

S" = {x", i — I, 2, M} (19)

to S and S', three Chorin estimates are formed:

fi =fc(S, n fi =fc{S', S"), f3 =fc(S", S), (20)

and their average then gives the trisymmetric Chorin (TSC) estimate

frsc = Mfi + f2 +/3). (21)

It is shown in detail in [5] that the three estimates/ in Eq. (21) are mutually uncorrelated

so that the resulting Monte Carlo error variance

a2TSC = AN'1 + 3BN~2 (22)

has no additional penalty term. Comparing Eqs. (11) and (22), we see that the TSC

estimate has a smaller error variance than the C estimate under all conditions. Hence the

TSC estimator is universally better than the C estimator.

Adaptive procedures. In order to obtain the best possible results using these estima-

tors, it is most important to assess which terms in the corrector series Af0 given in

Eq. (8) yield a net variance decrease. This is especially true if the dimensionality p is high

so the Hermite series becomes rather large. In fact, it is noted that the upper limit m for

the orthonormal expansion of Af0 in Eq. (8) is actually of the form m(m, p) =

(m + p)\/m\p\. For example, if m = 4 (so that linear, quadratic, cubic, and quartic terms

are included) and p = 5, m(4, 5) = 126.

The method we use for selecting which terms in Af0 are important is referred to as the

adaptive series selection algorithm. The label "adaptive" is used because the corrector

series is automatically "tailored" for each value of N used in the computations. This

algorithm will be described here for the fully symmetrized TSC estimator, but it has also

been implemented for the other estimators C and SC.

Consider the Monte Carlo error variance for the TSC estimator given by Eq. (22)

where A is the mean square remainder in the truncated Hermite series expansion and B

is the sum of the error variances for the coefficient estimates ak. Inserting Eqs. (12) and
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(13) into (22), we have

2
aTSC

since N = 3 M. Then we define

o1 ~ £ (ak ~ M 1 Var[ak])
l

iV"1 (23)

At = a* — M ~1 V ar[at] (24)

and we see that variance reduction occurs for the kth term provided Ak > 0. Since

individual terms can now be assessed, the quantity Ak is called the variance reduction

discriminant. Finally, since both terms in Eq. (24) are positive, it is more convenient to

work with the normalized variance reduction discriminant defined by

\ ~ M'1 Var[ak]/al (25)

For variance reduction, 0 < Ak < 1.

Since the numerator is simply the error variance for the M — sample estimate of the

coefficient ak, while the denominator is simply the magnitude squared of the coefficient

estimate, it is seen that Ak represents the inverse signal-to-noise ratio squared, (S/N)~2.

Hence we define the adaptive series selection criterion (tolerance) as

Tol = (S/N)~2 (26)

and require

Afc < Tol < 1. (27)

A further modification has recently been incorporated. For the smallest value of N (6,

12, or some multiple of 6)1, we begin the computation with Tol = Tol0 ( = 1 usually). The

number of terms n, retained in the series, i.e. passing the requirement given by Eq. (27), is

determined where, in general, n, < m(m, p). Then N is increased and all computations are

repeated. If n, is now greater than the previous value, the tolerance is set equal to the

closest available value of Ak which is smaller than the present value of Tol. If nt is less or

equal to the previous value, the present value for Tol is retained. In this way, the

accept/reject criterion for the adaptive series selection is continuously adjusted as the

sample size N is increased. This refinement has been found to be especially valuable for

computations involving a large number of parameters (p < 40).

Bullet model problem. In order to illustrate the operation of this adaptive Monte

Carlo algorithm, a simple one-dimensional model problem with five random perturba-

tion variables is treated in detail in this section. This so-called "bullet problem" [3] is

defined by the differential equations

x = a.v + /?, b = yx + dv + e (28)

and the nominal (/? = e = 0) initial conditions x0 and v0. Each of the five coefficients a, /?,

y, S, e is non-time-varying but is assumed to have the form

P = Po + P'

1 Results are routinely obtained for all three estimators C, SC, and TSC; consequently, each sample set N

must be divisible by both 2 and 3.
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with a nominal value p0 and a random component p'. If we set

C 4 (£2 + 4ay)i/2 (29)

and

'i. r2=?[d±t]= -Tf1, -tJ1 (30)

for the two "time constants" t,, the solution of (28) is

x(t) = C^1' + C^2' + g£ ~ ^ [er" + e'2' - 2] (31)
2a y

with

Ci ~^)x° +^0' C2 -|(l +f)^o-f(32)

where x0 and v0 = (l/a)x(0) are the nominal initial conditions at t = 0 with both random

noise terms P and e equal to zero. Also, using Eq. (28),

v(t) = ±[x(t)-P]

while x(t) is immediately computable from Eq. (31).

