
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLIV, NUMBER 3
OCTOBER 1986, PAGES 539-558

INTERACTIONS IN A STRETCHED STRING*

By

JAMES M. GREENBERG1

University of Maryland Baltimore County

1. Introduction. In this note we shall discuss the interaction of constant stretch traveling

waves in an infinitely long elastic string.

The motion of such a string is described by a complex-valued function

Z(x,t) = x(x,t) + i<2/(x,t), (1)

where x and QJ represent the horizontal and vertical positions of a mass point x at time t.

The equilibrium or rest configuration of the string is taken to be

Z(x, t) = x + iO. (2)

In the absence of body forces the equations of motion for the string are given by

d2Z(x,t) 9 ( T(x,t) dZ(x,t) ) ,

Po 0,2 My(*,0 9* /' ()

where p0 is the constant mass density of points in the reference state Z = x + i0, T(x, t)

is the tension at the displaced point (x, <&)(x, t) and is labeled by its material coordinate

x and time t, and y(x,t) is the stretch associated with the displaced point (x,^)(x,t)

and is given by

l/(|f) +(|f) (*.<). (4)
We shall assume that the string is elastic, that is, that

T(x,t) = f(y(x,t)), (5)

where f(-) is a positive-valued, monotone increasing function of the stretch y. For any

constant stretch y0 > 0, equations (3) and (5) support solutions

Z(x,t) = &{x + cQt) + y0c0t, (6)
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where

—^

and

^(0-x(0+ '■#(€) (8)
is any smooth function satisfying

rf# h J"2 ' J^2

di
U)~ + ® ({)"T- and ^#(£)"0

(9)

Such solutions represent traveling waves moving to the right (respectively, the left) in a

strained medium which is at rest ahead of the wave. The interaction problem is generated

by superposing two such traveling waves. Specifically, if we let <&,(•) and %(■) be two

smooth functions satisfying

support of $,{■) = (a,0), - oo < a < 0,

support of $,(') = (0, b), 0 < b < oo,

d<9r
0 <

d<Sf,

dl
(I) < Y0, and 0 <

di

(10)

(£) < Yo.

and define

# £<o,
' 1 #,(«), £>o. ' '

X*(£) = Y0£ +/^ \yy°~l^r) Yo dr, (12)

and

£•(«) = *.(*) + '"#.(0. (13)
then it is easily checked that the incident wave function

l&tix - c0t) + y0c0t, x < c0t,

Zlnc(x,t)='{^(0) + y0'x, c0t<x<-c0t, (14)

[&*(x + c0t) - y0c0t, ~col <

with

t(Yo)
(15)

PoYo

is a solution to (3) and (5) for all t < 0 and represents two traveling waves advancing on

one another which collide at x = 0 and at time / = 0.

The problem we shall study is the continuation of Zinc to the upper half plane t > 0.

The solutions we obtain are approximate and are based on the assumption that the shear

wave speed at Yo> namely the constant c0 defined in (15), is much smaller than the
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longitudinal wave speed at y0, namely the constant

i \ - i 1 d*(yp)
clong(To) \l Pq dy ■

A similar hypothesis was invoked by Carrier [1] and Dickey [2, 3] in their analysis of the

vibrations of a finite string.

Since our primary interest is in the behavior of the vertical displacement field and

not the detailed structure of the longitudinal field, we shall assume that f(-) behaves

linearly near y0. This assumption guarantees that longitudinal shock waves are not

generated spontaneously. It also guarantees that the incident wave field Zinc defined in

(14) represents the solution to the continuation problem in the region \x\ > clon&(y0)t with

t> 0.

The organization of the remainder of this note is as follows. We shall conclude this

section with a derivation of the approximate equation for the vertical component of the

motion, ^(x,t), which is valid in the region |x| ^ cXongt, t ^ 0, and with a statement of

our principal results for the approximating equation (WE). These results consist of a priori

and decay estimates for solutions of the approximating equation (WE). Section 2 is

devoted to proving these estimates.

Derivation of Approximate Equation

There is no loss in generality to take the density p0, stretch y0, and the tension f(y0) all

equal to unity.2 This, of course, yields c0 = 1. With this normalization and our previous

hypothesis that f behaves linearly near the stretch y = 1, we have

t(7) = 1+^=^, (16)
£

and the longitudinal wave speed clong is given by

Clong = 1A- (17)

Moreover, the hypothesis that 1 = c0 «: clong reduces to the assumption that 0 < e «: 1.

