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1. Introduction. The identification of spatially varying parameters in systems that can be

described by hyperbolic equations has attracted a considerable amount of interest in

recent years [1-5], The main interest in this area is to make improved predictions of the

response of continuous mechanical and structural systems subjected to various types of

dynamic loads. Such predictions naturally require an adequate knowledge of the parame-

ters which are involved in the system model.

The problem of parametric identification then consists of estimating the spatially

varying parameters. This estimation is generally done by minimizing the difference (often

suitably weighted) between the time history of the response of the physical system

(measured at one or more points, to one or more test inputs) and that of the mathematical

model. The form of the governing equations that describe the system behavior are

assumed to be known a priori.

Such a minimization problem can be construed in the framework of optimization theory

[6], and the complete arsenal of nonlinear programming techniques can be brought to bear

on solving the problem in a computationally efficient manner [2], However, minimizing

the mismatch in the time history of the response (at one or more points) between the

system and the model does not necessarily guarantee that the mathematical model

coincide with that of the real system [3]. This then leads to the problem of establishing the

conditions regarding the nature of the measurements and the location(s) at which they

should be made, such that the spatially varying parameters can be uniquely identified

from the response data.

This paper treats systems of finite spatial extent which can be modelled by the one

dimensional, second order wave equation. Such equations arise commonly in various areas

of mathematical physics such as acoustics, elastic wave propagation, and electromagnetic

theory. Two different questions have been addressed. The first deals with 'partial
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identification' and inquires into the possibility of retrieving all the eigen-values of the

system from time response data. The second deals with the identification of the distrib-

uted coefficients. Sufficient conditions for the unique determination of all the eigenvalues

of the system are obtained, and conditions are determined under which the coefficients

can be uniquely identified by suitable measurements made at one point in the spatial

domain.

Studies done to date [e.g., 7-9] in this area have primarily concentrated on using

response data obtained from impulsive (delta-function) loads applied at the "free" end of

the system. Recognizing the difficulty often encountered in the creation of such a load, we

consider a wider class of loading conditions. Also, we consider a two-point boundary

value problem representing a finite spatial domain rather than a semi-infinite domain.

Furthermore, the partial identification theorem when applied to two different sets of

boundary conditions guarantees complete identification of the system [19].

A sizeable body of literature exists on the identification of distributed systems of the

parabolic type [20]1. Kitamura and Nakagiri [21] have studied the two-point boundary

value problem using, largely, set theoretic methods to establish conditions under which

unique identification of some of the coefficients is possible. While their approach

fundamentally differs from ours, the work of Pierce [22] on parabolic differential equa-

tions, in many ways, parallels the development in this paper. However, the results

presented by us, besides being applicable to a different type of differential equation, are

more extensive and bear greater generality. Kobayashi [23] tackles a slightly different

identification task wherein he tries to represent a distributed parabolic system by an

unknown function.

The work presented herein has been motivated by the need to identify spatially varying

parameters of building structural systems. The usefullness of some of the results obtained

is illustrated through an actual example in this specific application area. Physical interpre-

tations of the mathematical results have been provided as they are encountered.

The work presented herein has been motivated by the need to identify spatially varying

parameters of building structural systems. The usefulness of some of the results obtained

is illustrated through an actual example in this specific application area. Physical interpre-

tations of the mathematical results have been provided as they are encountered.

2. System equations. Consider a system whose response u(x, t) is described by the one

dimensional wave equation

, , 32u 9
P\x)—7 =

a t2 3-*

The boundary conditions are given by

( \9m
a[x)Tx b(x)u — f(x, t). (1)

3 u
fl0«(0,/)-(l -a„)gj(0, t) = go(t) and

b0u(l,/)+(l-b0)^(l,t) = h0(t), (2)

1 We thank an annonymous reviewer for having brought to our attention the work on parabolic equations.
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where 0 < a0 < 1 and 0 < b0 < 1. The initial conditions are given by

m(x,0) = Uq and

u(x,0) = uo. (3)

We assume that

(a) a(x), p(x) > 0 and belong to C2[0,1],

(b) b(x) > 0 and belongs to C^O, 1],

(c) the constants a0 and b0 are known and, are not both simultaneously zero, and

(d) the forcing functions f(x, t), g0(t), and h0(t) are known.

