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A THIRD MIXED BOUNDARY VALUE PROBLEM ON A SPHERE*
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Abstract. The paper is concerned with the existence of a classical solution of a mixed

third boundary value problem on a sphere. The existence is proved by reducing the

problem to a Fredholm integral equation that has a unique solution. Various consequences

of the existence theorem are mentioned and some numerical results are given.

1. Introduction. Let D denote a solid, open sphere with center at 0 of radius R, and let

the positive z-axis denote a specific direction through 0. Let p denote the distance from 0

along a ray that makes an angle </> with the z-axis. Let a be a specific angle from the

z-axis, and set /, = (0, a], J] = [0, a], I2 = [a, 77), J2 = [a, 77],

HP(0 = if' I /(•*) ~f(x o)| < M(x0)\x - xa\p, x e /, x0£ / },

//(/) = U1/2 <p<i Hp(I), and C(I) = the class of continuous functions on an interval I.

Let

C2H = I w: w = w(p,<f>), H- g C2(Z)), w(/?, •) e //(/, U /2) n C(/i u /2),

j^(R,-)e H(I° U 7°)

We seek a we C2H that satisfies the boundary value problem

V 2w = 0, 0 < p < R, 0 < <j> < 7t, (1)

-^iR,<t>) + hw( R,<t>) = //(<#>), <#>e71°U/°, (2)
dp

where

\ h2, <(> e (a, 77) | 7/2(</>), <#> e /2C

and and h2 are nonnegative constants and //, e //(/,) n C(//), / = 1,2.
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202 HARRY L. JOHNSON

Our interest in this problem is due to Robert B. Kelman [4], Kelman points out that this

boundary value problem is relevant to several physical problems: the packing of small

spheres, the design of pebble-bed flow reactors, and the transportation of liquefied natural

gas on oceangoing freighters in spherical tanks.

Existence theorems for third boundary value problems or oblique derivative problems

and mixed third boundary value problems have a long history [6], G. Giraud [2] proved an

existence theorem for an oblique derivative problem with a boundary condition of the

form a du/dl + f3u = <j> with a > 0 and ft, <j> continuous functions. Mixed third boundary

value problems where p is discontinuous on a subset of the boundary have been studied

by M. I. Visik and G. I. Eskin [7], They have proved a normal solvability theorem in a

certain function space for general linear elliptic equations subject to quite general

discontinuous-type boundary conditions. The purpose of this paper is to provide a

constructive existence theorem for Eqs. (1) and (2).

We prove the existence of a solution of the boundary value problem in C'H by

reducing the problem to a Fredholm integral equation of the second kind, Eq. (10), and

showing that an operator generated by this integral equation is contracting in a maximum

norm. This is shown for all values of h{ > 0, h2 > 0, 0 < a < it, and R > 0. Most of the

analysis in the paper is concerned with transforming the kernel of the integral equation

into various forms to bring out its properties. After the existence of a solution of the

integral equation has been established, the existence of a solution w e C~H is proved and

some of its properties are listed as corollaries to the main theorem—Theorem 2.

Numerical calculations are carried out by forming an associated infinite system of linear

algebraic equations from the integral equation of the form X = F + AX. The contraction

property of the integral equation implies that the sequence X{) = F, A'„+1 = F + AXn has

a limit X. The solution w is obtained by using the vector X. Numerical values of w are

given for various settings of the parameters a, hl, h2 and variables p and <#>.

2. The integral equation. Initially, we proceed in a formal manner and seek a solution

w e C2H in the form
OC

W = W(p,<f>) = £ An(P/R)" Pn(COS('t>))< 0 «= p < R, 0 < <j) ̂  77, (3)
» = 0

where Pn(cos(<p)) are Legendre polynomials.

Since

2/ \ 1 / 9 / 20w\ ...Sh'
a?) + cxM a? s,n<*> a?

is invariant under the transformation $ -> ■n - </>, it is without loss of generality to assume

that /?j > h2 ^ 0. From (3), one formally obtains
OC

-^(R,<t>) + hlW(RA) = = E A„(n/R + Aj^cosM), <p e 7°. (4)
// = ()

Let

= + = £ Ajn/R + Pjcos(<p)), (f> e /2(\ (5)
n =0
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and

It follows that

and that

to*),
u = «(<#») = < <f> e /2°,

[(//i(a) + ji(a + ))/2, <p = «.

