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Abstract. The uniqueness of the solution of initial, mixed boundary value problems for

linear thermoelastic shells is reconsidered within the context of recent developments in the

thermomechanical theory of a Cosserat surface [4]. Fairly general boundary conditions are

considered which allow mechanical contact with linear elastic media and thermal radiation

on the boundary curve of the Cosserat surface and on the major surfaces of the shell.

1. Introduction. Motivated by the application of shell theory to contact problems, we

generalize the usual boundary conditions to include mechanical contact with linear elastic

media and thermal radiation. These generalized mechanical and thermal boundary condi-

tions are applied on the boundary curve of the shell as well as on its major surfaces.1 In

this paper, the uniqueness proof is reconsidered within the context of these general

boundary conditions.

By way of background, we recall that the theory of a Cosserat surface [1] has been well

established as a particularly useful model of a shell-like body which, broadly speaking, is a

three-dimensional body that is "thin" in one of its dimensions. Recent developments in

the theory of continuum thermodynamics [2, 3] have provided the theoretical framework

with which to develop a general thermomechanical theory of a Cosserat surface [4]. Such a

general theory admits finite numbers of directors d v (N = 1,2,...) and temperature

fields 0N to provide limited information about the variation through the thickness of the

shell of the deformation and temperature field, respectively.

For less general boundary conditions than considered here, a uniqueness theorem has

been proved for the linear isothermal theory of shells [1, Sec. 26] and for small motions

superposed on a large deformation within the context of a thermoelastic theory of shells

* Received December 5, 1984.

1 Recall [1] that the three-dimensional boundary conditions applied to the major surfaces of the shell are

incorporated into the field equations and therefore are not considered to be boundary conditions in shell

theory.
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which admits a single temperature field [5]. A uniqueness theorem for a linear thermoelas-

tic theory of shells which admits two temperature fields and two energy equations has also

been proved [6], including radiation on the major surfaces but not on the boundary curve.

None of these uniqueness proofs considers mechanical contact with elastic media.

Although this latter theory [6] is not based on the recent developments for Cosserat

surfaces [4], the linearized equations can be placed in a one-to-one correspondence with

those of a theory which admits a single director d and two temperature fields 6, <j>. It

therefore follows that the previous uniqueness theorem [6] applies to solutions within the

context of the new linearized theory [4].

In the following sections, we state sufficient conditions to prove uniqueness of the

solution of the equations of the coupled thermoelastic theory2 which admits the gener-

alized boundary conditions and which considers inhomogeneous, anisotropic elastic shells.

Specifically, in Sec. 2 the basic equations of the linear theory of a Cosserat surface are

recorded and in Sec. 3 the generalized boundary conditions are discussed. Finally, in Sec.

4 we state and prove the uniqueness theorem.

2. Basic equations. In this section we briefly record the relevant equations describing a

thermoelastic Cosserat surface. Details of the theory of a Cosserat surface may be found

in [1, 4, 7]. Here we use the_notation of [7], which differs from that used in [1, 4], For our

purposes, we consider a Cosserat surface which is defined by the position vector r, director

d, and two temperature fields 6 and cp. A thermomechanical process of such a surface is

characterized by

r = r(9a,t), d = d(#",/), [a,a2d] > 0, (2.1a,b,c)

d = 6(6a,t), (0> 0), <f» = *(«V), (2.1d,e,f)

where 6a (a = 1, 2) are convected coordinates, t is time, aa are tangent vectors, and a3 is

the unit normal vector. The velocity v, director velocity w, and temperature gradients g

and gj are defined by3

v = r, w = d, g = 6 aa", gj = <J> „aa, (2.2a,b,c,d)

where a superposed dot denotes time differentiation holding 9a fixed, a comma denotes

partial differentiation with respect to the coordinates 6a, and a' are the reciprocal vectors

of the set a,. Furthermore, the basic kinematic quantities characterizing the reference

configuration of the shell are given by

A1/2=[A1A2A3]>0, Aap = Aa ■ Ap, Ba/j = A0i/j-A3, (2.3a,b,c)

D, = A, ■ D, A,a = A, • D (2.3d,e)

2 Of course, the uniqueness theorem with its modification for the generalized boundary conditions is

applicable to the purely mechanical theory as well as the purely thermal theory.

3 Throughout the text we use the usual summation convention over repeated indices. Greek indices have the

range (1,2) and Latin indices have the range (1,2, 3).
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where A, and D are the reference values of a, and d, respectively. For later convenience

we also define the displacement u and director displacement 8 by

u = r — R, 8 = d - D, (2.4a,b)

where R is the reference value of r.

