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Summary. Hydromagnetic flow and heat transfer between two horizontal parallel

plates, where the lower one is a stretching sheet and the upper one is a porous solid plate

are studied in the presence of a transverse magnetic field. Fluid velocities and temperature

distributions are obtained and plotted graphically.

1. Introduction. Srivastava [1] has discussed the flow of second-order fluids with

heat transfer between two plates, one moving and the other at rest. Srivastava and

Sharma [2] have studied the same problem in a Newtonian electrically conducting fluid

in the presence of a transverse magnetic field. Borkakati and Bharali [3] have discussed

the heat transfer in the MHD flow between two coaxial non-conducting porous disks

when one rotates and the other is at rest [4], Recently Gupta and Chakraborti [5] have

investigated the motion of an electrically conducting fluid past a horizontal plate in pres-

ence of a magnetic field, the motion being caused solely by the stretching of the plate.

The study to be reported herein, which is an extension of [5], considers the flow and

heat transfer in the presence of another stationary porous plate through which there is a

uniform injection. Fluid motion is due to the stretching of the plate and the injection

through the upper solid porous plate. It is observed that when the injection velocity and

the magnetic field are constant, the temperature of the fluid decreases with the increase of

the stretching force of the lower plate.

2. Fluid motion. The flow of an incompressible viscous electrically conducting fluid

between two horizontal parallel non-conducting plates is considered in the presence of a

transverse magnetic field. A cartesian coordinate system is used where the y-axis is per-

pendicular to the plates located at y = +h and y = —h. The lower plate is stretched by

introducing two equal and opposite forces so that the position of the point (0, —h) re-

mains unchanged. The fluid is injected through the upper solid porous plate with constant

velocity V0. The induced magnetic field is neglected, which is valid for small magnetic

Reynolds number; the external electric field is zero and the electric field due to polariza-

tion of charges is negligible [5]. Under the above assumptions, the equations governing

* Received May 29, 1981; revised version received January 19, 1982. The authors are grateful to the referee

for his valuable suggestions.
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the steady flow are

du du I dp f d2u d2u

UTx + "Ty-—pTx + "[iP + 3i'

dv dv 1 dp f d2v d2v
"a l"l'a_== ~ _ a" + v T"2 + T~2

dx dy p dy \_dx dy

aB° iu  (1)
p
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du dv
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where u, v are the fluid velocity components along the x and y directions. All variables are

assumed to be independent of z.

The boundary conditions are:

u = cx, v = 0 aty=—h; u = 0, v = — v0 at y=+h (4)

We assume

u = cxf'{rj), v = —chf{t]), rj = y/h (5)

where a prime denotes differentiation with respect to rj and u = cx represents the velocity

of the lower plate with c > 0. Substituting (5) into Eqs. (1) and (2), we have

1 dp 2
■ - — = cx
p dx

1 M2
(6)

■-f = c2h\ff' + jf"\ ^PI Sri [_ R J

where

R = (ch2/v), M = (a/pv)112 B0 h. (8)

Differentiating (7) with respect to x, we have d2p/dxdri = 0, which suggests that we consid-

er

/'" - R(f'2 -ff") - M2f = A (9)

where A is a constant. For small values of R, a regular perturbation scheme can be

developed by expanding/and A in ascending powers of R as

f=YJRnfn, a=y,r"a»- 0°)
n=0 n=0

The coefficients of higher powers of R (n > 2) have negligible contribution; thus we ne-

glect them. By this method we can obtain, theoretically, the approximate solution.

Substituting (10) in (9) and equating like powers of R, we have

f'o - M2f0 = A0, f"; - M2f\ =Al+ (/o2 -fofo), (1 la,b)

etc. The corresponding boundary conditions are

fo = K f'0 = 0, /„ =/; = 0 for all n > 0 at rj = +1,
(12)

fo = 0. f'o = 1, fn =f'n = 0 for all n > 0 at >7 = — 1,

where 1 = (vjch).
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Fig. 1. Geometry of the problem.

Eqs. (11) are solved subject to the boundary conditions (12). The expression for f0 is

/0 = [(AM cosh M — sinh M)r\ + (1 — A)sinh Mrf\l2(M cosh M — sinh M)

+ [(AM sinh M + cosh M) — cosh Mf/]/2M sinh M. (13)

The expression for fu being lengthy, is not shown here. Figs. 2 and 3 show the effects of A

and M on the primary flow velocity and the transverse velocity, respectively. In calculat-

ing the results, we consider up to second-order approximations. When M is constant, the

effect of A on/' is maximum almost at the mid-distance from the plates. The primary flow

velocity increases with A. When A is constant, the effect of the Lorentz force on the pri-

mary flow is to increase it near the upper plate and to decrease it near the lower plate.

Fig. 3. shows that the Lorentz force decreases the transverse velocity, i.e., /, with the

r
Fig. 2. Variation off'(t\) with the parameters A, M.
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Fig. 3. Variation off(rj) with the parameters M.

increase of the magnetic field strength when X is constant, but the value of/ near the lower

plate increases with the increase of A when M is constant.

