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1. Introduction. The Lagrangian formulation of the equations of motion of a one-dimen-

sional, homogeneous medium of unit reference density reads

d,u - 3xv = 0,

a a n (L1)otv — axa = 0,

where u denotes deformation gradient (i.e., the inverse of density), v is velocity, and a is

the Piola-Kirchhoff stress. When the material is elastic, the stress is determined by the

deformation gradient through a constitutive relation

a = p(u), 0 < u < oo, (1-2)

where />(w) is strictly increasing,

pu(u) >0, 0 < u < oo, (1.3)

so that the system (1.1) is strictly hyperbolic.

The destabilizing effect of nonlinear elastic response may be seen by studying the

propagation of acceleration waves, that is, jump discontinuities in the acceleration d,v (as

well as other first partial derivatives of u and v). Acceleration waves propagate along

characteristics with speed

V(t) = ±pl/2(u). (1.4)

When the elastic medium ahead of the wave front is at rest, i.e., u = u = constant, v = 0,

then the speed V of propagation is constant, equal to ±plu/2{u), and the amplitude,

measured by the jump of acceleration across the wave, satisfies the ordinary differential

equation

«+(/U")/2F3)«2 = 0. (1.5)
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Therefore, if puu{u) ¥= 0 and a(0)puu(U) < 0, then the amplitude explodes in a finite time

and, presumably, the acceleration wave breaks into a shock wave.

The above analysis suggests that solutions to the Cauchy problem for (1.1), (1.2), with

smooth initial data

«(x,0) = u0(x), u(x,0) = u0(x), -oo < x < cc, (1-6)

may develop discontinuities in a finite time. This was indeed established by the following

argument of Lax [10]. Consider the Riemann invariants, defined by

r = v + [ pY2U)d£, S = V - j' pY2(£) (1.7)
J u u

and apply the operators of differentiation along the characteristic directions, viz.,

= 9,-/>y2("R> '= 9, + />i/2("R- (1-8)

A simple calculation using (1.1), (1.2) yields

r = 0, 5 = 0, (1.9)

i.e., r stays constant along backward characteristics and s stays constant along forward

characteristics. Consequently, so long as a classical solution of (1.1), (1.2), (1.6) exists, r, s,

and thereby also w, v, will remain uniformly bounded by constants that depend solely on

the Lx norm of the initial data «0(") an^ ^o(')- Next consider the evolution, along

characteristics, of partial derivatives of the Riemann invariants,

w = 3 xr, w = 9^. (1-10)

A lengthy but interesting calculation [10] yields

1 [pi/4("*w] - iK5/4(u)p«j")[py*(u)a}1 =

It follows that if puu(u) does not change sign, then w, to, and thereby also the first partial

derivatives of u, v, will generally blow up in finite time, i.e., in general the initial-value

problem (1.1), (1.2), (1.6) does not have a globally defined classical solution. Solutions

generally blow up even when puu(u) changes sign (cf. Klainerman and Majda [8]), but the

proof is quite technical.

It is interesting to discuss the situation in which the destabilizing action of nonlinear

elastic response, exhibited above, coexists and competes with the damping action of

dissipation. For general background information see, e.g., [3]. The prevailing conjecture is

that dissipation manages to restrain waves of small amplitude but is incapable of

preventing the breaking of waves with large amplitude. The simplest example of this type

arises when dissipation is induced by frictional damping. This case can be treated by

mimicking the analysis for (1.1), outlined above (cf. Nishida [13]). In recent years,

considerable effort has been expended (cf., e.g. [11,5,7,6,4]) in the study of stabilizing

effects of dissipation induced by memory response (viscosity of the Boltzmann type).

