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Abstract. Hydrodynamic lubrication is concerned with a particular form of creeping

flow between surfaces in relative motion where cavitation takes place. The determination

of the free boundary of the cavitation area is then of fundamental importance for the

computation of the characteristics of the mechanisms. Different conditions at the free

boundary have been introduced. We study two of them and compare corresponding solu-

tions with respect to film extent and pressure repartition.

Introduction. The resolution of the so-called Reynolds elliptic equation using a vari-

ational inequation modeling is well known [1, 2, 3, 4], both from mathematical and

numerical aspects. Unfortunately, since the cavitation area is restricted to rest in the

divergent portion of the bearing, the solution obtained in this way may be unrealistic and

does not always respect the mass flow conservation law in the cavitation area, especially

when the supply line is not located at the maximum gap.

Numerous models have been introduced in order to explain the various aspects of the

cavitation phenomena [5, 6, 7, 8], If tensile strength and inertial effects are neglected, [5]

gives a good basis for further developments by relating, in a one-dimensional cavitated

convex slider bearing, the mass flow, the supply pressure and various breakdown con-

ditions, the supply position being located at infinity. If the supply position and the supply

pressure are given, as usually in a journal bearing, the differential problem studied in [5]

becomes a two-point boundary value problem where not only the breakdown position

but also the beginning of the oil film are unknown. It is common practice that a regular

condition on the gradient of the pressure is taken at the film rupture whereas an eventual

discontinuity is allowed for this gradient at film reformation (as in the articles by Elrod [6

p. 37, Floberg [6 p. 31,7 p. 138 and 9,10]).
In the present paper, we study the mathematical aspects of this modeling (problem (P))

for an infinitely long journal bearing with zero supply and cavitation pressure whatever

the eccentricity e and the supply position (f>. It will be noted that we must recall the

variational inequation modeling (problem (PV)), especially the study of the film extent,

before giving an existence and uniqueness theorem for the problem (P).

It is of interest to notice that the solution of problem (P) is always less than that of

problem (PV). The coincidence of both solutions is possible only under precise operating
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conditions; i.e., the input mass flow at the supply line must be the greatest compatible

with the external boundary conditions.

1. Physical problem and preliminary results. The lubricating region Q = ]0, 2n[ of

the bearing can be divided into two distinct zones. In the first zone i) +, where the fluid

film is complete, the usual Reynolds equation (1) applies and the pressure p(x) is positive.

In the second zone , which is cavitated, only an unknown fraction 0(x) of the film gap

h(x) is assumed to be occupied by the fluid and the pressure is assumed to be zero (see

Fig- 1).

The unknown boundary (ct) between Q + and fi0 is the free boundary. Applying the

continuity equation to the dimensionless mass flow [6], 9h — h3 (dp/dx), we obtain the

following problem (P) with (0, p, a) as unknowns:

Problem (P):

on Q +: j- (h3 = y, 0=1, p > 0; (1)
ax \ ax J ax

on Q0: — (Oh) = 0, 0 < 0 < 1, p = 0; (2)
dx

on (a): h3 ̂  = (1 - 0)h; (3)
dx

on the supply line: p(0) = p(2n) = 0. (4)

For a journal bearing, h(x) is defined by (5) where e and </> are geometrical data:

h{x) = 1 — e cos (x — 0); 0 < e < 1, 0 < <p < 2n, <f> / n. (5)

Remarks. Due to the lack of side leakage, the input and output mass flow must be

equal, but the supply line may be a discontinuity line for 6 if the film starts at x = 0.

Let us note that S, = 0(0 —) = 0(271 — ); then we have

^(0) = 0(0 + )h(0) - h3(0) d/(0 + ). (6)
dx

(3) implies that at the end (ct + ) of a non-cavitated area (i.e. dp/dx < 0) we have

<0=1, dp/dx = 0 (7)

whereas at the beginning (a —) of H + , 0 and dp/dx have a jump.

0+ TT °* no 2tt

Fig. 1. Typical h(x), p(x), (Hx) aspects.
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Then the following results hold for the shape of the cavitated area and the existence of

a lower bound for the input mass flow.

Theorem 1. If ft + is not empty, ft + is a connected set and dh/dx > 0 on a +.

Proof. Let [fcl5 a2] be a cavitated area between two non-cavitated zones Q, + and

Q2 + ; we have, by integrating (1) in ft1+ and fi2 +:

h\x) ~ = h(x) - hf, i = 1, 2 (8)

where hf is the film thickness at the point where p(x) is maximum in each Q,+. From (2)

and (7) we have: /if = h% = hibj = d(a2^)h(a2), and this is impossible for the given film

gap (5).

Corollary 1. For all £, with £h(Q) < hmin (hmin = 1 — e), problem (P) has the unique

solution p = 0, 6(x) = £,h(0)/h(x).
Proof. This is obvious from (2), (8) because existence of a point <r+ would imply:

£h(0) = d(a + )h(a + ) = h(<r + )> hmin.

2. The variational inequality modeling (Problem (PV)). We recall here the mathemat-

ical formulation [1] of problem (PV) and study the shape of the non-cavitated area S1R+.

Let Hl0(Q) be the Sobolev space of square-integrable functions with square-integrable

derivatives, which are zero for x = 0 and x = 2k. Let K be the closed convex set defined

by: K = {</> e //J(fi), </> > 0 a.e. in Q}.
It is well known [1, 2, 3] that there is a unique function pRe K which is a solution of

the variational inequality:

h3 ̂  2A dx >
n dx dx

dh
(<P " Pr) dx V</>, </> e K.

n dx

pR is continuously differentiable and satisfies:

dh
on CiR0 = {x e Cl/pR(x) - 0}, pR = 0, — > 0, (9)

d f dpR
on QR+ = {x e Cl/pR(x) > 0}, — yh —J = dh/dx,

dpR
on aR (the Reynolds free boundary surface): pR = —— = 0. (10)

dx

Moreover, we have the following result:

Theorem 2. Each connected set of QR+ has at most one free boundary, so 0^+ begins at

x = 0 or ends at x = 2n.