+ 7)

= 7 lh»\f u(e)Pn(™s(8))sin(O)d0, (6)
(/; + h \ R) ->o

e/2°.Hi(</>) = L — +/ h2^}nR\ 2~ / "(f)^„(cos(^))/5„(cos(<i)))sin(^)^, <#>
„ = 0 (« + /?!«) •'o

One should note that Eqs. (2) and (5) imply that

n(t)-H2{4>) = (hl-h2)w{R,*), (8)

Our working assumption now is that /u. e //(/ 2°) n C(72).

The classical representation theorem [1] of a function / with piecewise continuous

derivatives in terms of Legendre polynomials states that

/U + 0)+/(4>-0) = ^ ^ w f (0) Pn (COS( 8)) sin( 0) dO Pn (Cos( <(>))■ (9)
2 „=o •'o

This theorem can be extended to functions / e H((0,77)).

Writing

" + ^ = 1 (hi ~ h\)R

n + hlR n + hxR

and applying (8) to u on the interval /2° as expressed by (7) yields the integral equation

= F(</>) + X Cn(6)Ka(6,<t>)sin(6)dd, 4> e /2° (10)
J n

where

and

F(<t>) = H2(4>) + A f H1(0)Ka(6,*)sin(0)de, (11)
Jo

X = (1 — h2/hY), a = hxR —

=*„(*,*) = £ (a+i)(::-)^(C0^))^(C0S(.)). (12)

« + a 4- 4

3. Properties of A"a. Let I = (0,ir), J = [0,77].

Theorem 1. If u = u{ 0) is piecewise continuous on J, then

v = 0(f) = f u(6)Ka(0,$)sin(0)d0 e //(/) n C(7).
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We give an outline of a proof of this theorem. Let

+ p-(cos(8»''-(cos(*».

n=o (n + \)J{n + a + 2)

One can write

3

Ka(6,<j>) = tfo(0,</>) + £ K-(j,0,6,4>) + K(4A,e,<p) (13)

and prove the theorem for each term on the right-hand side of (13). First, it is known [1]

that |P„'(jc)| < «2, |jc| < 1. It follows that dK/d(f>(4.1, 9, <p) e C( J). Next, it can be

shown [3] that

(,4)

where K(s,9) = (|cos(.s) — cos( 9) |)1/2 and m = min( 9, <J>). Let M = max(0, <£). A change

in the integration variable and a trigonometric identity yields

MM) = ^sec(m/2)csc(A//2)f/2   Y/2 (15>
0 (1 - z2 sin2(x))

where z = z(9,<p) = tan( m/2) cot( M/2). Moreover,

I"'2 7 A ,■/■ - f - 2 + ? '"TT^T + ?<*>• <16)Jo (1 - z2sin2(.x))'/2 2 z (]"z)

where Q(z) = T*=lanz2",

n UJ
2 k■.-sTT'n|.is)jl-in i-i1

= 0{\/n2).

Using basic properties of a logarithm, it can be shown that the integral

— f «(0 ) sin( 0) sec( w/2) csc( M/2) — In y— —
n /() z \ — z

1 + tan( 9/2) cot( <j>/2)
= - f* u(9) cos(9/2) sec(</>/2) In «

it JQ 7 1 - tan(0/2)cot(<#>/2)

2 r / i ,^ \ i 1 + tan(<f>/2)cot(0/2)
+ —/ h(0) sin(0/2)csc(<£/2) In   7——  .