Equation 1 may be thought of as representing the longitudinal vibrations of a rod of

unit length and unit cross-sectional area whose density, p(x), and elastic modulus, a(x),

vary along its length. The coefficient b(x) represents an elastic restraining stiffness term.

The derivative ux(x, t) can be interpreted as the strain in the bar and a(x)ux(x, t) as the

stress acting at location x and time t. As stated before, Eqs. 1-3 arise in several areas of

mathematical physics. We shall use the above physical representation of the problem to

interpret the mathematical results.

3. Some mathematical preliminaries. To develop the conditions for partial identification,

we introduce the eigenvalue problem described by the differential equation

(a(x)ti(x))' - b(x)<t>„(x) + \„p(x)<f>„(x) = 0 (4)

and the boundary conditions

ao<t>n(°) -(1 - ao)</>^(0) = 0, and

Wl)+(l-&o)tf(l)-0. (5)

The eigenvectors {<j>n} form a complete orthonormal set with respect to the weighting

function p(x) [10]. The eigenvalues of Eqs. 4 and 5 can be ordered so that

O<X0<X1<V-" < ^n + 1 ' ' ' •

For the location of the measurement point, we then choose the point x* which belongs to

the complement of the countable set S given by

S = ( x e [0, l] |<#>„(*) = 0 for some n }

The solution of Eqs. 1-3 can then be expressed in terms of the nontrivial eigenfunctions

{4>n} by using the generalized eigenfunction expansion as:

00

u(x,t)= £ \{u0,<t>n)pn(t) +(«<,><#>,,)?„(')]

n = 0

+

+

^ j L dT

£ a(l)[*«(l) - &(!)]?,.(' - T)^(-x)|^o(T) dr

E a(0)[^(0) + <#>„(0)]^„(? - T)4>n(*)|g0(r) dr,
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where

Pn(t) = H(t).Cos (7)

<7«( 0 = ^=^"Sin iK'>

H(t) is the Heavyside step function,

(/.<•») = f1f(x)p(x)<p„(x) dx, (8)
Jo

(/>*») = f1f(x)'t>n(x) dx, and
yo

^,(T) = (/(*> T),</>„(*))• (9)

4. Partial identification. This section deals with the identification of all the eigenvalues

of the system described by Eqs. 4 and 5 through the use of (1) a suitable forcing function,

(2) initial data, or (3) boundary forcing functions.

We present the following theorem on partial identification.

Theorem 1. The eigenvalues {A„} can be uniquely determined if the response u(x*,t),

t > 0, is observed for any of the following five loading cases.

Case 1:

(a) u0(x) = u0(x) = 0,

(b) h0(t) = g0(t) = 0,

(c)/(*, t) =f1(x)f2(t),

(d) /2(0 is bounded, piecewise continuous, and not null,

(e) fx(x) is piecewise continuous in [0,1], and

(f) ( /j, 4>n) ¥= 0 and is bounded for all n.

Case 2:

(a) u0(x) = u0(x) = 0,

(b)f(x, t) = 0,
(c) h0(t) = 0, and

(d) g0(O is bounded, piecewise continuous, and not null.

Case 3:

(a) u0(x) = it0(x) = 0,

(b)/(x,O = 0,
(c)g0(0 = °' and

(d) h0(t) is bounded, piecewise continuous, and not null.

Case 4:

(a) u0(x) = 0,

(b)/0(O = g0( 0 = 0,

(c)f(x, 0 = 0,
(d) u0 is piecewise continuous in (0,1), and

(e)(w0, <j>„) # 0 for all n.
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Proof. Each case is separately proved as below.