3. Heat transfer. The energy equation is

Pc,
dT dTl r d2T d2T

" «7j" 'La? + If.
J2

+ 4> + — (14)
a

where cj) = 2 pv
3tA2 / dtA2 1 fdu 5t;\2

dx) + + 2 + dx)

is the viscous dissipation term and the last term is due to ohmic dissipation.

We consider here two different cases: (i) when the plates are maintained at different

temperatures; (ii) when the lower plate is adiabatic and the upper plate is maintained at a

constant temperature.

Case 1. when the plates are at different temperature. The boundary conditions are

T= T, aty= +h, T = T0 at y = -h (T0 < Tt). (15)

Using the expression for temperature T

T=T0 + (c2h2/Rc )
x2

4>(>l) + 71 Ml)
h2

Eq. (14) reduces to (comparing coefficients of and the terms independent of x)

(16)

r = Py R[(2/V -m - (/"2 + M2/'2)], (17a)

4>" + 2\J/ = —PyR[4f'2 +/</>'], (17b)

where Py = (pvcp/k).

We expand </> and i/* in powers of R as

0= £«"</>„, (18)
n=0 n=0



(20)

HYDROMAGNETIC FLOW AND HEAT TRANSFER 465

Using (18) in Eq. (17) and comparing coefficients of like powers of R, we have

4>o = 0, <t>o + 2ip0 = 0, (19a,b)

Vx = PyV-foto -for0 -n1 - M2fol (19c)

4>'i + 2^ = - P y[4/o +/o &], etc. (19d)

The boundary conditions (15) reduce to

<j>„ = 0 = i//n for all n at q = +1,

00 = s. "Ao = °. 4>n = ^n = 0 for all n > 0 at t] = -1,

where

s = (7\ - T0)Rcp/c2h2. (21)

Eqs. (19) are solved subject to the boundary conditions (20):

0o = ^ 0 + f)> "Ao = 0. (22a,b)

The expressions for <py and >f/l are not shown here (in calculating the results, we consider

up to second-order approximations).

The non-dimensional expression for temperature is obtained from (16) as

(T - ToViT, - T0) = + R4>,+^ ("Ao + **i)]

= (1 + tj)/2 + £0! + EX2*1 (23)

where E = R/s and X = x/h. For a moderate distance from y = axis, the second term is

negligible in comparison to other terms [1-3]. Hence (23) reduces to

(T - T0)/(T, - T0) = (1 + r,)/2 + EX2^. (24)

Figure 4 shows the temperature distribution for M = 1, 3 and A = 1, 3 when Py

EX2 = 20. The temperature at any point in the fluid increases with the increase of both A

and M.

Case 2: When the lower plate is adiabatic. In this case, the boundary conditions are

T=T1aiy = h, dT/dy = 0 at y = -h. (25)

Instead of (16), we use the expression for temperature

T = (c2h2/Rcp)^4>(rj) + ^ iP(rj)^. (26)

Proceeding as in case 1, we obtain, again, Eq. (19).

The boundary conditions become

<j)o = s1; ip o = 0, (f>„ = \j/n = 0 for all n > 0 at r] = +1,

4>'„ = i//'n = 0 for all n > 0 at rj = — 1,

where = (T^RcJc2h2).
The expressions for 4>0 and *p0 are

0o = Si, i//0 = 0. (28)

(27)
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Fig. 4. Temperature distributions (plates at different temperatures).

The other expressions are not shown here. At a moderate distance from y-axis, the non-

dimensional expression for temperature is

T/Ti = 1 + EX2 iAi. (29)

Figure 5 shows the temperature distribution for M = 1,3 and 1=1,3 when Py EX2 = 20.

Here also increasing values of M and X result in increasing temperatures at any point in

the fluid.
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Fig. 5. Temperature distributions (adiabatic lower plate).
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4. Conclusion. X increases with the increase of the injection velocity and/or the de-

crease of the stretching velocity of the lower plate. If the stretching velocity is kept con-

stant and the injection velocity at the upper plate is increased, the primary flow velocity

increases and the maximum velocity occurs at the mid-plane of the channel (since the

injection velocity has no effect on the fluid motion at the lower plate; see Eq. (4)). The

same phenomenon is observed if the injection velocity is constant and the stretching ve-

locity at the lower plate decreases. Also F, i.e. the transverse velocity, which vanishes at

the lower plate, increases near the upper plate with increasing X.

The imposed magnetic field is perpendicular to the primary fluid velocity u and paral-

lel to the injection velocity V0. Since the Lorentz force acts on the primary fluid flow (this

velocity is cx at the lower plate and zero at the upper plate) in the opposite direction (see

Eq. (1)), the increase of the magnetic field strength decreases u at the lower plate and has

little effect on the velocity near the upper plate.

The energy equation (14) contains both viscous dissipation and ohmic dissipation. The

temperature changes due to the internal friction which causes viscous dissipation depend

on the flow velocity—it is negligible for small velocities and becomes important at high

velocities. Joulean or Ohmic dissipation represents the rate at which electromagnetic

energy is converted into heat. As the fluid flow velocity and the electric current generated

in the fluid increase with X and the strength of the magnetic field respectively, the fluid

temperature increases with both X and M.
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