We shall restrict our attention to small-amplitude motions of the form

Z(x, t) = (x + e2u(x, t\ e)) + iew(x, /; e), (18)

where u and w have an asymptotic development in e, and shall content ourselves with

determining the zeroth-order terms in these expansions. In the sequel we shall adopt the

notation

Z0(x, /)=(* + e2u0(x, t)) + iew0(x, t), (19)

and by this we mean that

Re(Z - Z0) = 0(e4) and Im(Z - Z0) = 0(e3). (20)

We start with an expansion of the functions x* and ^ defined in (10)—(13). The basic

ansatz (19) implies that

&*{£) = ew*(£), (21)

2 If this hypothesis is not met, then with a simple renormalization it is always achievable.
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where

£<0< (22)

VU), I > o, (22)

and w,( - ) and \vr( ■) are smooth functions satisfying

support of W/d) = (a,0), -co < a < 0,

support of wr(£) = (0,b), 0 < b < oc.

To within order e4 the function x* is given by

e2 ft I dw, x2

(23)

(24)

and thus

% ,** , * £2 /•« (dw: "2
,o(0=U-y / ("^M (r)dr + iew«,(0- (25)

Equations (14) and (25) in turn yield the following expansion for the incident wave field:
' 1 1

e fx-t I dw* x
* 2 J \~^j (r) + iew^(x — t), x < t,

(Zinc)o(*>0 = t < X < -t, (26)

e2 fx + t I dw._ e_ jx + t i_w^^ ^ + jEW^x + -t < x,

and this is a vahd asymptotic representation of the incident field in the lower half space

t < 0 and in the region |x| > t/e when t > 0.

It should also be noted that if we write the incident wave field of (26) as

(Zinc)0 = (* + e2"inc,o) + <ewinc,0> (27)

then the pair (uincfi, winc0) satisfies

9"inc,0 1 I 9winc,o\2 = n '

dx 2 \ dx )

d^inc.O _ 92Wjnc.O = Q

dt2 dx2

(28)

in both t < 0 and in the region |x| > t/e, t > 0, and the initial conditions

I ( xdef/vv'(x)' *<0'
winc,o(*>°) = w*(x) = / \ (29)

wr(x), * > 0,

and

f dwi(x) . n
3winc,o(^,0) dx ' X

a t

where again w,(-) and wr(-) satisfy (23).

dw^x) x > 0

dx ' '

(30)
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Our remaining task is to obtain evolution equations for the functions u0 and w0 defined

in (19) in the region |x| < t/e when t > 0. The ansatz (19) when combined with (3), (5),

(16), and the identity

3u0 1 I 3w0

* = 1 + '2^+!li7jJ + 0<'4> <31>
yields the following system of partial differential equations for u0 and vv0:

dx \ dx 2 { dx J) '

a2w0 _ _9_// + 3mq + H | = 0

dt2 3x \ \ 3x 2 { dx ) dx

- < x < - and t > 0. (32)
e e

These equations are supplemented with the following compatibility conditions across the

curves x = + t/e, t > 0:

u0( + t/e,t) = uiac0( + t/e,t), t> 0, (33)

w0( + t/e,t) = Winc.o{ + t/E, t), 0, (34)

and

_1 3w0 I I 3m0 1/3w0\2\ \ 3w0
+ 7 ir(+?/e,f)+ 1+i7 + 2 17 (+?/£';)b7(+'/M)

t l 3^inc.O / — . / \ , 3 Wi o / — ̂  / . \
= + ( + r/M)+-g-^~{ + t/e,t). (35)

Equations (33) and (34) reflect the fact that the incident and outgoing waves must agree

on the curves x = + t/e, t > 0, while (35) follows from the Rankine-Hugoniot conditions

for the original system (3) and (5) when t is given by (16) and guarantees that to within

terms of 0(e2) vertical momentum is conserved across the curves jc = + t/e, t > 0.

The longitudinal momentum equation (32) x implies that

3v "7 I 3v I a\t)' „ < * < „ > (36)
3x 2 \ 3x

and this, when combined with (33), yields

3 w, x2
«(«>-£ (37)

-t/e \ ur I J-(\ + l/e)t ' '

Combining this last result with (32)—(35), we arrive at the following problem for the

vertical displacement w0:

32wn ,,, . 32wn t t zx
0 c2(t)—^ = 0, -~<x<-,t> 0, (WE)

dt2 " ' dx2 6 e

-t/e I / (1 + l/e)t \ dr

w0(Tt/e, t) = w*( + (l 4- 1/e)/),^

T7 + + c2(') + + V«)0.

