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1. Introduction. In recent papers [3, 4] Day considered parabolic equations in one space

dimension with boundary conditions

/a ra
f(x)u(x,t)dx, u(a,t)= / g(x)u(x, t) dx.

-a J — a

The solution u represents the entropy in a quasi-static theory of thermoelasticity; for a

derivation of the model see [1, 2], Day proved that if

f \f(x)\dx<\, f \g(x)\dx<l, (1.1)
J —a J — a

then the maximum modulus of the entropy is decreasing in time, that is,

U(t) = max \u(x,t)\ (1.2)
—a^x^a

is decreasing in t. An example in [4] shows that if both inequalities in (1.1) are reversed,

then, in general, U(t) may increase exponentially with t.

The proof of (1.2) is based on estimating integrals of the form f_a P(x)u2"'(x, t)dx

with suitably chosen P(x).

In this paper we extend the assertion (1.2) to general parabolic equations (in n

dimensions) using a different and more general method based on the maximum principle.

We also show that U(t) —> 0 exponentially fast as t -* oo. Finally, we establish the strict

monotonicity of U(t) for all t > 0; this implies, in particular, that U(t) does not vanish in

finite time. For completeness we also prove the existence and uniqueness of u(x, t).

2. U(t) is decreasing. Let

i,j=l 1 j 1
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be a uniformly elliptic operator in a bounded domain 12 in R", that is,

Y,aij(x)iiSj > mI^|2» * e 12, £ e R", (2.1)

where jti is a positive constant, and assume that, for some 0 < a < 1,

atj, b,, c belong to Ca(12), (2.2)

c(x) < 0, (2.3)

for every jeJSl there exists a barrier for A; (2.4)

the last condition is satisfied if, for instance, 312 is in C2 or if 12 is convex.

Let f(x, y) be a continuous function defined for x e 912, y e 12, and assume that

8(x) = f |/(x,>')|4v<p<l V.x e 312. (2.5)
Ja

For any 0 < T < oo set

12r = 12 X {0 < t < T).

Consider the parabolic problem:

jf--Au = 0 inft^, (2.6)

u(x, 0) = u0(x) if x e 12, (2.7)

u(x, y) = f f(x, y)u(y, t) dy ifxe312,0<r<oo, (2.8)

where the initial data u0 satisfies

u0 # 0, u0eC( 12). (2.9)

Theorem 2.1. There exists a unique.solution u of (2.6)-(2.8) such that u e

Proof. It suffices to prove existence and uniqueness in 12T, for any T < oo. Define a

sequence um(x, t) inductively as follows: (i) u0(x, t) = un(x); (ii) given um, let

"«+i(*.0 = / f(x,y)um(y,t)dy (x e 312)
JQ

and let um+1 be the solution of

3 \
^-,~A "m + l=03/

"m + 1 = "m+1 on 312 X (0, T),

Um+l(X'°) = u0(x) if X G 12.

Conditions (2.1)-(2.4) ensure that wm+1 exists and is continuous in 12r (provided the same

is true of um). Further, since

4 - A)(um+1 - um) = 0 in 12r,r
31

("m + i - «™)(*.0) = 0 if* <=12,
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the maximum principle [5, Chapter 2] gives

S«p|«m + l(*.0 - "m(*>0l= sup
flr xe9fl

o

( f(x,y)(um(y,t)-um_l(y,t))dy
'O.

< p sup|«m - um-_i|, (2.10)
fly

or

SUPl"m + l - «ml< ^ ( C = SUp | — M0 | J.
fly ^ fly '

It follows that {um} is a uniform Cauchy sequence and, by standard theory [5],

u = lim um is the solution of (2.6)-(2.8).

Finally, if v is another solution then [cf. (2.10)]

sup | v — y | < p sup | v — u |,
fly fly-

giving v = u.

Set

U(t) = max |m(jc, t) |. (2-11)

Theorem 2.2. The function U(t) is monotone decreasing in t.