Case 1: Under conditions (a)-(c), only the second term of the solution u(x*,t) is

nonzero and is expressed as

u(x*, t) = - f'r^t - t; x*)/2(t) dr, t > 0, (10)
Jo

where

00

r1(t-,x*)= £ </>„(**).(A>«#>„)■ q„(t). (11)
«=o

The eigenfunctions {} are bounded, and the eigenvalues {A„} asymptomatically

increase as w2[ll, 12]. Furthermore, fv being piecewise continuous in each subinterval,

causes |(f1, <#>„)| < Mn~l, where M is a constant, for all «[13,14], Thus the series (11) is

absolutely and uniformly convergent for all t > 0. Furthermore, the series E(Sin nt/n) is

boundedly convergent [15], so that

e~cx\x*)| belongs to Lx(0, oo), for all c > 0.

Also by condition (d)

e "1/2(01 belongs to Lx(0, 00), for all c > 0.

The above two conditions thus ensure that the integral equation (10) has a unique

solution, rY{t\ x*) [16],

Let us assume that two sets of eigenvalues {Xn} and {X n} exist such that identical

responses u(x*, t), t > 0, are obtained to the test input function f(x, t). Thus,

» Sin Kit Sin Kt
ri(t; X*) = L Y„(1) J— = L Yn(1) ;>r- = h(f, X*), (12)

n = 0 n = 0

where

= ct>„(x*)( fi> 4>„) and

Y»(1)= in (■**)(

Since the two series in (12) are both uniformly convergent, the Laplace transform of the

series can be carried out by term-by-term integration. This yields

yn

r0 2lan

1 1

ia„ s 4- ia„

^ v= E
n-0 2'&n

1 1

^ — ia„ s + ia„
(13)

where an = (A„)1/4 and an = (X„)1/4. For the two series to yield identical results, they

must have identical poles. Thus, except for a possible relabelling, Xn = \n and y„ = yn, for

n > 0. The eigenvalues are thus unique. Of course, only those terms which appear in the

series representation (11) can be determined in this manner. But since x* e S, <t>n(x*) ¥= 0,

for all n. Thus the knowledge of the response u(x*, t), t > 0, of the system to the single

input f(x, t) which satisfies the conditions (c)-(f) guarantees unique identification of

{*„}■
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Case 2: Under the assumptions (a)-(c), the response u(x*, t) reduces to

u(x*,t)= f'r2(t - t; x*)g0(r) dr, (14)
Jo

where

00

r2(t;x*)= £ a(0)[<#>„(0) + ^(O)]0„(jc*)^n(r). (15)
71=0

The function a(x) > 0 so that a(0) is not zero. Also [</>„(0) + <#>,',(0)] cannot be zero. If it

were, then Eq. 5 would imply </>(0) = <f>'(0) = 0, requiring 4>(x) to vanish identically.

Noting that J\~n ~ n for large n, the series in Eq. 15 is seen to be uniformly convergent

except at the points, t = 2k, k > 0. Furthermore, the series is uniformly bounded so that

e~c'\r2(t; x*)| belongs to LY{0, oo), for all c > 0.

As before, the integral Eq. 14 thus has a unique solution, r2(t, x*). If two different sets of

eigenvalues {X„} and {X,,} yield the same response, that is, if

r2(f,x*) = r2(f,x*),

we get

OC 00

E T»\(0= I ft(0. (16)
n = 0 « = 0

where

yffl = a(0)[^(0) + ^(0)]^(f).

The series in Eq. 16 may not be uniformly convergent for all t, but can be taken to be

equivalent in the distributional sense [17]. In fact, integrating both sides from 0 to t yields

00 1 — Cos i/XTr 00 1 — Cos i/XTr

£ y„(2)—- L (17)
n- 0 " n- 0 "

The asymptotic behavior of Xn thus ensures that each of the series in Eq. 17 is uniformly

convergent and is therefore integrable. Taking Laplace transforms as before, this yields

X„ = X„ and y,|2) = y,|2), with at most a relabelling.

Case 3: The proof is along the same lines as in Case 2.