(C)

(BC)
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where again

w,(£), £ < 0,
»M={ 'I ' ' (38)

|wr(€). £>0-

It should be noted that if one of the two functions w,( •) or wr( ■) is identically zero, then

the resulting solution to (WE), (C), and (BC) is simply the input traveling wave and

c2(t) = 1. Thus the system (WE), (C), and (BC) is consistent with the original one, namely

(3), (5), and (16).

Our principal results consist of a priori estimates for the solution of (WE), (C), and

(BC). The most basic of these is a uniform bound for the energy:

/ def r
*(>)-{

def ft/e

-t/e

9^o V / 3>V2
9; \ dx

{x,t) dx < SQ, (39)

where S0 is a constant depending only on the data w,(-) and wr(-). This estimate implies

that as t tends to infinity the sound speed c(t) satisfies

\c(t) - 1|< e#i//, (40)

and <#, is a constant depending on w,(-) and wr(-). If the data w;(-) and wr(-) are smooth

[recall that (23) guarantees they each have compact support], then not only is (40) valid

but

|c(/) | < eS2/t2, t -> oo, (41)

and S2 depends on wt{-) and wr( ■). To obtain more detailed information it is convenient

to introduce the new timelike or phase variable <p defined as an appropriately normalized

solution of

$ = *(') (42)

and to regard w0 as a function of x and <p, that is, to let

S(x,<p) = w0(x,T(<p)), (43)

where qp —> T(cp) is the inverse of t —> cp(t). Our principal results for 8 involve the

existence of functions Sr(-) and S,(-) such that the following limiting relations obtain:

lim (S(x + <p,<p), S(x - (p,<p)) = (8r(x),8/(x)), (44)
<P~* OO

(™\2<v mwv= r

and

T(<p)/e / 38 \2, , , r00 (( dS,\2 I d8r^2\
lim

<(>->00 J - T(q>)/e

Equations (45) and (46) assert that the energy equipartions as <p tends to infinity.
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2. A priori estimates. In view of our remarks in the introduction it suffices to focus on

the function vv0 defined by

^ - o, (i)
3t dx e e

c (0 = 1+7"v ' 41

0- + e)t
'o ( + t/e,t) = wJ +

(2)

(3)

where again is given by (1.22) and (1.23) and satisfies w*(0) = 0.

Our prime concern is the long-time behavior of w0. Some important facts about the

short-time behavior are summarized below. The first of these are the identities

Z'7/ ~^(x'')dx = wn(( ——+ wJ-(—— )f).
(4)

The identities (1.22) and (1.23) together with (3) and (4) then guarantee that for times

t > t(a, b, e) = max[|a|e/(l + e), be/( 1 + e)] < 1,

/— \ 3^0/— \ 3wn/_ x rt/e 3wn . , , N
w0( + t/e,t) =—( + t/e,t) =-^r( + t/e,t) = J -^-(x,t)dx = 0, (5)

and that w0 has compact support in the region

, i t(a,b,e) ft , , , , , x
|x|< 1- / c\s)ds, t 3s t(a,b,e).

® t(a,b,e)

On the strip 0 < t ^ 1, w0 is endowed with the same regularity properties as the data w#

and there exists an order one constant Kl such that

w,'oljv = sup £ |3;3,mw0(x,0|
-co<x<cc m + n^N

0<r<l

N

^ Ky SUP £
— oo <-x< oo n — 0

d"wt(x)

dx"

def
— (6)

and

max sup |c2(t) - 11, sup
.Oss;<l 0<f<l

dc(t)

dt < ^emaxflal, i]|w0|o. (7)

For times t > 1, w0 is continued as the solution of

32wn .. . 32wn
—-— c (t) —— = 0, - oo < x < oo and t > 1, (WE)
dt dx
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c>(,)-l+f - <*»•*v > 4, (C)

limJw0(x,/), ^~(x,t)) = (cp(x), V(x)), oo < x < oo, (IC^
r->r

w*(x)

def
where of course limI_<1-(M'0(x, t), (dw0/dt)(x, t)) = (<?(■*)> ̂(x)), (<p,^) has compact

support in |jc| < t(a,b,e)/e + J,\a,bte) c(s) dx = 0(1) and <V{x)dx = 0. To obtain

our desired estimates we shall have to constrain the size of (<p, ̂ ). The basic inequality (6)

guarantees that any such constraint can be realized by constraining the original data

Wi(x), x < 0,

wr(x), x > 0.