77 ̂  v 1 ' ' yv/ ' 1 - tan(<f>/2)cot(0/2)

is Holder continuous of any order less than one on 0 < 4> < tt, and that lim(,^0. r(<£) and

lim,1 >(<f>) exist. Since 0 < a„ < l/(2» 4- l)(C/«) for some constant C, it follows that

0 < dQ/dz < C ln(l + z)/(l — z), 0 < z < 1 and that

f u(9) sin( 9) sec( m/2) csc( M/2)Q(z) d9 e C'( /) n C(J).
A)

Mehler's formulas for P„(x) yield

ko.o,«.+> -2 r/! *   r/! ^ -.
77 ■'o (1 _ sin2(w/2) sin2(i')) 7 J° (1 - cos2( M/2) sin2(i)) 7
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Using (16), one can show that u(6)K(l,O,O,<f>)sm(O)d0 e H(I) n C(J). Without

going into details, we mention that

1 /■" f"(s + t - \s - r|)
dtdsten n ft = -L f - 'u

K(2,0,0,4) 277 Jo I K(s e)K{t ^

ko.o.,.*) - f r r(2"" -«*+;>/*»' -"-"/»)') ^

and that these functions generate integrals with the stated property.

One consequence of Theorem 1 is:

Corollary 1. If Hi e //(/,) n C(J:), i = 1,2, then

F=F(^>) = H2(4>) + A f H1(0)Ka(0,<l>)sm(6)d0 e //(/,) n C(J2).
Jo

It is next shown that Ka is bounded below by a positive constant which is dependent

only on the parameter a. To show this, we write

Ka(6,<t>)= (2a + 1)(k0(6,4>)~ §*(0,1,0,*)) (17)

where

*-<0.1 .«.♦)- i
„=o n + a + \

Laplace's first integral representation of the Legendre polynomials can be written as

P„(cos(0)) = i f a-A, P„(cos(^)) = \f rda,
■n J 0 v JQ

where

8 = 8(6, t) = cos(6) + isin(0) cos(?),

? = £(<t>,cr) = cos(<p) + isin(<#>) cos(a).

Setting r = 8£ and using the identity

£ r" ri sc'~1 ds

,-o n + c
lrl < i, c > o,

^ 1 "

one has

l r\*-v2RJ r r dtda )
£<£%>)*■ (18)

It is without loss of generality to study (18) for <f> < 0\ moreover, it is easy to show that

i r — - - 
ir 1 (1 - 8£s) ((! _ ^'»)(i - £se~'e))1/2

Further analysis on the remaining integrals in (18) yields

AT(0. M,*)- m
T J0 J0 |z|AT( T), <J>)
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where

z = x — iy,

/-j   \2

x = x(d,7],s) = s(cos(tj) - cos(0)) 4   cos(r)), (20)

(I — ^)
y = y(9, t],s) = —— sin( rj) > 0.

Equation (19) asserts that K{0; 1, 9,(j>) > 0 for all a > - 7 and, therefore, from (17) that

Ka(0,4>) > (2a + l)K0(6,<t>), -±<a< 0.

Using (15), one has K0(9,<t>) ̂ sec(m/2)csc(M/2)( 1 /2) > 4, and hence that

tfa(M)>(a + i), -i<a<0. (21)

Next, consider the case of a > 0. If 17 < <J> < -tt/2 and 9 > (f>, then .v = x(9,ri,s) as given

by (20) is > 0. If tt/2 < <f> < m, then one may use the fact that

Ka(0,<t>) = Ka(v-6,-n-<t>)

and have 0 < 9 = tt — 9<$ = tt — <f>< tt/2. Thus, replacing <p by 6 and 9 by $ in (10)

gives x = x(<f>,-q,s) ^ 0 for t] < 9 < it/2. Therefore, it is without loss of generality to

assume that * > 0 in (19). Let xl = i(cosrj - cos9) < x(9,i],s). Using (17) and (19),

one has

K„(«,*) - (2fl + 1)1 *„(«.♦) - ' s'-'d,

a (< si^Llldlld\
2m Jq J0 K(r],<t>) )

i 1 n 1 fl (* s"~1/2g(V-v,s)
-(o + i)»i, L k(„.*) di]ds

Jq K(y,<t>)

where

g(e.v.s) - V71 - <"z'+^>/2>'/' > x->" -

^(1 - s)2 cos(t])(2s(cos(-q) - cos (9)) + j(l - s)"cos(r])) + \(\ - s2)~ sin2 (-q)