Proof. Integrating (1) on fis+ = ]a, ft[, where Eq. (10) holds, if pR is maximum for

x = x*, we have

dx dx dx

and then h(a) = h(b) = h(x*), which is impossible from (5).

So pR has one of the three patterns shown in Fig. 2. The usual one-hump pressure
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2c

Fig. 2. Typical pK(x) profiles.

profile starting at the supply line (Fig. 2a), a two-hump profile (Fig. 2b) or a one-hump

profile ending at the supply line (Fig. 2c). Numerical computations demonstrate (Fig.

4®) that for a fixed eccentricity, all these three configurations are actually obtained as

the supply angle (p varies. For each of these three shapes, we study now whether or not pR

may also be solution of problem (P).

Corollary 2. If pR has the (Fig. 2a) profile, then(pR, 6R, aR), with0R(x) defined on£lR0

by h{aR)/h{x), is the solution of problem P corresponding to the value £R of the inlet flow

given by:

ZRh(0) = h(0)-h3(0)^(0).

Corollary 3. If pR has the (Fig. 2b) profile, the result of Corollary 2 still holds with pR

limited to its first hump only; pR itself is not a solution of the initial problem due to

Theorem 1.

Corollary 4. If pR has the (Fig. 2c) profile, it is not a solution of the problem (P);

otherwise we would have from (2), (7):

Vx e nK<) 0(x)h(x) = 0(aR)h(oR) = h(aK)

and then (9) implies 6(x) > 0(<jr) = 1.

3. Existence and uniqueness theorem for problem (P). We prove that problem (P) has

a family of solutions related to the input mass flow £ and increasing with respect to £.

Moreover, all solutions of problem (P) are less than pR and the domain of validity of ^ is

directly related to the graph of pR.

Theorem 3. Let us suppose that pR in Sec. 2 has a (Fig. 2a) or (Fig. 2b) shape. Then for

each value of £, £ e ] (1 — e)/h(0), CR], there exists a unique solution (p, 9, er) of problem

(P) and p is a monotone function of £.

Proof. Let b be the unique point of Q defined by:

h(b) = £h(0) and h'(b) > 0. (11)

From Corollaries 2, 3 and (9) we have:

b < aR. (12)
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We will denote by p the solution of the retrograde Cauchy problem:

h3(x) £ = h(x) - h(b), p(b) = 0. (13)

The sign of h'(b) implies that p(b — )> 0. Let w = p — pR; we have from (9)—(12)

Vx e ]0, 6] h3 ̂  (x) = h(<rR) - h(b) > 0. (14)
ax

w{b) = — pR(b) < 0 from Corollaries 2, 3, so w(b) < 0 and p{0) < 0. Then there exists a

positive abscissa a satisfying

p(x) >0 on ]a, b[,

p(x) <0 on ] — oo, a[.

Uniqueness of point a is given by (12) and (5) and prevents dp/dx from being null more

than twice.

Taking 9(x) = £h(0)/h(x) on [0, a[ u [£>, 2n], we have 0 < d(x) < 1, from (11) and (5).
Moreover, (13) may be written:

h3 ̂  (a + ) = h(a) — h(b) = h(a) \ 1 — —( | = /j(a)[l — 9(a-)].[■-a-
So (3) holds with a = a— and b = a + , Uniqueness is given by (11) and (13). The mono-

tonicity of p with respect to £ is shown by considering that b is a monotone function of ^

and using the same argument as in (14).

Theorem 4. If pR has a (Fig. 2c) shape, then for each value of £, £ e ] (1 — e)/h(0), 1],

there is a unique solution (p, 9, a); p(x) is monotone with respect to

Proof. The proof is the same as in Theorem 3, the sign of w = p — pR being studied

on the set [trR, b] which is not empty.

Remarks. In Theorem 3, pR (or the first hump of pR) is the limiting case correspond-

ing to £ = CR, whereas in Theorem 4, pR is a strictly upper solution of the problem P.

The monotonicity of p as a function of £ implies that for £ > ^ max, with £ max = cR

(Theorem 3) or £, max = 1 (Theorem 4), problem (P) has no solution satisfying (4).

4. Numerical results and concluding remarks. Fig. 3 describes the set of values of £

I ■■

rr 2rr

Fig. 3. Domain of validity for the parameter { as a function of supply angle (f>.
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Fig. 4. Pressure profiles for the Reynolds auxiliary problem ® ; the initial problem for { = £ max (T) , and

i = i max/2 @ .
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Fig. 5. Normalized pressure repartition for a 2D bearing using (PV) modelling.
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for which problem P has a nontrivial solution with respect to 4>, for a given eccentricity e.

The upper bound £ max, if it is different from one, is numerically calculated from the pR

solution using an iterative procedure [11]. Various pressure profiles appear in Fig. 4. Fig.

5 illustrates that the typical configurations of the non-cavitated area described by the

present one-dimensional study are fair approximations for not-so-long bearings, even with

a length L equal to its radius R. So we expect that a further comparison of both mod-

ellings in the two-dimensional case would give same results, using the same ideas:

a) the film extent is governed not only by boundary conditions on the pressure but

also by the input mass flow on the supply line,

b) the input mass flow is bounded by values predicted from the solution pR,

c) the violation of mass flow conservation law in the (PV) modelling introduces unrea-

listic non-cavitated areas; this difficulty disappears in the (P) modelling.
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