Case 4: Using the assumptions, the solution reduces to

OO

u(x*,t)= £ (u0,<l>n)qn(t)<j>„(x*), (18)
n = 0

and noting that w0 is piecewise continuous in (0,1), we get (w0, <#>„) < Mn~l, for large n.

Thus the series is uniformly convergent for all t. If the same response u(x*, r), t > 0, is

evoked by a certain initial velocity satisfying the condition (e), by two different systems

denoted by {A „} and {X „}, then

00 OO

L y„(3)?„(0 = £ ?„<3)?n(0. (19)
n = 0 n — 0
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where

Y„(3) =<*>„(**)("0, <*»„)•

Again, using Laplace transforms, it follows that Xn = \n and yn = yn.

4.1. Some physical interpretations of the results. The system given by Eqs. 1, 2, and 3 has

been analyzed in terms of the eigenvalue problem of Eqs. 4 and 5. The eigenvalues {A „}

correspond to the frequencies of vibration of the rod when its ends are elastically attached.

These eigenvalues can be uniquely determined by obtaining the time history of response of

the system to excitations of the ends of the bar or to forcing functions applied along the

bar. Response to an initial velocity input can also be used. The requirement that the point

of measurement, x*, be so chosen that x* e 5 implies that information about a particular

mode can only be obtained from data obtained at points other than the nodes of that

particular mode. This then is simply the condition for the observability of the mode [4],

The unique determination of all the eigenvalues then simply requires that the response be

measured at a location which is not a node for any mode of vibration of the system. If, for

instance, a0 # 1, by Eq. 5, <f>„(0) ¥= 0 and hence a suitable observation point, x* for

obtaining the system response would be x = 0. Similarly, the condition that ( /,, <f>n) # 0

for any n implies that the forcing function is so chosen that each mode of the system can

be excited thus making the system controllable [4],

5. Unique identification of coefficients from point measurements. We begin by consider-

ing the system defined by Eqs. 1-3 assuming that f(x, t) = 0 and that the system starts

from rest (i.e., u0 = u0 = 0). Using the transformations

(X ( X ) fx

v{x, t) = ———u(x, t) and y = / P(x) dx, (20)
a(0) J0

where

we get

a(x) = [p(jt).a(j£-)] 7 and P(x) = [p(x)/a{x)\l , (21)

ii _ J*1
a>>2 dt2

- c(y) v(y,t) = 0 (22)

with the boundary conditions

-V(o, 0 - 0 = £o(0 and

Alv(l,') + B1^(l,t) = h0(t) (23)

and the initial condition

v(y,0) = P(y,0) = 0, (24)
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where

I — f P(x) dx,
Jo

m
Ao = ao +(! - a0)«v(°)' (ri\ '

«(°)

B0 = (1 - flo)i8(0), (25)

1 %(/) ( o) yi K(l) a(l)'

fli = (1 - 6o)0(O^77r. and
«(/)

«y)- + -fr—r1 • (26)Lp(y) a(y) dy2

We note by Eq. 20 that

v(y = 0, t) = i>(x = 0, t) = «(0, /). (27)

Consider now the eigenfunction expansion

v{y, 0 = HK(')^n(y) (28)

where the functions \pn satisfy the equations

^'+(Xn-c(j))^ = 0 (29)

and

^*(0) - flo*'(0) = 0,

A^(l) + B.iV) = 0. (30)

The functions {xf/n} are orthogonal and complete so that

f„(0 = f'p(y> t)in(y) dy,
V n Jo

where

v„ = j'Vn(y) dy. (31)
Jo

We assume that a0 and b0 are not unity, i.e., B0 and Bx are not zero (the case when either

a0 or b0 (or both) equal unity will be dealt with later). Using the expansion given in Eq.