\/\A (|z| + JCi)(v^ +

4 CQS2(t;)

' fsK(y, 9)7.33'

Hence for a > 0

KJe^) „ 2*£±i>( f ,—i(i - ,>«*)(i 1*aK ,V' 4(7.33) W„ ; J\vJ0 K(r,,<p)K(r,,<t>) J

Since f0l su~'(l ~ s)4 ds = 4\/(aY[4k = x (a + k)) and

I ff COS2( 7] ) dy >

nJ0 K(V,9)K(r],<t>) "
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it follows that

Ka(6><>) > 32(7 33) + 2)(a + 3)(a + 4) ' ° > °'

Putting these statements together, we have

Theorem 2.

a + \, -j < a < 0
Ka(9,<f>) ̂  m(a) = ,

" 1 0.012/n^,2 {a + k), a > 0.

Theorem 2 and the orthogonality of the Legendre polynomials over the interval 0 < d < -n

yield

f \Ka(0, <j>) | sin(0) dd = ( Ka(d, <J>) sin(0) dd
Ja a

= ( Ka(6,<t>) sin(0) d6 - f Ka(d,<p) sin(0) dd
Jo Jo

< 1 — m(a) f sin(8)dd.
Jo

This is restated as

Corollary 2. /J \Ka(9, <#>)|sin(0) dd < 1 — 2m(a)s'm2(a/2) < 1.

Corollary 3. The operator A(fi)(<P) = F(<j>) + \f^Ka(0, <j>)sin(0)n(ff) dd is a con-

traction of the space C(J2) into itself under the maximum norms ||ju|| = max^E ,Jju(<£)|

and ||Ka|| = max<>e,Jh\Ka(0,<t>)\sm(O)dO.

Corollary 4. Equation (10) has a unique solution ju e C(J2)\ furthermore, by

Theorem 1 )i e H(I2) Pi C(J2). Introducing the sequence

Mo(<t>) = M*+i(<f>) = F(<t>) + xf Ka(0,<t>)sin(0)fik(0) d0, (22)
Jh

one can state

Corollary 5. lim^^ juA.(<J>) = ju(<p) where the limit is uniform on J2. Other direct

consequences of the above results are

Corollary 6.

ju < Hcsc2(a/2)/m(a) and u < Hcsc2(a/2)/m(a). (23)

Corollary 7. If H(<j>) > 0, <#> e 7° u /2°, then n(<t>) ̂ 0 and w(<£) > 0.

Proof. From Theorem 2 Ka(d,4>) > 0, since //(<#>) > 0, it follows that F(<t>) ̂ 0, and

that all members of the sequence iuk(<j>) defined by (22) are > 0. Hence by Corollary 5

H(<f>) > 0.

4. The solution w. Now that a suitable function ju has been shown to exist, again

consider

w = w(p,<t>) = £ A„P„(cos(«#>))(p//?)", 0 < p < R
n = 0
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where An is defined by (6). Clearly w e C2 and v2w = 0 for 0 < p < R. Recall that

7 = (0, it), J = [0,77], and set

0° -i ^

W(4>) = E AnPn(cos(<t>)) = f / ATa(0,<>)sin(0)M(0)J0, <f> e J. (24)
n-0 "l •'O

By Theorem 1 W(<$>) ̂ H(I) n C(J)\ moreover, by Abel's limit theorem [5]

limp _ Rw(p, <#>) = tV(<f>), 4> G I. We define w(R,<f>)= Differentiating (3) with

respect to p one has

00

wp(p,<t>)= E An^Pn(cos(<t>))(p/R)"~1' P<R-
n = 0

Let
00

WM) = E Anlp„(cos(<#>))
n = 0

00 (n + h R) 00

= E ^—P„(cos(<f>)) - hx E A„P„(cos(<!>)). (25)
n=0 n-0

The first term in (25) is of the form of the right-hand side of (9) with f = u and the second

term is hxW(<S>). Hence,

Wl(<t>) = u(<t>)-hlW(<t>), *e/.