Proof. If the assertion is not true then there exists a t0 > 0 and sequences of positive

numbers em j 0, Sm 10 such that

Sm + max | u(x, t0) \ < max|u(x,t0 + ej|. (2.12)

Without loss of generality we may assume that

max |m(x, t0 + em) | = max u(x, t0 + em) > - min u(x, t0 + em). (2.13)
xeO jeii jeH

Choose xm f= such that

u(xm, t0 + ej > max u(x, t0 + ej - S„

Then, by (2.12)

u{xm,t0 + em)> max\u(x,t0)\. (2.14)

Applying the strong maximum principle to u in S2 X (t0, t0 + em) and using (2.14) we

conclude that there exist ym e and im e (0, em) such that

«(xm,t0 +em)<u(ym,tQ + em). (2.15)

But, by (2.8) and (2.5),

o + gm) < I If(ym>x)\

< p( max |w(x, t0) | + tj I,

max\u(x, t0 + in dx
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where rjm -* 0 by the continuity of u. Substituting this into (2.15) and recalling (2.14), we

get

"(*m''o + eJ < Pu(xm,t0 + O + Vm

or (1 - p)u(xm, t0 + em) < ?)m. Taking m -» oo we deduce, upon using (2.14), that

u(x,t0) = 0. (2.16)

By the uniqueness part of Theorem 2.1 it follows that u(x, t) = 0 if t > t0, a contradiction

to (2.12).

Theorem 2.3. There exist positive constants C, y such that

!/(/)< Ce'y' for all / > 0. (2.17)

Proof. Let |w0| < M. The proof of existence shows that \um\ < M and therefore also

|u| < M in £lx. Hence, if y e 3fi, t > 0,

!"(>'.0I< f \f(y,x)u(x,t)\dx < pM.

By standard results on the asymptotic behavior of the solution of parabolic equations [5,

Chapter 6] it follows that

lim sup pM.
XGfi, t OC

Hence, if p* = (p + l)/2 then

| u(x, t) | < p*M if x £ £2, t > tl

for some large enough tv Similarly, we obtain by induction

\u(x, t) | < (pif)mM if t > mt1,

so that

U(t) < (p*)mM if mtl < t < (m -I- l)fj.

It follows that

M / \ m + l M / \t/t
^ 1     " 1

from which (2.17) follows.

i M , m+1 M , , ,/,(Po) (p*)/l

P* P*

3. U(t) is strictly decreasing.

Lemma 3.1. There exists a 0 < J"* < oo such that U(t) is strictly decreasing if 0 < t < T*

and U(t) = 0 if t > T*.

Proof. Suppose U(t) is not strictly decreasing for all t > 0. Then there exist 0 < t0 < tx

< oo such that

U{t) = U(t0) = U(tx) for all t0 < t < tx.

In order to prove the lemma it suffices to show that for any such tx we have U(tx) = 0.

We shall assume that

U(tl)>0 (3.1)

and derive a contradiction.
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By the maximum principle we then have, for any x e

| u(x, rx) | < max< max |u(y, s)|, max | u(x, t0)

= max U(t) = t/() = max u(x, tx) (3.2)
/(><'<'l

= max u(y,tx) = u(yx,tx)

for some y1 e 3S2, where for definiteness we have assumed that

{/(fj) = max u(x,tl) 3* — min u(x,tl).
ieC iEil

Hence

w(>'i'?i)= / f{yi> x)u(x, ?i) dx < p max |w(x, <j) |

<pi/(ji,?i). (3.3)

Since p < 1 it follows that u(yv fx) = 0 and, by (3.2), U{tx) = 0, which contradicts (3.1).

In the sequel we impose the following additional conditions:

a,,e C1+a(J2), (3.4)

9£2 is in C2+a, (3.5)

and there exists an extension of / into a function f(x, y) defined for all x e S2, y£l!

such that

f(x,y)e:C2+a(Qxti). (3.6)

We can clearly redefine /, if necessary, such that also

9(x) = f |/(x, >>) | dy < p0 < 1 forallxefi. (3.7)
Ja

Lemma 3.2. For any x e the function u(x,t) is analytic in t, for 0 < / < oo.

