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ON A GEOPHYSICAL INVISCID VORTEX*

By ROBERT A. GRANGER (U.S. Naval Academy)

Abstract. We investigate the special case of an inviscid axisymmetric vortex rotating

steadily in an atmosphere having an adiabatic lapse rate. We show that the analytic

solution of the governing equations depends on the source strength of the vortex. The

technique used is based largely on an unpublished report of Lilly [1],

Introduction. In this note, we consider an inviscid vortex rotating in a stratified envi-

ronment. We develop the equations of linear momentum in combination with the conser-

vation of energy, where the centerline vorticity and the temperature are assumed functions

of altitude. The experimental results of Granger [2] were used for the centerline vorticity

distribution. The type of geophysical inviscid vortex treated in this note is dictated by the

type of distribution one uses to describe the potential temperature, and this is largely

governed by the range in altitude one wishes to consider. For certain weak strength dust

devils, one might be interested in elevations less than 10 km such that the lapse rate is

greater than adiabatic. For tornados, the altitude might extend to 20 km such that the lapse

rate is less than adiabatic. We shall treat the neutral stability case where the lapse rate is

adiabatic. Furthermore, we shall follow closely the theoretical development used by Lilly

[1] and use his relationship of the normalized temperature with elevation.

Development of the governing equation. Commencing with Lamb's equation for

steady axisymmetric vortex flows, where the radial and axial velocity components of fluid

motion are expressed in terms of the stream function \l/{r, z), and the tangential velocity

component is expressed in terms of the circulation T(r, z),
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2^rTz\2^r) = ~pd'z+Tz[Y + 9Z) (3)

Examining the second equation of linear momentum, one notes that this is nothing more

than a statement of the conservation of circulation, such that T = r(^). Considerable

simplification results if the azimuthal vorticity component (e is incorporated into Eqs. (1)
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C = 0.1

Figure 1. Dust Devil's Axial Velocity w U.n) versus n for Various Axial
Locations, c, for aacj = k2

and (3). Thus

i <3(r2/2) # , i # K 1 dp . 5 (V1 , ,
13 ' — + 7 — Ce = 7 ~ + Z! ( — + 9Z ) (4)4n r dip dr r dr p dr dr \ 2

comes from Eq. (1) and

i # „ , i d(r2/2) dip i dp , a /f2 , ,

r dz 0 An2r2 dij/ dz p dz dz \ 2 ^
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Figure 2. Dust Devil's Axial Velocity w (;,ri) Versus n for Various Axial
Locations, ?.

comes from Eq. (3). Eqs. (4) and (5) are combined to yield

4^? d(y)+ H # = 7 + j(t + 9Z)' (6)

which was originally obtained by Lilly [1].

Defining <t(r, z) as the potential atmospheric temperature, the conservation of energy

can be expressed as

8z 8r dr dz
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" " P" = 1

c « o.i

t « 0.3

Figure 3. Dust Devil's Axial Velocity w (?.n) Versus n for Various Axial
Locations, c

which states the potential temperature, like the circulation, is exclusively dependent upon

the stream function.

Since the adiabatic process is limiting in regards to vertical stability, gas particles that

move vertically at constant entropy experience a change of temperature according to the

familiar rate expression for an ideal gas

d(In <D) = Cp d(In T) — R d{In p) (8)

Substituting Eq. (8) into Eq. (6) results in

1 d(r2/2) , , CpTd<t> dfV2 . „
~^n ~ + t + — = — \ — + 9z + cpT) (9)
4n2r2 di// r <b d\p d\jj \ 2
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Before applying the thermodynamic relationship given by Eq. (8) to Lilly's momentum

equation (6), we first should obtain a reasonable approximation for the temperature vari-

ation with elevation. The atmosphere is conditionally unstable above a relatively shallow

moist layer with a weak inversion separating the moisture from the region of instability. A

particular application would be a tornado that grows with a mesoscale squall line. For this

example, the instability level increases, inversion is eliminated, and the lapse rate cl > xad .