Another application of Abel's limit theorem gives limp_R wp(p,<j>) = <f> e /, and

defining wp(R,<p) = limp_R wp(p,<j>) yields

wp(R,<p) = u(<f>) - /21w(«,<#>), 4> e 7. (26)

For (f> g 7°, u(<t>) = //j(<^>) and (26) become

wP(R<<t>) = #i(<#.) - hjw(R,4>), <>£!?. (27)

Next, consider (10) written as

P-(4>) ~ = X f u{d)Ka(6,<p)sin(6) d6 = \hllV(<f) = (hl - h2)w(R,<p).
Jo

(28)

Equation (26) with $ e 72° and (28) give

wP(R'<t>) = H2{<p) — h2w(R,<j>), (/> e 72°. (29)

Note that (26) also applies when <f> = a, because

/ , + M(« + ) Hi(a ) + H2(a + ) + (/i, — h 2)w( R, a)
u(a) = ^ = 2 ' ^ ^

Using (27), (29), and (30), one has

wp(«,a~) + w («,a + )
%(/?,«) = ^ '

wp(R,a + ) - wp(R,a~) = H2(a + ) - H^a^) +(hl - h2)w(R,a). (31)
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It should further be noted that the right-hand sides of (27) and (29) have limits as <j> -> 0 +

and (f> -* tr~, respectively. Thus, w defined by (3) and (6) is a solution of the boundary

value problem. The uniqueness of a solution of the problem is well known, and can be

shown through a Green integral identity.

Other consequences of the above theorems and corollaries and the maximum principle

are

Corollary 8. |w(p,cf>)| < max^,ey|w(/?, <>)| < ||//||csc2(f/2)//!1w(<3).

Corollary 9. If > 0, then w(R,<j)) > 0 and w(p, <p) ̂  0. Corollary 9 and Eq.

(31) yield conditions under which w (R, •) has a jump discontinuity at <f> = a.

5. Numerical results. In consideration of Eq. (6) written as

A" = J7+T~R)[l) Hi(6)P"(cos(0))sin(e)de + I ^WPn(cos(e))sm(9)de]j

and the sequence defined by (22), we let

X"->< = + ^R) [f0 Hi(e)Pn(cos(e))sin(0)d6 + jf nk(6)Pn(cos(6))sm(6) J6»),

k > 0. (32)

Equations (32) and (22) lead to the iterative system of equations

(n + IJr) (•( H(0)pr,(cos(0))sin(6)d0 +(h1 - h2) k>n ,k 0

(33)

where

= 1 r\ I Hi(6)pj(cos(e))sin(0) d0-
(J + «iR) Jo

/x Pj{x)P„{x)dx = anJ, X — cos(a).

The elements of the matrix [a; ,J can be found through the recurrence relationship

-1 4. y „ Pn+A*) ~ P„-AX)
"0,0 — A i- A, a0 n — >

(" + l)a0.« + i + . ,

 sn ■ ">h

(2j - l)((n + l)a„41 + naj_, (j -\)a ln (I^TT, 7 '
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Equations (33) have been programmed with the infinite series replaced by a finite

number of terms N. This has been done for h1 = 1, R = 1, N = 26, and k = 15. Two

selections of the boundary function and various choices of the parameters a and h2

were made. In addition, the harmonic functions

N

w = wk,N(p><t>) = L Xn,kPn(COS(<t>))(p/R)"
n = 0

were computed for p = 0, 0.5, 1, <f> = jir/4, j = 0, 1, 2, 3, 4, and a = mtt/4, m = 1, 2, 3.

The results are listed in the table that follows. A proof that the sequence xn k, generated

by replacing the infinite series in (33) by the finite sum E*l0, is convergent to An is given

in the appendix at the end of the paper.