Here we investigate the effectiveness of damping induced by heat diffusion, within the

framework of one-dimensional thermoelasticity. The Lagrangian formulation of the bal-

ance equations of mass, momentum, and energy for one-dimensional homogeneous media
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with unit reference density reads

(3tu - dxv - 0,

d,v - 3xa = 0, (1.12)

{dt(e + \v2) - 3x(au) = 3xq,

where, as above, u is the deformation gradient, v is velocity, and a is stress, while e

denotes the internal energy and q denotes the heat flux. In a thermoelastic material, stress,

internal energy, and heat flux are determined by the constitutive relations

e = e(u,T), a = 6(u,T), q = q(u, T, dxT), (1.13)

where T stands for absolute temperature. The functions e and 6 must satisfy the

compatibility relation

eu(u,T) = d(u,T) - T6t(u,T), (1.14)

which is induced by the Second Law of Thermodynamics. Moreover, q should be an

increasing function of 3XT that vanishes when dxT = 0, and the specific heat at fixed

volume should be positive, i.e.,

q(u, 7\0) = 0, qh{u,T,h)>0, eT(u,T)> 0. (1.15)

The propagation of acceleration waves in thermoelastic media is studied in [2] in great

detail and generality. A brief discussion that would suffice for the present purposes can be

found in [3], The speed of propagation is given by

V(t)= ±ay2(u,T), (1.16)

which should be compared with (1.4). When the thermoelastic medium ahead of the wave

front is at rest, i.e., u — u = constant, v = 0, and at constant temperature T = T =

constant, then the speed V of propagation is constant and equal to ± alu/2(u, T), and the

amplitude, measured, as before, by the jump of acceleration across the wave, satisfies the

Bernoulli equation

, Tai(u,T) . .
a + uuK ' ' a2 + rV 1 ' a = 0, (1.17)

2F3 2qh(u,T,0)

which should be compared and contrasted with (1.5). It follows that if auu{u, T) + 0, then

the amplitude of an acceleration wave in the thermoelastic medium decays to zero

exponentially fast when initially small, but may explode to infinity, in finite time, when

initially large. On the strength of this observation, it is reasonable to conjecture that

solutions to the system of equations of thermoelasticity exist globally in time when the

initial data are smooth and "small," but they blow up in finite time when the initial data

are " large." Indeed, the existence of globally defined solutions under " small" initial data

was established by Slemrod [14] with the help of energy-type estimates.

The aim of our paper is to show that solutions of the equations of thermoelasticity with

large initial data generally blow up in finite time. Just as in the elastic case, it turns out

that the deformation gradient, velocity, and temperature stay uniformly bounded, but

their first partial derivatives explode. In fact, we will consider here solutions whose range



466 C. M. DAFERMOS AND L. HSIAO

is contained, throughout the maximal time interval of existence, in a small neighborhood

of a fixed equilibrium state (u,0,T). With this in mind, and in order to simplify the

analysis, we will assume special constitutive equations of the form

e = P(u) + c(T- T), a = p(u) + n(T - T), q = ^xT, (1.18)

with c > 0, k > 0, and ju constants, p(u) = 0, which we view as approximations of (1.13)

around the state (u,T). Moreover, assuming that stress varies slowly with temperature, we

shall neglect2 the term T6t in comparison to a, and so deduce from (1.14)

P(u)= f p{H)dl (1.19)
Ju

We postulate that the function p(u) is smooth, satisfies (1.3), and is genuinely nonlinear

in the sense

Puu(u) > 0 < u < oo, (1.20)

so that the elastic response is destabilizing.

Let the thermoelastic body have as reference configurations the entire x-axis (-oo, oo).

We prescribe initial conditions

m(x,0) = u0(x), v(x,0) = v0(x), T(x,0) = T0(x), -oo < x < oo, (1.21)

where u0, u0, T0 are smooth functions with range in a small neighborhood of a fixed state

(u, 0, T). The main result is

Theorem 1.1. Let u0, v0, T0 be C2 functions on (-oo, oo) such that u0 - u e L2(-oo, oo),

v0 g L2(-oo, oo), T0- T g L^-oo, oo), and 3xu0, 3^0, and dxT0 decay to zero as |x| -> oo.

