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Abstract. We obtain existence and uniqueness results for the boundary-value problem

y" = x2 — y2, y(x) ~ +x as x —> + oo.

Our main result shows that there are precisely two solutionsy+(x) > — |x| andy_(x) < —

| x |. Only the latter is of physical interest in the problem in combustion theory from which

the equation arises.

1. Introduction and statement of results. We consider the boundary-value problem

y" = x2 — y2, >>(x)—► + x as x—>+oo. (1)

This problem arises in the treatment of a diffusion flame due to Burke and Schumann [2].

In a recent note of Ludford and Stewart [4] the question of existence and uniqueness of

solutions to (1) is raised, and it is mentioned that a numerical solution lying below y = — | x |

has been found and is apparently unique. More recently at least one solution lying above

y = — | x | was found by Alexander [1], In this note we establish the following theorem.

Theorem. There are two solutions y+(x), y_(x) to the boundary value problem (1).

y+(x) > — | x |, Vx and y_(x) < — | x |, Vx and y+(x), y-(x) satisfy the following:

(a) y±(x) = y±( — x) and ,y+(0) = 0 (symmetry).

(b) sign (,y+(x)) = — sign (x); y+(x) and y_(x) each have a single maximum at x = 0.

(c) y±(x)~ +x + k±a{\x\) as x—> + oo, where a(x)~(l/2x//7r)21/12x1/4 exp( — (2x/2/3)x3/2)

is the decaying solution to the Airy equation a" — 2xa = 0 and k± are constants:

k+ > 0 > /(_.

The situation is sketched below in Fig. 1.

As we remark in Sec. 3, the existence of the lower solution y_(x) can be obtained as a

special case of a theorem of Hastings and McLeod [3], This solution is fairly easily found in

the present case and in Sec. 2.2 we provide a proof which differs in some respects from that

of Hastings and McLeod. The solution y+(x) does not follow their theorem and is more

awkward to deal with. It is considered in Sec. 2.3. The main problem in dealing with
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Fig. 1. The two solutions of Eq. (1).

solutions lying above y = — | x | is of showing that oscillating solutions cannot satisfy the

boundary conditions at both + oo and — oo.

Before starting the analysis, we note that y" = x2 — y2 is unchanged if xt—> — x. Thus

solutions are either even (_y(x) = y( — x)) or occur in pairs. Using the symmetry we need only

consider the positive half-space x > 0 since a symmetric solution of (1) corresponds to a

solution to the boundary-value problem with _y'(0) = 0, y(x) ~ — x as x—> + oo and a

nonsymmetric solution corresponds to a pair of solutions with/(0) = + a # 0, y(x)  

as x—> oo. It will therefore be convenient to consider the initial-value problem

y" = x2 — y2, y(0) = (i, /(0) = a. (2)

2. Proof of theorem. We prove the theorem with a number of lemmas. We first show

that no solution to (1) can cross y = — | x |.

2.1 Solutions cannot cross y = — | x |.

Lemma 1. There is no solution to (1) which crossesy = — |x| withy'(x) < — 1 for x > 0 or

/(x) > 1 for x < 0.

Proof: Consider x > 0. Since y" < 0 for_y < — x and / < 1 aty = — x, y' and hence y

must continue to decrease after y crosses — x. Hence y cannot be asymptotic to — x; in fact

y, y'—> — oo and y ceases to exist at some finite x. Similar arguments apply for x < 0. In fact



SECOND-ORDER BOUNDARY-VALUE PROBLEM 55

it is easy to see that any solution lying below y = — | x | with | y'(x) | > 1 at some point must

blow up at finite x.

Lemma 2. There is no solution to (1) which crossesy = — |x| withy'(x) > — 1 for x > 0 or

y'(x) < 1 for x < 0.

Proof: Again we take x > 0. Suppose such a solution y(x) exists; then it lies below

_y = |x| at x = 0, and, from the proof of Lemma 1, if it is not to blow up, then

|/(0)| = a0 < 1. Let y(x) cross y = — x at x = X! with /(xj — at. We consider the first

integral of (1):

/(x)2 /(0)2 >'3(x) - >'3(0) 2
- + x y(x) - 2

2 2 3

Letting/(x) = y(x) + x and evaluating (3) on the interval (0, xt) we have

a? - ol20 y3(0) <"XI

x_y(x) dx. (3)

xf(x) dx. (4)
o

Repeating the process on the infinite interval (0, oo) and using the limiting behavior (y(x),

/(x)) ~ ( —x, 1) we have

1 - «o >-3(0)

Subtracting (4) from (5) yields

1 — a?