Although some of our results are obtainable from equations (WE), (C), and (IQj

directly, we find it convenient to operate with the Fourier transform of the solution. We

let

w(k,t)= ( e~,kxw0(x, t) dx (8)
— OC

and note that

w(k,t) = w(-k,t) and w0(x,r) = -^- lim f e'kxw(k, t) dk. (9)
It K->oo J-k

The evolution equation for w is obtained by multiplying (WE) by e~,kx and integrating

the resulting expression from x — — oo to x = + oo. The result is

d2w(k,t) + = 0> t>i (WEFT)

Parseval's identity applied to (C) also yields

c2(t) = l+-~^J k2(w(k,t)w(-k,t) - %(k)wt(-k)) dk. (CFT)

Our first estimate bounds

C {^r1 + ■ "*<-'■'))dk• <10)

Theorem 1. The following identity holds on t ^ 1:

so(t) + —r(c2([) ~ x)2 + T" f (c^5) ~ l)2ds = 'o(!) + ~(c2(1) ~ !)2' (n)
E c c

where c2(t) is given by (CFT), <^0(/) by (10).

Proof. If we multiply (WEFT) by dw( - k, t)/dt, the conjugate equation by dw(k, t)/dt,

and add and integrate the resulting expression with respect to k we obtain

A. f™
dtL„

dw(k,t) dw( — k,t)

It It

-(c'(o-i)/; k'

+ k2w(k, t)w( — k, t)

^~-(-k,t)w(k,t) + k,t)w(-k,t)

dk =

dk. (12)
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But equation (CFT) implies that

d / / i / s c00 , t [ dw / , . „ ,, , dw
~ ^ = Lx kl + ~^-(k,t)w(-k,t)

and this, when combined with (12), yields

i{L

dk,( 13)

dMJcj) +kH(ktl)M_kil)
dt dt

dk + — (c2 - 1):
e

-^V-l)2. (14)

The theorem now follows from (14). □

A direct consequence of Theorem 1, (CFT), (6), and (7) is

Corollary 1. The following relations obtain:

(t) < 1277 max[|a|, £>]|w0|2 + 477A"2e(max [|a|. b])2\w0\l, (15)

k2w*(k)w*{-k)dk < c2(t) - 1 < ^ (16)

and

hm <?0(t) = <a0(l) + -j-(c2(l) - l)2 — ~ j (c2(s) - l)2 ds. (17)
t —* 00 C 8 Jl

To proceed it is convenient to introduce the following change of independent and

dependent variables. We introduce the phase cp by

<p(t) = f c(s)ds, (18)
J\

let t — T(<p) denote the inverse t —> cp(t), and define

C (<p) = c(T(<p)) (19)

and

h(k,(p) = w(k,T(cp)). (20)

The fact that w(k, t) satisfies (WEFT) on t ^ 1 guarantees that S(k, cp) satisfies

d2S,, v ,2c./1 \ 1 dC dS ,, .
— (*,,.)+ *S(At>T). T) (21)

on <p > 0. Moreover, C 2(<p) is given by

C2(<p) = 1 + / k2[S(k,(p)h{-k,(p) - w*(k)w*(-k)] dk. (22)

The analysis of (21) and (22) is facilitated via the introduction of functions A(k,cp) and

B(k,<p) defined by

A(k,<p) = C1/2(<p)eik,p^^(k,(p) - ikS(k,<p)J (23)

and

B(k,<p) = C 1/2{<p)e-ik(p^{k,cp) + ik8(k, g>)J. (24)
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The fact that S(k, <p) satisfies (21) implies that

and

while (22)-(26) imply that
P /-CO A A A

C2(<p) - 1 = ^2TrC{fp)T{tp) J [A(k'<?)A(-k'<P) + B(k,<p)B{-k,<p)] dk

p r CC p A A „ a i

- 167rC((p)r((p)/ x [e~2ik,pAk,(p)B(-k,<p) + e2ik*A(-k, cp)B(k,cp)] dk

c /• CO

~ n T( \ j k w*(k)w*(-k) dk, (27)
&ttT(<p) J-oo

and

^(r(<p)(c2(<p)-i))

= 167rc(y) / k[A(k,(p)B(-k,(p)e~2ik'f - A(-k,<p)B(k,<p)e2ik'f] dk.