Thus,

T d(ln<t>) =-!<**.- a\dz. (10)

For an isentropic atmosphere,

T -gz

<£ CpO0'

such that upon integrating Eq. (10)

(11)

«#) = <Dm„ (12)

where Omax is the atmospheric potential temperature at the altitude z equal H, andz^ is the

altitude of the streamline ip at an infinite radial extent. The analysis is adapted to mid-

latitude atmospheres for spring through fall where o.ai — a = 3° K/km.

Attention is next focused on the particular class of geophysical vortices experimentally

studied by Granger [2] having axial variation of centerline vorticity governed by

,, „ kzT(r,z)
<A(r> z) = ^—, (13)

where the constant k is based on the source strength of the vortex and is a parameter to be

varied in the analysis.

Substituting the assumptions of temperature and vorticity into the momentum equation

(9), one obtains the governing differential equation of a class of inviscid vortex motions.

d-f)F2/3 r,„

k2r,i2 o-AH2 d2F 1 d2F~

^rw+7,w\-*F-®=° (14)
where

F= l-Mv, (15)

1 = (r/r0)2, (16)

f = */", (17)

R ^^max H r0
(18)

and is the stream function at zx, equals zero such that at zx equals H, the stream

function is zero. We seek solutions of Eq. (14) subject to boundary conditions.

At the vortex centerline r equal zero, the radial and circumferential velocity components
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F = 10

Figure 4. Dust Devil's Axial Velocity w (c,n) Versus n for Various Axial
Locations, 5.

vanish and the axial velocity w is a maximum, resulting in

®rJU (>9,
0 C

F(0, 0 = 1.0, (20)

,21)
Sri

At an infinite radial extent, all three velocity components vanish, such that

dF(co, £) dF(00, f)

drj
= F(oo, a = 0. (22)
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_L i
aad~ k7 = 100

Figure 5. Dust Devil's Axial Velocity w (s,n) Versus n for Various Axial
Locations,

Along the ground the axial velocity must be zero so that

3M-0t (23)
Si

There are several methods available to solve Eq. (14). The example below shows one such

technique.

Example. Consider the case of an inviscid vortex rotating steadily in a neutrally stable

atmosphere. The similarity transform

W, rj) = Ar,°eg(e), (24)

is substituted into Eqs. (14) and (15), where the similarity variable e is defined as

£ = rjcZd (2f l
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with the result

4[a(a — 1 )rj~i^2g + (a2 + lac — a) rj'1^2eg' + c2rj~1£2e2g"]

+ *alb(b - 1)0 + (d2 + 2bd - d)eg' + d2e2g''] + i^fjg = 0. (26)

Values of a, b, c, d were sought which would collapse Eq. (26) to ordinary form. Values

a = 0.618034 (27)

b = 0.5 + [0.25 + (1/a- l/fc2)]1/2 (28)

c = 1.0 (29)

d=- 2.0 (30)

were obtained using the boundary conditions given by Eqs. (19H23). The analytic solution

of Eq. (26) resulted in

^ /•_/.. \1.236068t-iis\b,(rH\
f- (r, z) = (r/roy 360 8(z/H) J A — (31)
"A 00 VozJ

for the dimensionless stream function.

The above solution is similar in form to the result obtained by M. G. Hall [3] for a class

of geophysical vortex flows that might be found in hurricanes, leading-edge vortices and

bath-tub vortices. Using the stream function of Eq. (31), the dimensionless axial velocity w

was evaluated. The results are presented in Figs. 1-5 for a range of values of atmospheric

and swirl conditions, (l/aad — 1 /k2). The figures show that there can be significantly large

axial velocities in the vortex forfl/a^ — 1/fc2) > 10 and at the higher elevations. This is not

surprising, as many investigators (e.g. Granger [2]) have shown this to be the case for both

viscous and inviscid vortex flows. Though the present vortex is inviscid, the slopes of the

curves in Figs. 1-5 indicate stretching of vorticity. Part is due to a thermal buoyant jet, but

the main reason is due to the imposition of the source (or sink) by the condition given by

Eq. (13). One further notes in the figures a continuous shortening of vortex tubes parallel to

the axis. A physical explanation might be that air moves into the jet, stretching the tubes as

they are being drawn across the outer region of the jet. It could possibly be that this

convection amplification of vorticity is the key in both the formation and persistence of

certain geophysical vortices, among which might be the tornado and the dust devil.
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