For the simulations, the following nominal values:

<*0 = 1-0, P0 = 0-0, y0 = —0.8, S0 = —2.4, e0 = 0.0,

were chosen for the five parameters. The corresponding time constants are then tj = 2.5,

t2 = 0.5. Next, we wish to allow some variability in the parameter set (a, /?, y, S, e) while

maintaining the inequalities

a > 0, <5 < 0, — <52/4a < y < 0, (33)

so that the solution x(t), v(t) is indeed given by two decaying exponentials.

By using the equidistributed random number generator described previously [3,

p. 356], so-called normal zero-one N(0, 1) Gaussian random numbers { were produced

with a theoretical mean of zero and variance of one. Hence, in order to maintain reas-

onably small perturbations about the nominal trajectory and to guarantee that £2 > 0

"almost always", the following scaling values sp:

sx — 0.05 sp = 0.10 s,, = 0.08 5,5 = 0.07 sE = 0.10

were introduced for each of the five parameters so the random components are then

given by

P' = spt (34)

The following " standard " case:

x0 = 6.0, v0 = —2.0, tf = final time = 2r1 — 5.0 (35)

was chosen. Figure 3 in [3] shows the nominal and four perturbed trajectories for this

case. For additional information, the reader is referred to [3].

A so-called impact dispersion footprint is shown in Fig. 1 for the standard case
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DISPERSION FOOTPRINT

0.8 1.2
POSCTF)

Flo. 1. Dispersion footprint for the "bullet" example problem; 150 impact points are plotted.

defined by Eq. (35). Note that the final time tf is different for each perturbed trajectory

by virtue of Eqs. (29) and (30).

Simulation results using the adaptive symmetrized estimators are presented next in

Figs. 2 and 3 for the position estimates and in Figs. 4 and 5 for the velocity estimates.

The various estimates of the mean are given in the first figure of each set while the

corresponding Monte Carlo error variances are shown in the second figure of each set.

For these results, a linear fit (m = 1) to the corrector series was used so the maximum

series length is m( 1, 5) = 6. Also, since the basic Chorin estimator has been shown

previously [5] to perform quite poorly relative to the symmetrized estimators SC and

TSC, results obtained with the C estimator have been eliminated in Figs. 2 to 5.

The acceleration towards convergence is highly visible in these figures. As N is

increased, both advanced estimators SC and TSC yield highly stabilized and consistent

results for the mean values x(tf) and v(tf). However, the major payoff is shown in Figs. 3

and 5 where the Monte Carlo error variances are plotted as a function of N. These latter

figures can be interpreted in either of two ways. For a given N, the reduction in variance

is immediately available while, for a given variance, the allowable reduction in sample

size N is easily determined. Table 1 gives, for several values of N, further data on the

resultant series selected by the adaptive algorithm, the tolerance level chosen by the

simulation and the variance reduction achieved. Finally, we note that negative variances

are not plotted in Figs. 3 and 5 (hence the visible gaps). This occurs, especially for small

values of N, as a result of poor estimation of both the variance a1 and the coefficients ak

so that the difference specified by Eq. (12) is negative.
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ONE-DIM MONTE CARLO SIMULATION tM=1.TOL0=I.0)

30 60 90 120
NUMBER OF SAMPLE TRAJECTORIES . N

Fig. 2. Three estimates for the mean position at the final time x(tf). Here, as in all the following plots, the

symbols represent-"—Direct estimate D, *—Symmetrized Chorin estimate SC, —Trisymmetric Chorin esti-

mate TSC.

ONE-DIM MONTE CARLO SIMULATION CM=1.TOL0=1.01

30 60 90
NUMBER OF SAMPLE TRAJECTORIES

Fig. 3. Monte Carlo error variances for the three estimates shown in Fig. 2. Note the reduction in variance

obtained with the symmetrized adaptive estimators compared to the ordinary Monte Carlo variance <t„.
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ONE-DIM MONTE CARLO SIMULATION CM=1,TOL0=1.0)

0 30 60 90 120
NUMBER OF SAMPLE TRAJECTORIES . N

Fig. 4. Three estimates for the mean velocity at the final time v(tf).

ONE-DIM MONTE CARLO SIMULATION CM=1,TOL0=1.0)

.0008r-

30 60 90
NUMBER OF SAMPLE TRAJECTORIES . N

Fig. 5. Error variances for the three estimates shown in Fig. 4.
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Table 1. Performance of the adaptive series selection algorithm with m = 1 and Tol0 = 1.