28, the solution to Eqs. 22, 23, and 24 can now be written as:

( f'i V / wv{y,n= / L ——5 qn\t - t) g0(T) dT
Jo\„ = 0 VnB 0 I

<»>

6. Identification of the coefficients a(x). We now present some theorems which provide

a sufficient condition for the unique identification of a(x) (given the functions p(x) and

b(x)) from observations made at a single location.
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Theorem 2. The coefficient a(x) in Eq. 1 can be uniquely identified from measurements

w(0, t), t > 0, if the following conditions are satisfied.

(1) p(x), b(x) are known, jc e [0,1],

(2)a0 * 1, i.e., B0 # 0,

(3) a(0), ^(0), a(l), and ax( 1) are known,

(4)c(y) >0j£ (0, /),

(5) f(x, t) = h0(t) = 0, for all t, and

(6) g0(t) is not a null function, is bounded, and is known for t > 0.

Proof. Since B0 + 0, the eigenfunctions \pn can be normalized so that \p„(0) = 1.

Also,

thus condition (3) implies that the constants A0, B0, Av and Bx are all known. Further-

more, knowledge of u(x = 0, t), t > 0, implies knowledge of v(y = 0, t), t > 0. Using Eq.

30,

"(y, 0 = /'( L qn(' - T)lg0(T)dT-J0 U-0 ^"^0 I (33)

Thus

v(0, t) = J'( £ -T-|g0(T) dr■ (34)
•'o I „=0 J

As before, the eigenvalues {} are all real and positive, and increase asymptotically as

n2. Thus, the integral Eq. 34 whose left hand side is known (Eq. 27), has a unique solution

[16] given by

(35)

The series r{t), as before, is not uniformly convergent, but can be interpreted in a

distributional sense. If two sets of eigenvalues {A„} and {A„} exist so that they yield the

same function r(t), then by taking Laplace Transforms it can again be shown that

A„ = X„ and r/„ = rj„.

Thus the eigenvalues {A„} and the set {?)„} are uniquely determinable. Use of the spectral

function S( A), defined by

OO

5(A) = Z Vn\ for A„ < A (36)
n = 0

then guarantees the unique determination of the function c(y) [18]. Once c(y ) is known,

the differential Eq. 26 together with condition (3) yields a(x) uniquely.

It is seen that the proof of the theorem critically depends upon the parameters a0 and

b0. Clearly, if afj + 1 and b0 = 1, unique identification of the coefficient a(x) can be
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guaranteed by the previous theorem without an explicit knowledge of a(\) and ax( 1) since

these terms drop out from the expression for A1 and from Eq. 30 for that case.

We note that the requirement c(}>) >0 for y e (0, /), though it appears to be a

limitation, is often satisfied by stable oscillating systems. On the other hand, b0 # 1

implies Bl =£ 0, and we have the following theorem.

Theorem 3. The coefficient a(x) in Eq. (1) can be uniquely identified rom measurements

«(1, t), t > 0, if the following conditions are satisfied.

(1) p(x), b(x) are known, x e [0,1],

(2) b0 * 1, i.e., Bx # 0,

(3) a(0), ax(0), a(l), and ax( 1) are known,

(4) c(y) > 0, fory e (0, /),

(5)f(x, t) = g0(t) = 0, and

(6) h0(t) is not a null function, is bounded, and is known for t > 0.

Proof. We now use the substitution

"(*> 0 = 0 (37)
a(l)

instead of that used in Eq. 20. Relations given in Eqs. 22 and 23 are valid, except that the

constants A0, B0, Al, and 5, are replaced by A'0, B'{], A{, and B[, respectively, where each

of the primed quantities equal a(l)/a(0) times the corresponding unprimed quantity.

Using Eq. 32, we get

v(x = 1, /) = j'l £ T^ Uq(t) dT (38)

where the set {»/>„ } is normalized so that I) = 1 for all n, since Bx # 0.

Noting that v(l, t) = m(1, t), the remainder of the proof follows the same lines as the

previous theorem. The function c(y) is uniquely determined, and a(x) is obtained by

integrating the differential Eq. 26 using the known initial conditions a(l) and ax( 1). Once

again, if a0 = 1 and b0 1, knowledge of neither ax(0) nor a(0) is required for the

identification of the coefficient a(x).