Assume, further,

T0(x) > T, -oo < x < oo, (1-22)

^^(x) | < H, -oo < x < oo, (1-23)

|w0(*) - "|< S1/2, |d0(x)|< 51/2, |T0(x) - r| < 6, -oo < x < oo,(l.24)

/ {|"o(*) - "|2 + ko(-*)|2 +|7o(*) - T\}dx < S, (1.25)

min^^o + py2(u0)dxu0} + min{3xt;0 - ^/2(«0)3vw0} ^ -J, (1.26)

where H, J, and S are positive constants. Given any L > 0, there is M > 0 which depends

on L as well as on the constants u, H, J, S, such that if

max{3xt;o + ^/2("o)^w0} + max{ 3xt;0 - pl/2(u0)dxu0 } > M, (1.27)

then the length of the maximal time interval of existence of any C2 solution of (1.12),

(1.18), (1.21) cannot exceed L. Moreover, when 5 is small, the range of the solution is

contained in a small neighborhood of the state (u,0,T) throughout its maximal interval of

existence.

'■ The constitutive relations (1.18), (1.19) conform strictly with (1.14) only when 7=0.



SOLUTIONS OF EQUATIONS OF NONLINEAR THERMOELASTICITY 467

In proving the above theorem, we use heavily equations analogous to (1.9), (1.11) that

govern the evolution of Riemann invariants and their derivatives along characteristics.

However, in contrast to the hyperbolic case, these equations now contain coupling terms

that depend on T and its derivatives. Therefore, it is no longer possible to establish

boundedness or blow-up by restricting attention on a fixed distinct characteristic. Instead,

we employ here a technique introduced in [4] that seeks to estimate solutions by

monitoring the time evolution of the functions max Jr(jt, ;)|, max J.s(x, t) |, max v|3Jtr(x, f)|,

max J0x5(x,r)|. The proof will be presented in Sec. 2.

The development of singularities in thermoelasticity is also discussed by Mclntire [12].

Mclntire considers model equations somewhat different from (2.2) and shows that a gross

energy-like quantity blows up in finite time.

2. Proof of theorem. Let us assume that the initial-value problem (1.12), (1.18), (1.21)

admits a C2 solution on the strip (-oo, oo) X [0, L], for some positive L < 1. Moreover,

for each re[0,I], u(x, t) - u e L2(-oo, oo), v(x, t) e L2(-oo, oo), T(x,t)—Te

Ll(-oo, oo), and derivatives 3xu, dxv and 3XTdecay to zero as |jc| -> oo.

We define

0(x, t) = T(x, t) - T. (2.1)

We substitute e, a, and q from (1.18) into (1.12), and after certain manipulations using

(1.19) we arrive at the equivalent system

'3tu - dxv = 0,

9^ - Pu(»)*x» ~ VW = °> (2.2)

,3,0 -(ii/c)6dxv = (k/c)320,

with initial conditions

u(x,0) = u0(x), v(x,0) = v0(x), 6(x,0) = 90(x), -oo<x<oo. (2.3)

We note that (1.22) implies 60(x) = T0(x) - T > 0, -oo < x < oo, and so the maximum

principle applied to (2.2) 3 yields

8(x,t) > 0, -oo <x<oo, 0 < f < L. (2.4)

Throughout this section, A will denote a generic positive constant which may depend at

most upon the material constants ju, c, k, on the constants H, J in (1.23), (1.26), and on

bounds of p(u), pu(u), puu(u) on a fixed neighborhood of u in which the range of

u(x, t) will be confined.

To get the first estimate, we integrate (1.12)3, over (-oo, oo) X [0, ?], t e [0, L], and use

(1.18), (1.19), (2.1), and (1.25) to conclude

J I^P(u{x,t)) + cO(x,t) + ^v2{x,t)^j dx

= J [p(uo(x)) + c0o(x) + |i>o(*)} dx < AS.

(2.5)
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By virtue of (2.5), the standard theory of parabolic equations (cf. Ladyzenskaja,

Solonnikov, and Ural'ceva [9]) for (2.2)3 yields that 0(x,t) is a priori bounded on

(-oo, oo) X [0, L}. Nevertheless, since we need here an explicit bound on max 0(x, t) in

terms of S, we proceed to derive the appropriate estimate by the method of Alikakos [1],

Lemma 2.1. For any -oo < x < oo, 0 < f < L,

0 < 0(x,t) < AS. (2.6)

Proof. We define

/OO k62(x,t)dx, k = 0,1,2,..., (2.7)
■ 00

and proceed to show that

Ak^(AS)2\ k = 0,1,2,... (2.8)

Once (2.8) has been established, the assertion of the lemma will follow by taking the

(2"*)th power and then passing to the limit, k -» oo.