Quantity

SC Position Estimate

TSC Position Estimate

SC Velocity Estimate

TSC Velocity Estimate

N

60

120
150

60
120

150

60
120
150

60
120

150

Tol

0.39784

0.39784

0.39784

0.32623
0.30668

0.30668

0.49911

0.28492

0.28254

0.37187

0.37187

0.37187

Parameters

Retained

fiS
same

same

P £
same

same

Py
same

same

Py
same

same

Variance Reduction Ratio

riMlc or a 1/<T$SC

17.11

11.04

18.45

("tsc < 0)
15.52

47.87

6.37

6.28
11.73

12.11

7.57

18.30

Evaluation of stochastic error model. The key factor in this variance reduction

procedure is the identification, during the computation, of an approximate stochastic

system model (the "corrector series" A/0 in Eq. (8)). This Hermite polynomial expansion

attempts to model, in the sense of minimum mean square error [3, 4], the stochastic

fluctuations in / resulting from the random inputs x,.

In this section, the accuracy of these approximate error models will be evaluated, for

a specified value of N, as a function of the adaptive tolerance level Tol. With an expan-

sion containing only linear terms (m = 1), the stochastic error model gf = ge(x,) is

obtained for each of the estimates Q = C, SC, or TSC. This calculation is performed for

the following values of the tolerance:

Tol = 0, 0.05, 0.1, ..., 1.0 (36)

in the unit interval. Note that, when Tol = 0, no terms are retained in the gf series, so

that the resulting estimates simply revert to the standard (or direct D) Monte Carlo

values. On the other hand, as shown by Eqs. (24) and (27), Tol < 1 for variance reduc-

tion. Once the gf have been obtained, these functions are evaluated for each of the N

sample trajectories and the rms error f,q defined by

eQ A jN_1 Z [/(xi)-0C(x,)]| (37)

is computed.

The results of this calculation for the bullet problem are given in Figs. 6 and 7 for the

position and velocity estimates, respectively, at the final time. Beginning with Tol = 0 in

Fig. 6 for the position estimates, the first (and largest) reduction in eQ occurs when the /?

term is retained while the second reduction occurs when the term for e is also included.

In a similar fashion, the velocity error model first includes a /? term, then a y term and,

finally, a 5 term as the tolerance level is progressively increased.

Numerical partial derivatives have been computed [3, p. 362], It is most interesting

that the largest partial derivatives (in absolute value) are:

= 2.79692, = 1.16538
cp de
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ONE-DIM ERROR MODEL EVALUATION CM=1.N=603

0 0.2 0.4 0.6 0.8 1.0
TOLERANCE TOL

Fig. 6. Resulting rms position error as a function of the tolerance level for a linear correction series of five

terms and a total of 60 trajectories. Here x denotes the original Chorin estimator. The stochastic series yields

about a factor of 6 reduction in the rms error.

ONE-DIM ERROR MODEL EVALUATION CM=1.N=G0)

.1500, 

/

SC Estimate

f TSC Estimate

0.4 0.6
TOLERANCE TOL

Fig. 7. Resulting rms velocity error as a function of the tolerance level. The stochastic series gives roughly a

factor of 5 improvement in the rms error.
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and

-0.91866, = 0.66545, = -0.27451.
dp dy dd

Also, the generally inferior behavior of the basic Chorin estimator C is confirmed again

in these two figures. Finally, we want to note that, for a problem with very high dimen-

sionality (p = 40), the rms error curves ee(Tol) assumed a much more parabolic shape,

with strong minima occurring for values of Tol inside the available interval 0 < Tol < 1.

Conclusions. As shown both in theory and in numerical experiments, the sym-

metrized estimators SC and TSC have been able to furnish valuable reductions in Monte

Carlo estimation errors. Furthermore, the adaptive series selection technique has proven

to be an essential addition to these advanced Monte Carlo estimators. The adaptive

algorithm is based on the fact that the variance reducing (or increasing!) effect of each

term in the complete (and generally nonlinear) correction series can be isolated. This

important result is obtained by inspection of the exact theoretical expression for the

estimator variance and leads to the so-called variance reduction discriminant given by

Eq. (24).
We consider the use of these orthonormal Hermite expansions to be a definite

advance in Monte Carlo computations since, in general, both variance reduction and

system identification are provided. In particular, the further insights obtained from the

additional processing of the basic trajectory data should prove, in most cases, to be of

considerable importance. Since it is hoped that others might apply these techniques to

their problems, the current version of the computer program has been fully documented

[6],
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