Now, the local forms of the basic equations for the linearized theory may be recorded as

[1, 4, 7]:

X = pa1/2 = p0A1/2 > 0, (2.5a)

X(v +/w) = Xf +U1/2Na),a, (2.5b)

X( yx\ + y2vi) = XI — A1/2k (2-5c)

Xi) = X(s + £) ~{A1/2pa) a, (2.5d)

Xi)! = X(jj + |x)-(A1/2pl) a. (2.5e)

Equation (2.5a) represents the conservation of mass, (2.5b) represents the balance of linear

momentum, (2.5c) represents the balance of director momentum, and (2.5d, e) represent

the balances of entropy. In Eqs. (2.5) we have introduced the following quantities: the

mass density p0 in the reference configuration; the present values p and a1/2 of p0 and

A1/2, respectively; the contact force N" and contact director moment Ma; the specific (per

unit mass) assigned force f and specific assigned director couple 1; the intrinsic director

couple k; the inertia coefficients y1 and y2; the specific entropies tj and the specific

internal rates of production of entropy £ and £,; the entropy fluxes pa and p"\ and the

specific external rates of supply of entropy s and sv Further, by referring the quantities

N", k, Ma to the base vectors A,, such that4

N° = N '"A,, k = k'A,, Ma = MiaA,, (2.6a,b,c)

the results of angular momentum may be written in the forms

N,0a = N,ap = Nfia _ _ MaaA^a, (2.7a)

N3a = D3ka - Dak3 + K\0Ma° - AaaM3°, (2.7b)

where tensor quantities with superscripts are contravariant or mixed components.

Consider a shell which in its reference configuration is stress-free and has a uniform

temperature 0. Then for an inhomogeneous, anisotropic elastic shell we assume constitu-

tive equations of the forms

2p0^ = 2Po^1 - 2/?oY3(0 - 0) - 2Cfeafi(0 - 0)

- 2- P3(02 - 20®) - ptf - 2(1,6,
(2.8a)

(2.8b)
2Poii = Cf-'sea/ieyS + «4(y3) + Cf^s Ka/3KyS

+ Cfyayp + CfK3aK3(1 + 2Cfea0y3,

pa = -C^6 p, pt = -C"P<t> p, (2.8c,d)

' This notation is consistent with [7] but differs from that used in [1,4].
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Po0£ = C^e j $ + C"P<t> a<j> p + b^\ (2.8e)

Po£i = Poll = ~t>2(t>' (2-8f)

where eafj, y,, Kia are strain measures [1], \p is the Helmholtz free energy, is a specific

internal production of entropy, the quantities C^yS (N = 1,2), Cjf (N = 1,2,..., 7), a4,

/?0, /J3, fi4, /?5, b2 are functions of the variables

V = {e",Aap, Bafi, D„ A,a,0}, (2.9)

and the tensors C"/iyS and Cff have appropriate symmetries.

The forms of the constitutive equations (2.8) are chosen to be similar to those used in

the linearized theory [4], but with appropriate generalizations to allow for anisotropic,

inhomogeneous response and to satisfy the reduced energy equation without approxima-

tion. In particular, we note from (2.8) that £ is of higher order and therefore may be

neglected in Eq. (2.5d). Now for an elastic shell we may deduce the additional results [4]:

= cfySeyS + Cfy 3 - Cf(6 - 0), (2.10a)

ka = Cf%, /:3 = a4Y3 + C3<%3-/?o(0-0), (2.10b,c)

MaP = CfAKyS - M3a = (2.10d,e)

PoV = ^oY3 + C4^a/J + ~ ©) + PoVl = C^Ka/j+ P44>, (2.10f,g)

2 p0e = 2p0xP1 + 20^3 + 2@Cfea/3 + &02 + fa2, (2.10h)

where e = \p + 0tj + 6t]1 is the specific internal energy.

Finally, we recall [4] that for such an elastic shell the only nontrivial statements of the

second law of thermodynamics take the forms

PoOfi + P ' g + Pi 1 gi 0, (2.11a)

8(t) — Ql> 0 whenever e(t) — ex > 0. (2.11b)

The statement (2.11a) corresponds to the classical heat conduction inequality and is

assumed valid for all equilibrium displacement and temperature fields. Further, the

statement (2.11b) is assumed valid when the Cosserat surface is at rest and the three-di-

mensional temperature field is spatially uniform so that 6 = 0(t), (j> = 0. In (2.11b), £j

and correspond to the internal energy and uniform temperature of the shell during

some period of time up to tx when the shell has been at rest and in thermal equilibrium.