We fix k = 1,2,..., multiply (2.2)3 by 2k82k~l, and integrate by parts over (-oo, oo) to

get

j- /" e*dx - -4(1 - 2-*)i f - 2 ■ 2*7r ")»*"<><*■
ai — 00 — 00 -oo

(2.9)

Using the Cauchy-Schwarz inequality, (2.9) yields

4 r02kdx < -- r (w^Ydx+22/£— r
dt J-00 cJ_x\ * ' KC J_x

< -- r (9/2'~')2^ + 22* —max 02* /"°° u2<£c. (2.10)
C J KC J _ oo

At the same time, for any v > 0,

0*- 1 I ^ nl^-1 I

max 0 <2/ 02 |ax(92 |<&
-00

r 00

'■I

<f/°° (3xe2k~y dx+v-1 r o2kdx
-oo -oo

< v ( ') dx + p"1 max02< "f 02* 'dx
— 00 -oo

< vJ (S^2* ') d* +-^ max 02* +j J #2' 'dxj . (2.11)

Using (2.5) and combining (2.10) with the (Gagliardo-Nirenberg type) inequality (2.11),

for v appropriately small, yields an estimate of the form

(2.12)
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Integrating (2.12), recalling (2.7) and (1.24), (1.25), we deduce

Ak < S2" + 26kAAl_1. (2.13)

We now pick A, with A1/2 > max{8,213A, A}, A being the constant in (2.5), and claim

that

Ak < 2-6ArA-1/2(A5)2', k = 0,1,2,.... (2.14)

Indeed, (2.14) holds for k - 0, by virtue of (2.5). The validity for any k then follows easily

by induction with the help of (2.13). In particular, (2.8) holds. This completes the proof.

□

The next step is to obtain pointwise bounds for u(x, t) and v(x, t). As in the hyperbolic

case, we introduce by (1.7) the Riemann invariants r, s and apply on them the

differentiation operators',', defined by (1.8). Using (2.2)1 and (2.2)z, the calculation yields

r = fidj, s = (2.15)

which should be compared with (1.9).

In order to handle the right-hand side of (2.15), let us define

X(x,t) = j {e(y,t) + jv2(y,t)^ dy

= / \^P(u{y,t)) + cd{y,t)+ ^v2{y,t)^ dy. (2.16)

By virtue of (2.5), (2.4), and (1.19),

0 <x(*>')^A5, < x < 00> 0 < t < L. (2.17)

Integrating (1.12)3 with respect to x over (-oo, x) and using (2.16), (2.1), and (1.18) yields

KdJ = 9rX - °v

= X + pY2{P + c6 + ^v2) - (p + 1X0)v

= X - pY2{P + c6 + \v2) ~(p + vl0)v. (2.18)

Therefore, setting

' <t> = r-(p A)x,

^ = s-(h/k)x,

Eq. (2.15) takes the form

(<t> = (h/k)pV2(P + c8 + \v2) -(h/k)(p + n6)v,

U = -(m/k)pY2{P + cO + IV2) -(h/k)(p + n6)v.

The right-hand side of (2.20) may be expressed in terms of <f> and \p with the help of

" = E'1(<f> — tp), v = %(<f> + i) +(h/k)x, (2.21)

where E is the monotone increasing function defined by

E(u) = 2f"py2te)d$. (2.22)
Jti

(2.19)

(2.20)
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Lemma 2.2. For any 77 > 0 there is 8 > 0, depending on tj, such that when (1.24), (1.25)

hold then

\u(x, t) - u\< t], \v(x, t) | < rj, (2.23)

for all -00 < x < 00, 0 < t < L.

