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1. Introduction. In recent papers [3, 4] Day considered parabolic equations in one space
dimension with boundary conditions
a a
w(=a,0) = [* fundx, u(an) = [* gxulxnar
The solution u represents the entropy in a quasi-static theory of thermoelasticity; for a
derivation of the model see [1, 2]. Day proved that if

J l@lax <t [ Jg(x)lax <1, (1)
then the maximum modulus of the entropy is decreasing in time, that is,
U(t) = max |u(x,?)] (1.2)

—a<x<a
is decreasing in ¢. An example in [4] shows that if both inequalities in (1.1) are reversed,
then, in general, U(¢) may increase exponentially with ¢.

The proof of (1.2) is based on estimating integrals of the form [*, P(x)u*"(x,t)dx
with suitably chosen P(x).

In this paper we extend the assertion (1.2) to general parabolic equations (in n
dimensions) using a different and more general method based on the maximum principle.
We also show that U(¢) — 0 exponentially fast as t = co. Finally, we establish the strict
monotonicity of U(t) for all 1 > 0; this implies, in particular, that U(¢) does not vanish in
finite time. For completeness we also prove the existence and uniqueness of u(x, ).

2. U(1) is decreasing. Let

n az n a
A4 = Z aij(x) ax‘ax.+ Zbi(x)a'i'c(x)
ij=1 iy i=1 !
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be a uniformly elliptic operator in a bounded domain € in R”, that is,

2
Zaij(x)gigj >pl§], x€Q EER, (2.1)
where p is a positive constant, and assume that, for some 0 < a < 1,
a,;, b,, ¢ belong to C*(Q), (2.2)
c(x) <0, (2.3)
for every x € 9Q there exists a barrier for A4; (2.4)

the last condition is satisfied if, for instance, 9§ is in C? or if € is convex.
Let f(x, y) be a continuous function defined for x € 9%, y € {2, and assume that

8(x) Efg 1f(x,y)|dv<p<1 VxeqQ. (2.5)

Forany 0 < T < oo set
Qr=2x{0<r<T}.

Consider the parabolic problem:

du .
T Au=0 inQ_, (2.6)
u(x,0) =uy(x) ifxeQ, (2.7)
u(x,y)=/f(x,y)u(y,t)dy if x €0Q,0<1t< o0, (2.8)
Q
where the initial data u,, satisfies
uy#0, u,< C(Q). (2.9)

THEOREM 2.1. There exists a unique,solution u of (2.6)—(2.8) such that u € C(2,,).
Proof. It suffices to prove existence and uniqueness in £, for any T < oo. Define a
sequence u,,(x, t) inductively as follows: (i) uy(x, t) = uq(x); (ii) given u,,, let

a6 0) = [ (2, 9)un(p,0) dy - (x € 00)
and let u,,., be the solution of
(% - A)um+1 =0 in Qg
U,, =1,,, ondQ x(0,T),

u,.1(x,0) =uy(x) ifxeQ.

Conditions (2.1)—(2.4) ensure that u,, ,, exists and is continuous in ;. (provided the same
is true of u,,). Further, since

(58; - A)(um+1 - um) =0 in QT’r
(4,07 —u,)(x,00=0 ifxeQ,
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the maximum principle [5, Chapter 2] gives

S0P e (521) = (50| = 50D | [ /(5 3) (7:0) = s )
Qr 0x<€’8<97_ Q

<psuplu, = u, |, (2.10)

Qr
or

SUP 41 — U] < Cp™ (C = sup |u, — u0|).