Jx 1

x/(x) dx. (5)

xf (x) dx. (6)

Since y(x) > — x for x e (xl5 oo) the integrand is positive; hence the right-hand side of (6) is

negative and thus ocf > 1. In the above we have used the fact that y(x) cannot recross

y = — x, which follows from Lemma 1.

We now show that in fact |ax| < 1, thus obtaining a contradiction. Note first that

clearly > — 1 or y(x) could not cross y = — x at all. However, since y'(0) = a0 e ( — 1, 1)

and y" < 0 for x e (0, xj we also have < 1. Thus | olx \ < 1. A similar argument applies

for x < 0.

Lemma 3. There is no C1 solution to (1) with _y(0) = 0.

Proof: Suppose y(x) is such a solution and let /(0) = a0. Using the boundary condi-

tions at x = oo and the integrals (3) we obtain

\ -o.l= -A xf (x) dx = F, (7)
o

where/(x) = y(x) + x is positive if a0 > — 1 and negative if a0 < — 1, since in the former

case y > — x for all x > 0 and in the latter y < — x for all x > 0. The latter choice yields an

immediate contradiction, since 1 - 0Cq < 0 while F > 0. The former choice implies that

1 _ (xl = F < 0 and thus a0 > 1. But if a full solution of (1) is to exist this implies that the

boundary-value problem +x asx—> —oo must also be satisfied, or, reflecting about

x = 0, that the solution based at (0, — a0) must also be asymptotic toy=— xasx—>+oo.

But then for that solution y'(0) = -a0 < -1, and as we have already seen, we obtain a

contradiction from (7).
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We have now established that solutions to (1) fall into two distinct classes, those lying

above y = — |x| (and asymptotic toy=+xasx—>±oo from above), and those lying

below y = — | x |. We now study these two classes.

2.2 Solutions lying below y = — | x |.

Lemma 4. There are no C1 nonsymmetric solutions of (1) below y = — | x |.

Proof: Since y" < 0 for y < — | x | any solution has at most one maximum. Suppose,

without loss of generality, that this occurs for x < 0, so that the solution is monotonic for

x > 0 with y\x) e (— 1, 0) and /(x)—> — 1+ as x—> oo. Let y'(0) = a0 e (— 1, 0). The exist-

ence of a full solution implies that the two boundary-value problems

y" = x2 - y2, y(0) = a0, y(x) x

x—>oo (8)

v(0) = - a0 y(x) x

must be simultaneously soluble. Suppose that they are, and denote their solutions by

ya(x)(^(0) = a0), yb(x)y'b(0) = — «o)- We claim that ya and yb cannot cross and cannot both

be asymptotic to — x.

First suppose ya crosses yb from above at x = xt > 0. Then, from the integral (3), we

have

y^i)2 - j4(*i)2 = -2 x{ya(x) - yh(x)) dx. (9)

But since ya > yb for x e (0, xt) the right-hand side is negative, while we require

y'a(xi) < y^Xj) < 0, and hence y'Jx^2 > y'b(xi)2, for crossing to occur. Taking the limit as

xt —* oo and using y'a, y'b —i► — 1 we again obtain a contradiction:

0 = — 2 lim x(ya(x) - >'(,(*)) dx < 0, (10)
o

since in view of (9) ya(x) > y^x) for all x. Thus yb and ya cannot both be asymptotic to — x

as x—» oo and hence no C1 nonsymmetric solution can exist.

Lemma 5. The solution y0(x) with (y0(0)> yb(0)) = (0, 0) remains above y = 0 for all x > 0

and hence remains bounded for all finite x.

Proof: Since the solution is symmetric we only consider x > 0. Suppose that yoC*) first

crosses (or has a minimum on) y = 0 at x = xx. Using the integral (3) we obtain

^i) = -2 J xy0(x) dx. (11)

It is clear that y0(x) > 0 for x 6 (0, x^, since yl > 0 initially. Thus the right-hand side is

strictly negative and we obtain a contradiction. It follows that y0M > 0 for all x > 0 (and

hence x < 0 also), and that y0(x) remains finite for all finite x, since y" < 0 for y > \ x \ and

thus y' must decrease in that region until y recrosses y = | x | and reenter the region

y e (— | x |, | x |). In fact y0(x) oscillates about y = +1 x | as x —» + oo.