Proof. By virtue of (2.21), (2.22), and (2.17), it suffices to show that given any rj > 0

there is 8 > 0 such that (1.24), (1.25) imply

|<f>(x, t) | < rj, |^(jc, t) | < rj, -00 < x < 00, 0 < t < L. (2.24)

To this end, let us define, for t e [0, L],

<*>(/) = sup|</>(x,0|. *(0 = sup | !//(*, 01- (2.25)
X X

Note that <t» and ^ are Lipschitz continuous on [0, L],

We now fix any t £ (0, L] and identify points x and x in (-00, 00] such that

<I>(0 = !<#>(*> 01, *(0 =l<M*>0l- (2-26)
For any At e (0, /],

$(/ - At) ^\cj>(x + Atplu/2{u(x,t)), t - A0|,

- At) > - A tp]/2{u(x, t)), t - At) |.
(2.27)

Subtracting (2.27) from (2.26), dividing through by At, and passing to the limit as At J,0,

we deduce

Z>-$(0<|*(.*,0|, 0"*(O<IM*.OI- (2-28)

On the other hand, on account of (1.19), (2.21), (2.22), (2.6), and (2.17), we derive easily

the estimate

± ̂ pY2(p +c6 + \v2) - ^(p + v6)v <A{[kl + l>/,l]2 + [kl + l^l] +5}-

(2.29)

Combining (2.28), (2.20), (2.25), and (2.29), we conclude that

(d/dt)[<b(t) + ^(0] < A{[4>(0 + ^(O]2 + [®(0 + *(01 + (2.30)

for almost all t e [0, L], At the same time, it follows from (2.25), (2.19), (2.17), (1.7), and

(1.24) that

<D(0) < AS1'2, *(0) < AS1/2. (2.31)

Therefore, when 8 is sufficiently small, (2.30), (2.31) imply

$(/) + ^(0 < *), 0 < t < L, (2.32)

whence (2.24) follows. The proof is complete. □

We now proceed to estimate the partial derivatives w, co of the Riemann invariants

defined by (1.10). From (1.7) it follows that

9*m = lPul/2(w ~ w)> dxv = %(w + u), (2.33)
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whence we easily obtain, using (1.8), (2.2)1,

u = «, u = w. (2.34)

Taking the partial derivative with respect to x of Eqs. (2.15) yields

IdAr - pV2- liPul/2Pu$^xr =

I 3A* + PV2^ + JPu1/2PuA^xs = m3 2J.

We substitute 0xw from (2.33) in (2.35) and then use (1.10), (1.8), and (2.34) to get

( * + \P?Puu™ - 4PulPuuwl = ^ 36^

\ « + aP^Puu™ - aP^Puu"2 = ^x6-

Multiplying (2.36) by the integrating factor p1/4, we obtain

( pVM - ip;5/'p..( pY'»)2 - ppV'W, (2 37)

(p1,"") - ip^"*p,SpV*")1 - ppy&,

which is the analog of Eqs. (1.11).

In order to handle the right-hand side of (2.37), we combine (2.2)3 with (2.33) and (1.8),

thus obtaining

dx20 = -d,9- ^0dxv
K K

= + KP"/2dx0 ~ 2k^^W + ^

= - -kpY%0 - yk°(w + ")■ (2-38)

At the same time, on account of (2.34),

\pY'>-{pI"»)-\p:'"p„^

I pl"t)-U"»y-\p:v>p„»e.

Therefore, setting

(2.39)

/-ri'4(»-f«). (240)

we may write (2.37) in the form

1 =\p~,'"'p,.f1 + ̂ p'.'pjdf - s) - + g)

+ V-eW - 4pY'>'■ (2.4i),

g-\p~,W'p,.g2 + "/) ~2^e(f+ 8>

-^pVX»-^pV's\ (2.41)2
K K
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In order to estimate the term that contains 3JB in (2.41), we define the Lipschitz

continuous functions F, G on [0, L] by

F(t) = max\f(x,t) |, G(t) = max\g{x, t) | (2.42)
X X

and state

Lemma 2.3. For any -oo < x < oo, 0 < / < L,

|0r0(jc,O|< A + ASf . 1 [F(t) + G(t)] dr. (2.43)
Jo yt — t

Proof. By virtue of (2.2) 3, 6 admits the representation

vl/2 ,cc j c (x — y)2

2 Y/2 r f°° (. \-i/2 / c (x - y)
Antkc

jf' J (t - r)"1/2exp|-^ X(_t jd(y,T)dxu(y,r) dyd T.