We now consider the case in which either a0 or b0 (or both) equal unity, implying

thereby, that B0 or Bl (or both) equal to zero. Unique identification of the coefficient a(x)

can be again achieved by a strain measurement made at one point in the spatial domain.

Theorem 4. The coefficient a(x) in Eq. 1 can be uniquely identified from measurements

ux{0, t), t > 0, if the following conditions are met.

(1) p(x), b{x) are known for x e [0,1],

(2) a0 = 1, i.e., B0 = 0,

(3) a(0), ax(0), a(l) and a v(l) are known,

(4) c(y) > 0 fory e (0, /),

(5)f(x, t) = h0(t) = 0, and

(6) g0(t) is not a null function, is bounded, and is known for t > 0.
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Proof. Using Eqs. 20-27, and the eigenfunction expansion given in Eq. 28, the solution

for vv(x, t) can be written as

"y(°> 0 = /'( L ~9«.(* - r)\g0(T) dT, (39)

where we have normalized the set {>//„} so that <//(0) = 1 for all n. But

1 3w, - —v(x,t) da P(x) dv

^(0) a2(x) & + 'a[x)^y'

so that

If (°, 0 - + «0)',(0.')- (40)

Thus the knowledge of 3w(0, /)/3x in addition to the conditions of the theorem leads to a

knowledge of vv(Q, t) for all time.

Once again, the coefficients A0, A1 and Bl are all known, and Eq. 39 has a unique

solution which further enables a unique determination of { X „} and {tj„} and thus a

unique determination of a(x).

If the functions a(x) and b(x) are known, then unique identification of p(x) can be

guaranteed by replacing a(-) by p(-) in Thms. 2, 3, and 4. The proofs follow directly from

those presented in the theorems.

In order to interpret the results, we shall think in terms of the vibrating rod under

various types of boundary conditions.

Consider first the system wherein b0 = 0 (so that B] + 0) and a(l = 1. For g0(t) — 0 =

f(x, t) and h0(t) ^ 0, the problem is then a mathematical description of a rod fixed at the

end x = 0 and subjected to a stress time history a(l, t) = hQ{t)a{\) at the end x = 1.

Theorem 3 then states that if the response w(l, t) is measured for the applied stress history

at x = 1, then unique identification of the a(x) is guaranteed if a{\ ) and ax{ 1) are known

a priori. Note that the term involving ax(0) in Eq. 25 drops out making its knowledge

unessential as far as unique identification of a(x) is concerned.

Figure 1 shows the quantities which when known for all time yield unique identification

of a(x). The same set of boundary conditions can also be used with the results of Thm. 4

<t(1, t)

u(t), <z(l), ax( 1)

./V

1
W///////////Z/,

Fig. 1. Boundary conditions for a vibrating rod fixed at one end that allow a unique identification of a(x).
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«(1), «x(D

• o(0, t)

y

•*"»

Fig. 2. Boundary conditions for a vibrating rod fixed at one end that allow a unique identification of a(x).

which guarantees that if the base (x = 0) is vibrated with a motion g0(t) and the stress

a(0, t) is measured for all t > 0, a fore knowledge of a(l), ax( 1), a(0) and at(0) will

guarantee unique identification of a(x). We note that the last two quantities, a(0) and

ax(0), are required because of Eq. 40. In many practical applications it may be assumed

that ax(0) = ax( 1) = 0. Then by virtue of Eq. 25, only a(0) requires to be known in

addition to the stress a(0, t) for t > 0, to obtain unique identification.

Figure 2 shows the data required to uniquely identify the coefficient a(x). We observe

the reciprocity in the requirement for unique identification: the measurement of displace-

ment at the free end caused by an applied stress history at that end is equivalent to the

measurement of the stress history at the fixed end induced by base displacements at that

end, so far as guaranteeing unique identification is concerned. However, differences in the

requirements in the knowledge of a(x) and its derivative at the end point x = 0 should

also be noticed.