Lemma 4 shows that, for y < — | x |, we need only consider symmetric solutions

(yb(0) = 0). We next show that there is such a solution to the initial-value problem (2) with

y(0) = /?o < 0, which ceases to exist at finite | x |.
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Lemma 6. There is a constant /?_ = —(3/2)1/3 such that, if y^(0) = P < P^, _y^(0) = 0 then

the solution yp(x) ceases to exist at finite x.

Proof: Again we take x > 0. Letj^(O) = /?. Integrating Eq. (2) from 0 toxj directly we

have

y'e(xi) = Xi/3 - | yj(x) dx. (12)

Since yp < 0 for yp < |x |, y'fi decreases and thus j^(x) < P forx e (0, —/?]. Using yj(x) > p2

and setting X! = —j?, (12) yields

y'p( — P) < 2/?3/3. (13)

Choosing p < f}_ = — (3/2)1/3, we have y'p(x) < — 1 and yp(x) < — x at x = —f}. Now since

y'p(x) < 0, yp and y'p will continue to decrease and in fact they both go to — oo at finite x.

Clearly this behavior persists for all yp, with yp(0) < P - .

Proposition 7. (Existence). There is at least one symmetric solution y < — | x | to the

boundary-value problem (1).

Proof: Lemmas 5 and 6 show that, for yo(0) = 0, y0W remains bounded for all x, while

for y^(0) < P - , yp(x) ceases to exist at finite x. The continuous dependence of solutions on

initial conditions implies that there must be at least one member of the family {>>a(x) | (y^O),

y'M = (a, 0), a e (/?_ , 0)} such that neither blows up at finite x nor crosses y = — x

from below and subsequently oscillates about y = +x (recall Lemma 2). Such a solution

can only be asymptotic to y = — x from below.

Lemma 8. (Uniqueness). The solution yj^x) of Proposition 7 is unique.

Proof: Suppose that a second such solution^ withy^O) = p # a exists. We claim that

yfi can neither cross nor be asymptotic to it (and hence also to — x) as x—> oo. For

simplicity and without loss of generality, assume P < a < 0. Suppose yp crosses ya from

below at x = xt; then, from the integral (12),

y'p(*i) - y*(*i) =

XI

,2/v\ ,,2,iyx(x) - yj(x)) dx. (14)

Since yp < yx < 0 for x e (0, x^ the integral is negative, while we require

y'J<xi) < ^(xi)(<0) for crossing to occur. Thus yp(x) < ya(x) for all x. Next suppose yp,

~ — x as x—* oo and take the limit in (14) to obtain

0 = lim 0£(x) - yj(x)) dx. (15)
'o

Again the integral is strictly negative and we obtain a contradiction.

We now turn to the solutions lying above y = — | x |.

2.3 Solutions lying above y = — | x |.

Lemma 9. There is a constant P+ > 0 such that, if ̂ (0) = P > P+ , y'p(0) = 0, the solution

yp(x) crosses y = — | x | and ceases to exist at finite | x |.

Proof: The idea of the proof is similar to that of Lemma 6, but since it involves rather

lengthy computations and estimates, we relegate it to the Appendix.
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Proposition 10. (Existence). There exists at least one symmetric solution to (1) satisfying

y(x) > - | x |.

Proof: As in Proposition 7, this is a consequence of Lemmas 5 and 9 and the con-

tinuous dependence of solutions upon initial conditions.

Lemma 11. No solution to (1) possessing a minimum exists.

Proof: Consider x > 0. We use the transformation y = g — x to rewrite the equation as

g" = 2xg-g2, (16)

the boundary-value problem becoming g'(0) = +\,g{x)—>0+ asx —» + oo. If a solution y(x)

exists possessing a minimum at some x > 0(y(x) e ( — x, x)) then it is easy to see that this

must be followed by a maximum (y(x) > x) and a second minimum. Maxima and minima

are separated by points at which y crosses +x. It follows that if y possess two successive

minima then g also possess two successive minima. Let these occur atxi andx2 (possibly

x2 — oo). Suppose that g(x2) < g(xt) and denote the point x e (xx, x2] at whichg(x) = g(xt)

by x3. Then g'(x3) < 0. We use the first integral of (16) evaluated between xt and x3 to

obtain

= (*3 - *i)02(xi)

*3

g(x)dx. (17)

But, since g(x) > g(x J > 0 for all x e (xl5 x3), the integral is greater in magnitude than the

expression (x3 — x1)gf2(x1) and thus the right-hand side of (17) is strictly negative and we

obtain a contradiction. Hence successive minima of g must lie at greater and greater

distances from g = 0, showing that the solution y = g — x cannot approach y = — x as

x—► oo.