3. Boundary and initial conditions. This theory, which is developed by a direct approach,

may be brought into a one-to-one correspondence with the three-dimensional theory by

assuming that the position vector p* of a point in the shell and the temperature field 6 *

admit the representations

p* = p*(0a,0\f) = r(6a, t) + 03d(0a,/), (3.1a)

0* = 6*(6aJ\t) = + 63<t>{0a,t), (3.1b)

where 03 is a coordinate through the thickness of the shell. Without loss of generality, we

may define the top surface BP"1" of the shell by #3 = h/2, where h is a constant having the

dimensions of length, and write the displacement u+ and temperature difference (0+- 0)
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on dP+ as

u+=u + ^8, (0+- 0) = (6 - 0) + ^<}>. (3.2a,b)

Similarly, we may define the bottom surface dP of the shell by 6*3 = -h/2 and write the

displacement u~ and temperature difference (0~- 0) on Si5" by

u"= u - ^8, (8~- 0) = (0 - 0) - ^-(p. (3.3a,b)

With the help of (2.7) and the constitutive equations (2.8c, d, f), (2.10a-g), and ap-

propriate strain-displacement relations [1], Eqs. (2.5), with £ = 0, represent a system of

equations to determine the unknowns u, 8, 0, <(>. These equations must be solved subject to

certain initial and boundary conditions. Let P, bounded by the closed curve 3P, denote

the region occupied by an arbitrary material portion of the Cosserat surface in the present

configuration. Then the initial conditions may be defined at each point of P by specifying

u = uo(0a), 8 = 8o(0a), 6 = 80(6a), <t> = </>o(0«), (3.4a,b,c,d)

» = vo(0a), & = wo(0a). at t = t0, (3.4e,f)

where u0, v0, 80, w0, 60, <J>0 are specified functions of 8a only. Mixed5 boundary

conditions which include mechanical contact with a linear elastic medium or thermal

radiation may be written at each point6 s of the boundary curve 3P in the generalized

forms7:

n + B(j)u + C(s, t) = 0, m + Bt(j)8 + C^i, t) = 0, (3.5a,b)

k — B(s, t)(6 - 0) + C(s, t) = 0, k1 - B:(s, t)<p + C1(s, t) = 0, for f e [f0,oo),

(3.5c,d)

where

n = NVa, m = MX, k = pava, kl=plva (3.6a,b,c,d)

and where va are components of the unit outward normal vector of the curve 3P. In (3.5)

B and B1 are assumed to be continuous, symmetric, three-dimensional, second-order

tensor functions of 5 and are independent of time; B and B1 are continuous scalar

functions of (j, t); C and Cx are continuous vector functions of (s, t); and C and Cx are

continuous scalar functions of (s, t). For later convenience, we define the scalars

Jx = x" ' Bu, J2 = y8 • BjS. (3.7a,b)

A boundary condition on n alone can be obtained trivially from (3.5a) by setting B = 0,

and a boundary condition on u alone can be obtained from (3.5a) by setting the tensor B

equal to a scalar b times the identity tensor I (B = M) and then taking the limit as b

approaches infinity.

5 Mixed-mixed boundary conditions may be specified but are not considered explictly.

6 The temporary use of the symbol s for a point on 9P should not be confused with the use of the same

symbol elsewhere for the external entropy supply.

7 A condition of the type (3.5c) has previously been considered for the three-dimensional theory [8, Sec. 5.7],
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Recall from [4] that the assigned fields f, 1, s, and sL include contributions from both the

effects of three-dimensional body force and external entropy supply as well as from the

effects of surface tractions and entropy flux on the major surfaces of the shell. In view of

the specification 03 = ±h/2 defining the major surfaces, we may write these assigned

fields in the forms

Af = Xi+Al/1{b+t+ + b~t~), (3.8a)

XI = Ai + Al/1[^\(b+t+- b~t~), (3.8b)
.2.

Xs = Xs -A1/2(b+k + + b~k~), (3.8c)

= Ajj - Al/2[^\{b+k+- b~k~), (3.8d)

where f, i, s, Sj are considered to be specified assigned fields associated with the

three-dimensional body force and external supply of entropy, b+ and b are positive

scalar functions of the variables (2.9) and are independent of time, t+ is the traction vector

and k+ is the entropy flux on the major surface 9P+, and t~ is the traction vector and k~

is the entropy flux on the major surface 3P . To allow mechanical contact of the major

surfaces with an elastic medium and to allow thermal radiation, we assume that at each

point of8 8P+,

t++B+u + +C + = 0, k + - B + (6+- 0) + C+= 0, (3.9a,b)

and at each point of 9P~,

t + B u + C = 0, k~- B~(6~- 0) + C' = 0, (3.10a,b)

where B and B~ are continuous, symmetric, three-dimensional, second-order tensor

functions of the variables V in (2.9) and are independent of time; C+ and C" are

continuous vector functions of the variables (V,/); and B+, B~, C+, C~ are continuous

scalar functions of the variables (V, t). For later convenience, we define the scalars