We note in passing that Thm. 4 is also valid for the case of the fixed-fixed boundary

conditions when both a0 and b0 equal unity.

7. Identification of the coefficient b(x).

Theorem 5. The coefficient b(x) in Eq. (1) is uniquely identified from the measurement of

response, w(l, t), t > 0, induced by the forcing function g(t) if the following conditions

are met.

(a) p(x), a(x) are known in [0,1],

(b) a0 # 1, i.e., B0 # 0,

(c)c(>>) > 0 fory e (0, /),

(d) f(x, t) = h0(t) = 0 for all t, and

(e) &o(0 is not a null function, is bounded, and is known for t 3s 0.

Theorem 6. The coefficient b(x) in equation (1) can be uniquely identified from response

measurements uJQ, t),t> 0, to the forcing function g0(t), if

(1) p(x), a(x) are known p(x), a(x) are known in [0,1],

(2) a0 = 1, i.e., B0 = 0,

(3)c(y)>0,ye(0,l),
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(4) f(x, t) = h0(t) = 0 for all time t, and

(5) g0(t) is not a null function, is bounded, and is known for / > 0.

Proof. The proofs of Thms. 5 and 6 are along the same lines as those of Thms. 2 and 4.

We note that no a priori knowledge of b(x) or its derivatives at the end points x = 0 or

x = 1 is required for unique identification.

8. Discussion and applications. This paper looks at the problem of identification of

vibrating systems that are described by second order hyperbolic differential equations.

Conditions for identification of the spatially distributed parameters are obtained from

measurements made at one point of the spatial domain.

Conditions for unique identification of all the eigenvalues of the system are obtained. It

is shown that under suitable restrictions on the nature of the various functions concerned

(which are in practice almost always met with in physical systems), unique identification

of all the eigenvalues can be obtained by measurement of the response to either a forcing

function of the form f(x,t)= f^(x)f2(t) or to end excitations g0(t) and h0(t). The

response measurement needs to be obtained (for all time) at a location which is not a node

of any mode of vibration of the system.

From the structure of the related eigenvalue problem (Eqs. 28 and 29), it is clear that, in

general, more than one out of three spatially varying coefficients cannot be uniquely

identified through point measurements. However, knowledge of any two can yield unique

identification of the third when suitable a priori information about the unknown coeffi-

cient at the two end points of the domain is available. The conditions for identifying p(x),

given a(x) and b(x), are analogous to those for identifying a(x) given p(x) andb(x)).

The measurement location for identifying the coefficients in each case is one end of the

spatial domain.

The application area which has motivated this study is the identification of building

structural systems from records obtained during strong earthquake ground shaking.

Figures 1 and 2 were chosen as specific examples of the commonly used shear-beam type

models of tall building structures. Whereas the classical paper of Levinson [19] provides

unique identification of the coefficients c(y) in Eq. 28, if all the eigenvalues can be

obtained for two different sets of boundary conditions 29, actual tests on large structural

systems which would yield such data are often difficult to perform. For instance, a tall

building structure whose horizontal vibrations are often modelled by a cantilever shear

beam (a(x) is then related to the stiffness in shear) cannot be tested easily under two

different boundary conditions. The stiffness distribution, a(x) of such a structure (for

which a0 = 1 and b0 = 0) can thus be uniquely identified, if the stress induced at the base

of the structure by a ground shaking g0(t) can be determined, provided the stiffness a(0)

(assuming ax(0) = ax( 1) = 0) is known a priori. This result is a natural extension of the

results on discrete structural models wherein unique identification of the interstory

stiffness is obtained through measurement of the displacement response of the first story

level and that of the base motion [5].

The results presented herein will also find important applications in the area of

soil-structure interaction. For instance, Thms. 5 and 6 could apply to the estimation of soil
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stiffness parameters along the length of piles which are driven into the ground. It is hoped

that some of these results may be useful in other areas of mathematical physics and

engineering science as well.
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