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GENERALIZED MAGNETOHYDROSTATIC EQUILIBRIA*
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Abstract. This note shows the existence of a generalized class of magnetohydrostatic

elliptic equilibria of a perfectly conducting fluid in systems with cylindrical topology for

which the surfaces of constant pressure have an elliptic transverse cross section with the

eccentricity given by an arbitrary function of the axial distance. Further, it is shown that a

change in the parameters characterizing the solution leads to a generalized class of

hyperbolic equilibria for which the surfaces of constant pressure have a hyperbolic

transverse cross section with the eccentricity given by an arbitrary function of the axial

distance. Whereas the first class of equilibria is of interest in a plasma-confinement

system, the second class of equilibria is of interest in a magnetic-field-line reconnection

system.

One has for a magnetohydrostatic equilibrium of a perfectly conducting fluid

Vp = J X B, (1)

V X B = J, (2)

V B = 0, (3)

where p is the pressure of the fluid, J is the current density, and B is the magnetic field.

Woolley [1] showed that Eqs. (l)-(3) yield a three-dimensional family of elliptic equilibria

for which the surfaces of constant pressure have an elliptic transverse cross section with

the eccentricity an arbitrary function of the axial distance z. These equilibria are of

interest in a plasma-confinement system. The purpose of this note is first to show the

existence of a more general class of elliptic equilibria than the one established by Woolley

[1]. Further, it is shown that a change in the parameters characterizing the solution leads

to a family of hyperbolic equilibria for which the surfaces of constant pressure have a

hyperbolic transverse cross section with the eccentricity an arbitrary function of the axial

distance z. These equilibria are of interest in a magnetic-field-line reconnection system
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and represent a three-dimensional generalization of the solution given by Habbal and

Tuan [2]. Magnetic field reconnection is the process by which magnetic field lines that are

initially distinct link up, thereby lowering the potential energy of the magnetic field.

In a system of rectangular Cartesian coordinates (x, y, z), let us prescribe for the

magnetic field

Bx=^[yf(z)], By = JP2[xh(z)], B: = 0, (4)

which identically satisfies Eq. (3). Here f(z) and h(z) are arbitrary functions of z. A

similar prescription was made by Lin [3] and Shivamoggi and Uberoi [4] in constructing

exact solutions to the equations of magnetohydrodynamics of a dissipative fluid. Note that

the prescription for the magnetic field given by Woolley [1] is a special case of (4).

Using (4), Eq. (2) gives for the current density,

Jx = -je;xh'; jv = ye;yf', j. = je{h - ,y?;f, (5)

where primes denote differentiation with respect to the argument.

Using (4), Eqs. (1) and (2) give

p = u(x, y) - je2 + ye2). (6)

Here co(.x, y) represents the total pressure—hydrodynamic plus magnetic. Using (4)-(6),

Eq. (1) gives

du/dx = ye2 Jfj, du/dv = (7)

from which it is clear that one requires

■^i[yf(z)}-^2[xh(z)] =Jr(x,y). (8)

Further, from (7) the integrability conditions for the existence of o>(jc, y) are

Jf2 2 = JT, 2, (9a)

or

Jf,"/2 /yex = 3tr{'h 2/3f2 = (C (z), (9b)

where k(z) is an arbitrary function of z.

Let us differentiate the first equation in (9b) with respect to y, so that there follows

/2.*y" = (io)

Differentiating the first equation in (9b) with respect to z, one obtains

iff 'je{' + yf2f 'yej= K yf 'ye; + k 'yex. (11)

Using Eq. (10), Eq. (11) becomes

iff'yec = K'yex, (12)

which is consistent with the first equation in (9b). Similar deduction follows for the second

equation in (9b). It is important to note from (12) that the present generalization exists

only if k = k(z), and it degenerates to Woolley's [1] solution if k = const.
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There exist two distinct classes of solutions according as k + 0 or k = 0. For k # 0, one

obtains from (7) and (9b)

u(x, y) = /k + const. (13)

Using (13), (6) becomes

p=p0 + + Jf22), k # 0, (14)

p0 being an arbitrary constant.

Corresponding to k = 0, (9) gives

Jfi = Gy/(z), Jf2 = Hxh(z), (15)

where G and H are arbitrary constants. Using (15), (8) gives

]jf(z)h(z) = const. (16)

First let us choose this constant to be imaginary, say iC, where C is real. This choice leads

to a solution that is relevant to confining-field equilibria because in this solution the

pressure p decreases monotonically as one moves away from the axis in a transverse plane

z = const.

Using (7), (15), and (16), (6) becomes

P=P o - 2
C2H . ^ 2JC2G , \

+ i Uf/ + —- + 11 (17)
" Gf2 I 1 \ Hh7

For the case G = H = 1, (17) becomes

p = Po~ K2[i + p2(z)][-^2/p2(z) +y2]- (18)

where

p(z) =f{z)/c.

Note that (18) is identical to the case obtained by Woolley [1] for k = 0.

The intersection of the surfaces of constant pressure with a transverse plane z = const

gives a family of nested ellipses

x2/a2 + y2/b2 = 1 (19)

within the bounding ellipse corresponding to p = 0 (assuming that p = 0 describes the

boundary of the plasma). Here

a2( ) = 2(p0-p)p2(z) 2(p0-p)

() C2[l+P2(z)]' MZ) C2\\ + p2(z)] <20)

The eccentricity a of the loci p = const in a given plane z = const is given by

b2 - a2 = 1 - p2(z)

b2 + a2 1 + p2(z)

On the other hand, if we choose the constant in (16) to be real, say A, (6) becomes

Gf2 I \ Hh 1 '

= = (21)

P = PO ~ 2 (22)
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Choosing H = kG, where k is a positive constant, (22) becomes

(23)P = Po + \kG2A2[\ - £2(z)]

where

2 *2
y 

£(2) = f(z)/Aifk .

The intersection of the surfaces of constant pressure with a transverse plane z = const

gives a family of hyperbolae

y2/b2 - x2/a2 = 1, (24)

where

a, 2{ pn — p)il{z)

kG2A2[ 1 - £2(z)]s'

b2(z) =
2/_\_ 2(Po~P)

kG2A2 [l - £2(z)].

The eccentricity v of the loci p = const in a given plane z = const is given by

„(2),4±4_i±4<£). (25)
b2 - a2 1 - £ (z)

magnetic field lines

Fig. 1
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This solution is of relevance to the problem of magnetic-field-line reconnection, and

represents a three-dimensional generalization of the solution obtained by Habbal and

Tuan [2], For the case considered by Habbal and Tuan, f(z) = h(z) = 1, and then (4)

gives

Bx = Gy, HBV = kGx. (26)

(26) represents a magnetic field line configuration near a X-type magnetic neutral point

that is relevant for the magnetic field reconnection (see Figure 1). For this case, the isobars

follow the field lines closely. Further, we obtain

Jx = Jy = o, J: = G(k- 1), (27)

so that it is necessary to have k + 1 in order to allow the magnetic field reconnection to

take place.
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