Lemma 12. There are no C1 nonsymmetric solutions to (1) with y > — | x |.

Proof: Given Lemma 11, the proof is in essence identical to that of Lemma 4.

Lemma 13. The symmetric solution of Proposition 10 is unique.

Proof: Let y„(x), with yJO) = a > 0, y'^0) = 0, be the symmetric solution with greatest

>><,(0). Thus any solution yv(x) with yy(0) = y > a. crosses ya and y = — | x | from above and

subsequently yy—> — oo at finite x. Consider a solution yp(x) with >^(0) = /?, e (0, a). If

yp ~ —x there are two possibilities: either it remains below ya(x) for all x or crosses it from

below and is then subsequently asymptotic to — x.

We consider the equation

z" = — z(z + 2y Jx)); z(0) = /? — a < 0, z'(0) = 0 (18)

for the difference z = yp — yx. Since z + 2_ya = ya + yp > 0 initially we have z" > 0 and z'

becomes positive and hence z(x) increases. This behavior persists until some point x = x0,

where z" = 0 and z' reaches its maximum, at which point either z = 0 (yfi crosses yj or

z + 2ya = 0 (yp = -ya). Suppose that the latter occurs, so that yp remains belowya. There

will then be a second point xb > xa such that yp{xb) < ya(x6) andy^Xj) = y'x(xb) (z' = 0) with

y"p = xl-yl< yl = xb — y\ (z" < 0). Thus z' will become negative and, since z" < 0 for all

x > xb, if yp remains below ya, z' will remain negative and thus z will decrease forx > xb,

becoming more negative, until its magnitude is sufficiently large that yp = yx + z < — x.

Thus yp cannot in fact be asymptotic to — x, since it must cross — x (cf. Lemmas 1-2).

Now suppose that yp does in fact cross from below at some finitex = Xj (in fact the
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analysis above implies that this must be the case). We claim that, atxl5 y'a(xx) < y'^x^) < 0,

since y'p(x) < 0 for all x if yp ~ — x, for such solutions can have no minima by Lemma 11.

Hence y'x2(xi) > y'p2(xi)- To complete the proof we show that yp cannot be asymptotic to

-x if it crosses ya once at x = Xj with y'^x^ — y'p{xx) > 0. Using the integral (3), sub-

tracting, and taking the limit we obtain

0 , + 2 lim

0 = y.M-Y, fa) + 2|im
2

x(yp(x) - ya(x)) dx (19)

x(yp(x) - y(x)) dx (19)

where we have used the limiting behavior, , yp ~ — x and the fact thaty^Xj) = y^Xi). But

yp > ya f°r x > xi and thus the right-hand side of (19) is strictly positive and we obtain a

contradiction. It remains to check that yp cannot recross ya. To see this, suppose that it

does, at x = x2, where y'p(x2) < y'x{x2) < 0, so that y'p(x2) > y«2(x2). Using the integral (3)

once more we find

fJ XI

y'p (^2) - y*(x 2) = y'p(xi) - y'i(*i) + 4 I x(ya(x) - yfi(x)) dx (20)

which again leads to a contradiction.

Thus we have shown that yp cannot remain below yx for all x, but must cross it at some

point, after which is must remain above yx.

2.4 Asymptotic properties. We have now proved all but part (c) of the theorem. To

obtain the asymptotic estimates, we let y = g — x and consider the linearized system

g" — 2xg = 0; g(x)—>0 as x—»oo (21)

arising from Eq. (16). A similar equation is obtained for x—> — oo, since our solution is

symmetric, and we shall only consider x > 0. Letting x = 21/3x and g denote d2g/dx2, we

obtain the standard Airy equation

9 — xg — 0, (22)

the solution of which, as x—> oo, is given by a linear combination of the functions

Ai(x) ~ i7r"1/2x+1/4 exp( —2/3x3/2), (23a)