(2.44)

Using (2.33) and (2.40), we substitute dxv in (2.44) in terms of /, g, and 6. Differentiating

the resulting equation with respect to t, we derive the following representation for 9x9\

\i/2 ,<x I c (x — y)2

^•0-(«=?)■

a2c \1/2 r< fx x-y ( c (x - y)2

■0{p-1/\f+g) + ^e\dydT. (2.45)
K

Estimate (2.43) now follows easily from (2.45) with the help of (1.23), (2.6), and (2.42).

This completes the proof. □

We have now laid the preparation for proving Theorem 1.1. The idea of the proof is, of

course, that the quadratic terms in (2.41) induce blow up of / and/or g in finite time.

Proof of Theorem 1.1. Let us define nonnegative Lipschitz continuous functions F+, G \

F~, G~ on [0, L] by

F+(t) = sup/(*,/), G + (r) = sup g(x, t), (2.46)
JJC X

F'(t) = -inf f(x,t), G~(t) = -inf g(x, t). (2.47)
X X

It is clear that, for t e [0, L],

F(t)<F+(t) + F~(t), G(t) < G+(t) + G (t). (2.48)

We fix any ( e [0, L) with F+(t) > 0 and/or G + {t) > 0 and identify points x and x in

(-00, 00) such that

F+(t)=f(x,t) and/or G+(t) = g(x,/). (2-49)
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For any At e (0, L - /],

j F+(t + At) >/(x - Atpl/2(u(x,t)), t + A;),

\ G+{t + At) > g(x + AtpY2{u(x, t)),t + At).

Subtracting (2.49) from (2.50), dividing through by At, and passing to the limit as At |0,

we obtain

D + F+(t) ^ f(x,t) and/or D + G+(t) > g(x, t). (2.51)

Next we fix any / e (0, L] with F (t) > 0 and/or G~(t) > 0 and identify points y

and/or y in (-oo, oo) such that

F~(t) = and/or G~(t) = -g(y, t). (2.52)

For any At e (0, f],

j F~(t - At) >-f(y + AtPY2(u(y, t)), t - At),

\G"(r - At) > -g(y - AtPy2(u(y, t)), t - At).

We subtract (2.53) from (2.52), then we divide through by At, and pass to the limit as

At |0, thus obtaining

D~F~(t) < -f(y,t) and/or D~G~(t) < -g(y,t). (2.54)

In view of our assumption (1.20) and Lemma 2.2, there is a positive constant a such

that for all -oo <x<oo,0

4Pu5/4iu(x> t))Puu(u(x> <)) >2a> 0. (2.55)

Therefore, combining (2.51) with (2.41) and using (2.55), (2.6), (2.42), (2.48), (2.43), we

end up with an estimate of the form

(d/dt)[F+(t) + G+(g)] > a[F+(/) + G+(0]2 - AS[^(0 + G+(/)]

-A8[F-(0 + (T(0]

-AS f —p==[F+(t) + G+(t)\ d-r
0 \t T

ASf -[F~(t) + G~(t)] dT - A, (2.56)
J0 \t — T

for almost all t e [0, L], Similarly, from (2.54), (2.41), (2.55), (2.6), (2.42), (2.48), and

(2.43), we obtain, for almost all t e [0, L],

(d/dt)[F'(t) + <T(f)] < A5[F+(0 + G+(f)] + A8[F"(0 + G"(/)]

+ A6 f [F+(t) + G + (r)] dr + AS f [F~(t) + G~(t)] dr + A.
o \t — t ■'o yl-T

(2.57)

Upon using (2.47), (2.40), (2.6), (1.26), and Lemma 2.2, it follows from (2.57)

[F~(0 + G~(0] < A + A Sf K(t - t)[F+(t) + G + (t)] dr, (2.58)
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where K is a bounded kernel on [0, L], Combining (2.56) with (2.58) we end up with an

estimate

(d/dt)[F+(t) + G+(/)] > «[F+(0 + G+(0]2 - AS[F+(0 + G+(0l

-AS (' Z(t - t)[F+(t) + G + (t)] d-r - A, (2.59)
•'o

where Z e L*(0, L). Recalling (2.46), (2.40), (2.6), and Lemma 2.2, we now conclude from

(2.60) that when (1.27) holds with M sufficiently large, then F+(t) + G+(t) will blow up

in a finite time, not exceeding L. This completes the proof. □
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