Proof. Introduce the function

V(x,t) = u(x,t) - f f(x, y)u(y,t) dy. (3.8)
Ja

We can solve u in terms of U, at least formally, by
00

u(x,t) = V(x,t) + £ f f^(x,y)V(y,t)dy, (3.9)
m = 0 ^

where y) = f(x, y) and

f^(x,y)= f f(m~l\x,z)f{z,y)dz = [ f{x,z)f^~l\z,y)dz. (3.10)
Jq. jq.

In view of (3.7)

|/(m)(x,j)|< p0 sup|/(m X){z,y)\,

refl

from which we deduce that

sup\f(m)(x,y)\^ C(p0)m \ (3.11)
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It follows that the series £ f(m\x, y ) is uniformly convergent; in fact, it even converges in

the C2+a(fi Xfi) sense. We can thus write

u(x,t)= V(x,t)+ f F(x,y)V(y,t)dy (3.12)

with F in C2+a.

The function V satisfies:

Vt - AV = - J f(x, y)u,(y, t) dy + f (Af(x,y))u{y,t)dy
Jo. Jo.

= -Jf(x,y) I.alj(y)-^j + I,bl(y)^ + c(y)u

+ L
Writing

^+ $+ c{x)f

dy

u(y,t)dy.

- ff(x> y)a'Ay) dy= - Lj(x> y)au(y>. dSy3 yfiyj ha. 'J ' 3 yj

we see that

Vt — AV = G in (3.13)

where

MjvO .c v ( du(y>0
G = Lf «j(x>y)-^7—dsv + Lj Pj(x,y)

j j £2 3 y,

+ / Y(x,y)u(y,t)dy

dy

Ja

and a.j, ft,, y are in Ca. Substituting u and 'du/()y/ from (3.12) we find that

G = G(V) = £ /an aj(x, y) 9F^'° dSy + £ ^ fax, y) dy

+ Ja y(x,y)V(y,t)dy, (3.14)

where a , fy, y are in C".

Note that

V(x, t) — 0 if a: £ 912, t > 0, (3.15)

and

V(x,0)=V0(x) if x e Q, V0 e C(Q). (3.16)
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The parabolic problem (3.13), (3.15), (3.16) is not a standard one since G is a nonlocal

(linear) operator of V. Nevertheless, one can still apply Schauder-type estimates in order

to derive inductively that, for any 0 < 7 < oc, 1 < m < oo,

K K yyj !

(3.17)

with similar bounds on Dj"~1DyV(y,t) and on the corresponding Holder coefficients.

Indeed, in [6] we considered the parabolic problem

vyy - v, = vy(l,t)vy in{0<j><l,0<?< T),

u(0, t) = u(l, t) = 0 if 0 < ; < T,

and established estimates of the type (3.17). The proof can be extended to parabolic

equations with variable coefficients in n-dimensional domains [and with vy(\,t)v re-

placed by G(V)]. In fact, the basic estimates from which one deduces (3.17) (for v) are the

interior-boundary Schauder estimates stated in Theorem 1.1 of [6], This theorem can be

extended to general parabolic operators in general domains by a standard argument used

to derive the Schauder estimates for variable coefficients and general domains, once they

have been proven for constant coefficients in rectangular domains; see [5, Chapter 4],

Since the calculations are routine, we omit the details.

The assertion (3.17) now follows from the interior-boundary Schauder estimates in a

way similar to that for v in [6],

From (3.17) and (3.12) we see that u{x, t) is analytic in t, for each x e S2.

Theorem 3.3. If (3.4)-(3.6) hold, then U(t) is strictly decreasing in t for all t > 0.

Proof. If the assertion is not true then, by Lemma 3.1, u(x, t) = 0 for all / > 7"*. By

Lemma 3.2 it then follows that u(x, t) = 0 in a contradiction to u0 # 0.

Remark. Theorems 2.1-2.3 and Lemma 3.1 extend to the case where the coefficients of

A also depend on /. Lemma 3.2 and Theorem 3.3 also extend to this case provided the

coefficients are analytic in t.
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