J3 = ^u + - B + u + , J4 = ^u" B u". (3.11a,b)

Depending on the nature of the problem to be considered, the quantities t+, t~, k+, k~,

u+, u", 0+, 0~ are either specified or to be determined by the field equations. For

example, if we were to consider a slightly more general boundary condition of the type

(3.9a) which specified the tangential components of t+ and the normal component of u+,

then the normal component of t+ and the tangential components of u+ would be

determined by the field equations. This is similar to the use of such quantities in the

theory of laminated composite plates [9],

4. A uniqueness theorem. We now state the following uniqueness theorem: Let u, 8, 9, 4>

be displacements and temperature fields which satisfy the above mentioned linear field

equations, constitutive equations, and statements of the second law of thermodynamics

8 Note that the range of the convected coordinates 0" on the major surfaces 9P+ and 6P is the same as

that on the reference surface P of the Cosserat surface.
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(2.11) on P X [r0, oo), and satisfy the initial conditions on P at t = t0, the boundary

conditions on dP X [f0, oo), conditions of the type (3.9) on 9/>+X[r0, oo) and (3.10) on

dP x[/0, oo), for prescribed values of the assigned force f, director couple I, and external

supplies of entropy s and sv Then, provided the specific kinetic energy K defined by

K = K(\,w) = i(v • v + 2• w + _y2w • w) (4.1)

is positive definite, the specific heats ft and ft in (2.8a) are positive scalars, the portion of

the Helmholtz free energy in (2.8b) is positive semidefinite, and the scalars Jx, J2, J3,

J4, B, Bv B+, B~ in (3.5), (3.7), (3.9)—(3.11) are positive semidefinite, there exists at most

one set of functions u, 8, 6, <#> which satisfy the strain-displacement relations, the field

equations (2.5) [with £ = 0 in (2.5d)] and (2.7), the constitutive equations (2.8) and (2.10),

the restriction (2.11a), initial conditions (3.4), boundary conditions (3.5), and conditions

(3.9) and (3.10), and are of class C1 on 3P X [r0, oo) and are of class C2 on P X [;0, oo).

For convenience, the restrictions stated above may be written in the mathematical forms9

y2 -(/)2 > °, ft > ft > 0. 4>i > 0, (4.2a,b,c,d)

Jx >0, J2> 0, y3 >0, J4 > 0, (4.2e,f,g,h)

B > 0, Bx > 0, B + > 0, B > 0. (4.2i,j,k,l)

Apart from the discussion of the generalized boundary conditions, our method of proof

is nearly identical to that used in [6]. Specifically, we assume the existence of two different

solutions of the initial, mixed boundary-value problem stated above, form the difference

solution, and use a consequence of the field equations to prove that the difference solution

is the null solution. Let us denote a typical variable of the difference solution by U. Then

it follows that the difference solution satisfies the field equations

+/w) = Ay/1(b+l++ b~V) +(/l1/2Na),a, (4.3a)

+j2^) = A1/2l^)(b+1+- b~l~) -Al/2k +{Al/2Ma) a, (4.3b)
2,

At? = -A1/2(b + k + + b~h~) -(A1/2pa), a, (4.3c)

At?x = Alj - Al/1[^(b + k + - b~k~) - (Al/2pl) a, (4.3d)

on P X [r0, oo), the restriction

(>M + P ' g + Pi ' 8i < 0 (4-4)

on P X [r0, oo), the initial conditions

u = 0, 8 = 0, 6 = 0, 4> = 0, 6 = 0, b = 0, (4.5a-f)

on P at t = t0, the boundary conditions

ft + Bu = 0, m + B[8 = 0, (4.6a,b)

k- B6 = 0, k1 — B^> = 0, (4.6c,d)

' The restriction (4.2b) is consistent with the condition (2.11b).
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on 3P X [r0, oo), the conditions

t++ B4u + = 0, k + -B+d + = 0, (4.7a,b)

on dP+X [f0, oo), and the conditions

t + B ir=0, k~- B~0~= 0, (4.8a,b)

on 3.P~x[r0, oo).