CASE I H1(^>) = 1, H2(4>) = 1, h2 = .5

m = l m = 2 m = 3 m = 1 m = 2 m = 3

j w(^,</>) w(j,tj>) w(\,<t>) w(l,<j>) w(l, (#>) w(l,<t>)

0 1.6447 1.2505 1.0517 1.4374 1.1511 1.0295

1 1.7065 1.2821 1.0579 1.6209 1.1809 1.0349

2 1.7954 1.3865 1.0823 1.8339 1.3797 1.0557

3 1.8366 1.4954 1.1409 1.8757 1.6027 1.1926

4 1.8478 1.5306 1.1847 1.8869 1.6418 1.3360

CASE II = 1, tf2(<f>) = 1, h2 = 0

m = 1 m = 2 w = 3 m = 1 m = 2 m = 3

j w( 2,$) w(i<4>) w(l,<j>) w(l,^>) w(l,0)

0 6.7809 2.1196 1.1441 4.8957 1.6754 1.0825

1 7.3484 2.2608 1.1614 6.4657 1.8062 1.0973

2 8.2290 2.7321 1.2295 8.5744 2.6624 1.1550

3 8.6837 3.2519 1.3937 9.1397 3.7706 1.5309

4 8.8309 3.4325 1.5184 9.3024 4.0098 1.9618

CASE III HX{<S>) = 1/2, H2(4>) = 1/3, h2 = 0

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

j w(i,<#>) w(^,</)) vv(l,^>) w(l,<#>) w(l,</>)

0 2.6101 .71571 .31006 1.8405 .53093 .28439

1 2.8417 .77446 .31730 2.4817 .58533 .29054

2 3.2009 .97046 .34561 3.3419 .94149 .31460

3 3.3903 1.1867 .41403 3.5720 1.4024 .47121

4 3.4461 1.2617 .46598 3.6382 1.5018 .65075
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CASE I CASE II CASE III

m w(0,<f>) w(0,<j>) w(0,<p)

1 1.7795 8.0904 3.1443

2 1.3880 2.7480 .97708

3 1.0938 1.2618 .35908

Case III is one of the boundary value problems considered by Kelman in [4] with his

h = h1 = 1.

Appendix: A proof of the convergence of the numerical procedure. Let

<(»)- E + ° +

It follows that

R <B(«>s(0)).
n = 0

xn,k = 7~~ +;!, / {"k(o)pn(cos(e))sm(e)de).
{n + a + ? Wo(n + a + j) Jo

Using Eq. (6) and the above equation, one has

R(n + 2) rv
x„l-A=   2J— ITIT/ iuk(e) ~ u(6))Pn(cos(0))sin(d)d0.

a + j) Jo"■k " (N + a + ±)

It will be shown that

= 0, n > 0. (34)lim max f {u%(0) - u(0))Pn(cos(9)) sm(0) dO
: —» 00 OsSnigNKOk

N —* 00

Let

„=0 (n + a + i)

*?(«.*) = E (n + I)!/" ^ a ^n(cos(^)) sin(i^) d\p\pn(cos(6)),
n-0

N

n = 0

It can be shown that

Hn(0)= Z (n + ±)(fH(<t,)P„(cos(<t>))sin(<t>)d<l>jPn(cos(0)), N > 2.

u»(0) = Hn(0) + X f *?(«,*)«?-!(*) sin(<#») J<f>. (35)
Jo

It is also known that

(Hx(0), 0 <0<a,

= \H2(9) + X f Ka(e,<f>)u(4>) sin(<|> )</<#>, a < 6U 77. ^
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Let

C»n(0) = Pn(cos(0)),

CjNn(0) = f C(^)CA,,U)sin(<f>)^, J > 1,
Ja

FjN„ = X f u(«#») sin(<J>) f ((K?( 0, <#>) - Ka(<p)i)C/„(0) sin( 0) d0) d<f>.
JQ a

Let S2 = 1 — 2m(a) sin2(a/2) > 0. It is easy to show that

|c/„(fl)|<a>

and

r (u»(0)-u(0))C»n(O)MO)dO= r (u^iO) - u(0))C»Un((>)MO)d0 + F»n.
Jo Jo

(37)

Iterating on equation (37) leads to

f ("*(0) - u(0))Pn(cos(0))sm(0) d0
Jo

= \kf (;u»(0) - u(0))c»je)sm(0)de + £
0 7 = 0

(38)

Equation (38) implies equation (34).
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