T Qr
It follows that {u,} is a uniform Cauchy sequence and, by standard theory [5],
u = limu,, is the solution of (2.6)—(2.8).
Finally, if v is another solution then [cf. (2.10)]

sup|v — y|< psup|v — ul,
2 Qr

giving v = u.
Set

U(t) = r::g|u(x,t)|. (2.11)

THEOREM 2.2. The function U(#) is monotone decreasing in ¢.
Proof. If the assertion is not true then there exists a ¢, > 0 and sequences of positive
numbers ¢,, | 0, §,, | 0 such that

8,, + max |u(x,1y)| < max|u(x,t, +¢,)|. (2.12)
x€@ xeQ
Without loss of generality we may assume that
max |u(x,t + ¢,) | = max u(x,ty + ¢,) > — min u(x, 2, + ¢,,). (2.13)
xel xef xel
Choose x,, € © such that
u(x,,,ty+ ¢,) > max u(x,ty+e¢,)—8,.
x€
Then, by (2.12)
u(x,,ty+€,) > ma§|u(x, to)|. (2.14)
x€

Applying the strong maximum principle to u in £ X (¢,,7, + €,,) and using (2.14) we
conclude that there exist y,, € 9Q and &,, € (0, ¢,,) such that

u('xm’tO + em) < u(ym’tO + Em) (215)
But, by (2.8) and (2.5),

Wt + 80) < [ (o) || max (.00 + 2, ]
Q xef

< p{max|u(x,to)|+ "‘Im},
xeﬂ
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where 7,, — 0 by the continuity of u. Substituting this into (2.15) and recalling (2.14), we
get

u(x,,to+e,) <pu(x,,to+e,)+n,
or (1 — p)u(x,, t, + ¢,) <, Taking m — oo we deduce, upon using (2.14), that
u(x,ty) =0. (2.16)
By the uniqueness part of Theorem 2.1 it follows that u(x, ) = 0 if ¢ > ¢, a contradiction
to (2.12).
THEOREM 2.3. There exist positive constants C, y such that
U(t) < Ce ™ forall t > 0. (2.17)

Proof. Let |uy| < M. The proof of existence shows that |u,| < M and therefore also
|u| < M in Q. Hence, if y € 0Q, 1 > 0,

(vl [ 170y 2)u(x.0)]dx < oM.
By standard results on the asymptotic behavior of the solution of parabolic equations [5,
Chapter 6] it follows that
limsup |u(x,?)|< pM.

xE€ER, t— 0

Hence, if p, = (p + 1)/2 then
lu(x,1)| < puM ifxe€Q, 1>
for some large enough ¢,. Similarly, we obtain by induction
lu(x,1)|< (pe)"M if t > mt,,
so that
U(t) < (pe)"M if mt, <t < (m+ 1)1,.
It follows that

M m M .
U(1) < == (po)" "' < = (pa)""
Px Px

from which (2.17) follows.

3. U(1) is strictly decreasing.

LEMMA 3.1. There exists a 0 < T, < oo such that U(7) is strictly decreasing if 0 <t < T,
and U(t) =0if t > T,.

Proof. Suppose U(t) is not strictly decreasing for all # > 0. Then there exist 0 < ¢, < 1,
< oo such that

U(t) = U(ty) = U(r;) forallty <t <.
In order to prove the lemma it suffices to show that for any such ¢, f, we have U(t,) = 0.
We shall assume that
U(y,) >0 (3.1)

and derive a contradiction.




PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

By the maximum principle we then have, for any x € Q,

lu(x, )| < max{ max  |u(y,s)|, max|u(Xx, to)|}
ye€I, <<t xel

= max U(r)=U(y,) = max u(x,1,)
xe

ly<Stshy
= max u(y, ;) =u(y,1)
yeaﬂ

for some y,; € 9%, where for definiteness we have assumed that
U(t,) = max u(X,t,) > — min u(X,1,).
xef €l

Hence
u(yy, 1) =_[ fOy,x)u(x, 1) dx < p maxlu(x,t1)|
Q xef

< pu(y,n).
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(3.2)

(3.3)

Since p < 1 it follows that u(y,, ;) = 0 and, by (3.2), U(#,) = 0, which contradicts (3.1).

In the sequel we impose the following additional conditions:
a,‘j e Cl+a(s_z)’
0Q isin C2*e,

(3.4)
(3.5)

and there exists an extension of f into a function f(x, y) defined for all x € 2, y € Q

such that
f(x,y) € C?*(Q xQ).
We can clearly redefine f, if necessary, such that also

8(x) s[ﬂ 17(x, y)|dy < py <1 forall x € Q.