Multiplying (4.3c) by 9, (4.3d) by <£>, adding the results together, integrating over the

region P, using the divergence theorem and the conditions (4.6c,d), (4.7b), and (4.8b), we

obtain

f p0{ekr\ + da = ( (p0Ui + P " g + Pi " gi) da
jp jp

- ( \b + B + (0+)2 + b-B (r)2]do - ( (Be2 + Brf2)ds, (4.9)
JP JdP

where da is the area element on P and ds is the arc length on 3P. Taking the inner

product of (4.3a) with v, (4.3b) with w, adding the results together, integrating over the

region P, using the divergence theorem and the conditions (4.6a,b), (4.7a), and (4.8a), we

deduce the expression

E = f Po(8v + 4>Vi) da, (4.10)jp

where

E = f [p0(4'1 + ^)+ — jiJ)2 + — /?4<f>" + ft4+ b J4 da + f (j^+jj^ds^A.Wa)
JP L l L J^p

h = fi(2afl> %> *<«)>. K = K(\, w), (4.11b,c,d)

J2 = J2(S), J3=J3(u + ), J4 = J4(u~), (4.11e,f,g)

and where the functions ^1( K, JX-JA, are defined by (2.8b), (4.1), (3.7), and (3.11),

respectively. Now from (2.8f), (4.9)—(4.11), and the restrictions (2.11b) and (4.2), we

realize that E > 0 and E < 0. Using the initial conditions (4.5), we obtain the result that

E = 0 for all time t e [/0, oo) and therefore

v = 0, w = 0, 6 = 0, <j> = 0. (4.12a,b,c,d)

Integrating (4.12a,b) and using the initial conditions (4.5), we have

u = 0, 8 = 0. (4.13a,b)

Using (4.12c,d), (4.13a,b), and the expressions (3.2) and (3.3), we deduce the additional

results

u + = 0, u"= 0, 0 + =O, 6~= 0. (4.14a, b,c,d)

Finally, substituting (4.12c,d), (4.13), and (4.14) into conditions (4.6)-(4.8), we conclude

that

ft = 0, ni = 0, t + = 0, t = 0, (4.15a,b,c,d)

k = 0, k1 = 0, k + = 0, k~= 0, (4.15e,f,g,h)

which completes the proof.
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To prove uniqueness for static problems of thermoelastic shells, we need slightly

stronger conditions than (2.11a) and (4.2d). Specifically, we retain the restrictions (4.2e-l)

and assume that \p1 is positive definite and that the expression on the left-hand side of

(2.11a) is negative definite so that

<Pi > 0, + p • g + Pi • g! < 0, (4.16a,b)

where \pl in (4.16a) vanishes only when the mechanical fields ea/}, y,., Kia vanish and

(4.16b) vanishes only when the thermal fields 8 a, <f>, <f> a vanish. Furthermore, we require

the temperature 8 to be specified at at least one point on the boundary of the shell. This

can be done by specifying 8 on 3P, 8+ on dP+, or 8' on dP~.

Now, for static problems the thermal equations (4.3c,d) are uncoupled from the

mechanical equations (4.3a,b) and the expression (4.9) can be derived with the left-hand

side vanishing. It follows that10

PoUi + P ' g + Pi • gi = 0, (4.17)

from which we conclude that

g = 0, * = 0. (4.18a,b)

Integrating (4.18a) and using the specification of 8 at a point of the boundary of the shell

as well as expressions (3.2b), (3.3b), and (4.18b), we have

8 = 0, 8+= 0, 8~= 0. (4.19a, b,c)

Substituting (4.18b) and (4.19) into conditions (4.6c,d), (4.7b), and (4.8b), we deduce that

k = 0, kv = 0, k+= 0, k~= 0, (4.20a,b,c,d)

which completes the proof for the thermal fields. In view of the results (4.18b) and (4.19),

we may take the inner product of the equilibrium forms of Eqs. (4.3a) and (4.3b) with u

and 8, respectively, and derive the expression

( + b+Jj + b do + f (./j + Jj) ds = 0. (4.21)
J P JdP

It follows that = 0 so that

Kp = °> Y, = 0, kia = 0. (4.22a,b,c)

Hence, the displacements are unique to within a linear superposed rigid body displace-

ment. If this arbitrariness is removed, then the displacements will be unique. Thus with the

help of (3.2) and (3.3) we have

u = 0, 8 = 0, u + = 0, u~= 0, (4.23a,b,c,d)

and from conditions (4.6a,b), (4.7a), and (4.8a), we can conclude that

n = 0, m = 0, t+= 0, r= 0, (4.24a,b,c,d)

which completes the proof for the mechanical fields.

1 Recall from (2.8f) that fj =
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