B, (x) ~ n ~ ll2x~1/4 exp( + 2/3x3/2). (23b)

Taking the decaying exponential Ai(x), for we are interested only in bounded solutioift, we

obtain

_L_ -,1/12vl/4 „vr,f _ 2^/2 3/2g(x) ~ 2 ' x ' exp( - x3/2 ). (24)

To complete the proof we note that y = g — x and that the upper solution _y+(x) ap-

proaches y = — | x | from above while the lower approaches it from below, which gives the

appropriate signs for the constants k+ , k_ .
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3. Remarks. In a recent paper Hastings and McLeod [1980] study a similar problem:

y" = xy + 2y\y\"; y(x) ~ 0 as x—>+oo, y(x)~( —ix)1/a as x —> — oo, (25)

where a is a strictly positive real number. They prove existence and uniqueness for a

positive solution y > 0, y' < 0 and discuss its asymptotic properties. If we let y = — x — g

then Eq. (1) becomes

g" = 2xg + g2\ g(x) ~ 0 as x—>+oo, g(x) 2x as x—> — oo, (26)

which, after a further scaling transformation, is a special case of (25) with a = 1. However,

the Hastings-McLeod result yields only the solution with g > 0 (y < — | x |).

Techniques similar to those in the present paper have also been applied to a boundary-

value problem involving the first Painleve transcendent, which arises in studies of heat

transfer in the earth's mantle. The problem is defined on the positive half-line

y" = y1 — x, y(0) = 0, y(x) ~ + Jx as x —> oo (27)

and again one obtains two solutions. In this case one is monotonic and the other has a

single minimum (cf. Spence and Holmes [5]).

4. Appendix: Proof of Lemma 9. As before, we need consider only the region x > 0,

since the solution is symmetric. Now any solution based at y(0) = /? > 0, y'(0) = 0 decreases

until it crosses y = +x at some point x = xt with slope/(x^ = y < 0. The slope y may be

estimated by noting that

y'(xi) = y = x\!3 -

XI

,2,y M dx, (28)

(cf. Eq. (12)). Certainly y2(x) > x\ for x e (0, xj, and thus we have

7 < x\!3 x\ dx =-2x1/3. (29)

We now wish to show that, if | y \ is sufficiently large, then the solutions must subse-

quently cross y = —x from above and hence cease to exist at finite x (cf. the proof of

Lemma 1). Suppose y(x) crosses y = — x at x = x3; then clearly y(x) lies below the line

y = S(x — xc) and above y = y(x — X;,) for x e (x1; x2), where xb, xc and x2 are the points

indicated in Fig. 2. Note that x3 < x2, and we select x2 such that y'(x2) < S. This ensures

that y(x) cannot cross the line y = <5(x — xc). We note that y < 3 < 0.

Simple computations show that

xb = (7 - \)x\/y, xc = 2x1x2/(x1 + x2), S = (Xi + x2)/(x! - x2). (30)

We also note that xb — xx = —xjy and x2 — xc = —x2/S. We now estimate the slope of

y(x) at x = x2 :

y\x2) = y +
*2-X?

y2(x)dx. (31)
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Thus we have

or, using (29),
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\y=-x

Fig. 2. Proof of Lemma 9.

*2

y (x) dx > y2(x - xb)2 dx +

X2

;2/v v \2S (x — xc) dx
'*1 Jxi Jxc

J%Xb~X 1 r X2~XC

y2e dt + S2y2 dy
0 Jo

= -telly+ x\/S). (32)

y'(*2) < y + -j- (i + i/<5) + - i )> (33)

(l+i) + x;(l-l). (34)

(Recall that y < 6 < 0.) Now, as noted above, a sufficient condition for y(x) to lie between

the two straight lines as claimed (and hence to cross y = — x atx = x3) is that/(x2) < S (we

clearly also require 3 < — 1, or y = <5(x — xc) does not cross y = —x as shown). Using

<5 - 1

*=irrrf ■ (35)
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in (34), our requirement becomes

Now we can pick /? sufficiently large to ensure that the first crossing point*!, and hence y, is

as large as we wish. So pick | y \ > 2x1/3 > | <51 1, in which case the bracketed expression

approaches the limit

V3 V3

f{ (37)
and, since we have

y < (38)

we obtain the desired result. Thus y(x) must be as shown in Fig. 2, and hence must cross

y = —x at some x3 e (xu x2) and subsequently cease to exist.
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