LemMma 3.2. For any x € @ the function u(x, t) is analyticin ¢, for 0 < ¢ < oo.
Proof. Introduce the function

V(x,1) = u(x,1) - fQ F(x, »)uly, 1) dy.

We can solve u in terms of U, at least formally, by
e}
u(nt) = V() + T [ 10(x)V(r0)
m=0

where fO(x, y) = f(x, y) and

(%, ) = fg F D (x,2)f(z, p) dz = [9 f(x,2)f (2, y) de.

In view of (3.7)
| £ (x, y)| < 0o suglf‘”"‘”(z, 2R
ze

from which we deduce that

sup | f ™ (x, y)|< C(po)m_l.
X,y

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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It follows that the series L f (™)(x, y) is uniformly convergent; in fact, it even converges in
the C2*%(Q x Q) sense. We can thus write

u(x,t) = V(x,1) +[9F(x,y)v(y,z)dy (3.12)

with F in C2*+°.
The function V satisfies:

V= AV = = [ f(on)u(y.0dy + [ (4f(x,7)u(y,0) dy

—f f(x, y)[za,,(y) ayay, * Zb(y) 5+ C(y)u]dy

+/ [Za,,(x) xox T Lb(x) == 3 "' C(x)f]“(y’ t)dy

Writing
uly) , _ du(y,1)
= [ a0 o = = [ Sk y)ay()n TR s,
du(y,t
f f(x y)alj( )) (y ) y

we see that

V,-AV=G inQ,, (3.13)
where

G=zfm&j(x,y)%d5y+zfﬂﬁj(x, 3“(y,t) &

ayj

+ [ 9(x, y)u(y,0) dy
Q
and &, B., ¥ are in C*. Substituting « and du/d y; from (3.12) we find that

G=G(V)=ZLQa,(x,y)algj’)+0dsy+Zfﬂﬁj.(x,y)%f”_)dy

+ fﬂ v(x, y)V(y,0)dy, (3.14)

where a;, ,Bj, y arein C“
Note that
V(x,t)=0 ifxe€dQ, >0, (3.15)

and

V(x,0) = V,(x) ifxeQ,V,e C(R). (3.16)
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The parabolic problem (3.13), (3.15), (3.16) is not a standard one since G is a nonlocal
(linear) operator of V. Nevertheless, one can still apply Schauder-type estimates in order
to derive inductively that, forany0 < T < 00,1 < m < o0,

Ko K™ 1 m!
DV (y, 1)< 2

m—1+n/2 m2

in Q, (3.17)

with similar bounds on D,”"lDsz( y,t) and on the corresponding Holder coefficients.
" Indeed, in [6] we considered the parabolic problem
v, —v=v,1,1)y, n{0<y<1,0<r<T},

Yy
v(0,1) =v(1,1) =0 f0<t<T,

and established estimates of the type (3.17). The proof can be extended to parabolic
equations with variable coefficients in n-dimensional domains [and with v,(1,1)v, re-
placed by G(V)]. In fact, the basic estimates from which one deduces (3.17) (for v) are the
interior-boundary Schauder estimates stated in Theorem 1.1 of [6]. This theorem can be
extended to general parabolic operators in general domains by a standard argument used
to derive the Schauder estimates for variable coefficients and general domains, once they
have been proven for constant coefficients in rectangular domains; see [5, Chapter 4].
Since the calculations are routine, we omit the details.

The assertion (3.17) now follows from the interior-boundary Schauder estimates in a
way similar to that for v in [6].

From (3.17) and (3.12) we see that u(x, ¢) is analytic in ¢, for each x € Q.

THEOREM 3.3. If (3.4)-(3.6) hold, then U(¢) is strictly decreasing in ¢ for all > 0.

Proof. If the assertion is not true then, by Lemma 3.1, u(x,¢) = 0 for all ¢t > T,. By
Lemma 3.2 it then follows that u(x, t) = 0in Q_, a contradiction to u, # 0.

REMARK. Theorems 2.1-2.3 and Lemma 3.1 extend to the case where the coefficients of
A also depend on . Lemma 3.2 and Theorem 3.3 also extend to this case provided the
coefficients are analytic in ¢.
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