(28)

If we now let

def A A A A

E0(k,<p) = A(k,<p)A(-k,<p) + B(k,<p)B(-k,q>), (29)

Ei(k.<p) = A(k,<p)B(-k,(p), (30)

and

, .def 1 dC(w) , .

cw ^T' * *
then it follows directly from (25)-(28) and the identity

/OO /•OOkE1(-k,cp)e2ik'fdk = kEl(k,(p)e~2ik,p dk (32)
- 00 — CC

that these functions satisfy

^4^= -5^(e-2,'*"£1(A,<p) + «2,'*v£1(-A:>V)), (33)

^(k,<p)= -^f-{e2lk*E0(k,cp)), (34)

and

^(«p) = -i£  f°° ke~2ik'fEl(k,cp) dk — ^~l\ , (35)
1677-C (<p)r((p) •'-oo 2C (rp)T((p)
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and these in turn imply that for integers p = 0 and 1 the functions

def /*oo ^

H0 (cp,s) = / e~ (pkpE0(k,s)dk, — oo < <p < oo and 5 > 0,
J - 00

def /•oo
#i.,(«p) = / e-2ik*k>'E1(k,<p)dk, <p> 0,

— OO

satisfy

(36)

tfo,o(_(P.s) = #o,o(<P>j) and tfo,i(-(P,-?) = -tfo,i(<P>s)> (37)

/OO 1 /•?)^e-2ik*kpEx{k,0)dk- 2"jT q(v)H0 p(<p — rj, tj) Jrj, (38)

and

/OO _ ,

e-2""pkpE0(k,0)dk
~ 00

fS q(v) r kp(e~2,k^+ri)E1(k,0) + e-^f-^E^-k^)) dkd-n
2 •'0 •'-oo

+ ?/ f ?(r)(^o,p(<P + tj -/•,/•) + //0,p(<P + /■ - i],rj)drdT),

(39)

while

_ (C'(.p)-1) (40)
I677C (<p)T(cp) 2C (cp)T(cp)

It should be noted that the system of equations (38)^, (39)^, and (40), together with

,41,
C(0)-c(/-l) /

and

™"+{^7j <42)

represent a closed system for //u(-), //01(-, •), g(-), C(-), and r(-). Moreover, the

properties of E0(k,0) and E^k.O) guarantee that //, ,(■) and //,,,(•, •) are pure

imaginary and thus that q(-), C(-), and T( ■) are real valued. Our principal results are

estimates for this system. The first is summarized in

Lemma 1. (a) Suppose k —> kpEn(±k, 0) is smooth and satisfies

lim —(k'Em(±k,0)) = 0 (43)
| Ac | —» 00 (*K.

and

/•oo

J ^(kPEn(±k^)) dk = Qn^m < 00 (44)
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for indices n = 0,1; p = 0,1; and m = 0,1,2. Then,

sup
<p>0

(1 + <P2)|/°° e-2ik*k?En(±-k,0)dk < Qn,p,o + \Q„,P,2- (45)

(b) Suppose in addition to the hypotheses of part (a) the function <p -» q(<p) satisfies

dcf
sup(l + (p2)k((p)| = q2 < 00- (46)
<p> 0

Then

sup(l + <p2)|( q(i]) f e~2'k('p±7')kpEn(±k,0) dkdt]
<p > 0 I o - oc

0

<^2(6.,^ + %^)- (47)

Proof. We first observe that

/•oo r/ i \
dk

C OC /• cc

(1 + <P2)/ e-lik*kpEn(±k,Q)dk = / ik'£ll(±jfc,0)
— OO — ^

-.f

— OO

/•OO

1 - I -^1 ) e-2>/c<p
4 '

e~2'kv dk.

(48)

That (45) is true now follows from the integrability hypotheses (44) and (48). The

inequality (47) follows from similar reasoning. Specifically, we have the identities

f l(y)/°° e —2,A(<IP±T?)A:/'£'„( ±/c,0) dkdt]

= J<  k"En(±k,0)
0 1 + (ffi ± TJ) - 00■(<p±v)

= r qjv) r
0 1 + (qp + ti)2 -

e~2ik(<p ± Tj)

1 _ i jL  \p~2ik(<p±ri)

4 dk2

d*_

4 dk2
1 - 7 ^)(k"En{±k,0))

+ (<P i v) 00

and these, when combined with (44), yield

q(v) df)

+ (<p ± v)2

dkdr]

dkdr\,

f ?(tj) f° e~lik(,f±^kpEn(±k,0)dkdi) < f ~
I •'0 — oc •'0 1

(2n,/>,0 + 0»,|>,2/4)-

(49)

— IT, (50)

The hypothesis (46) on q( •) then implies that for any s > 0 and cp > 0

r q(v)dy r*  

0 1+(<P±T?)2 (l + T)2)(l +(9 - Tj)2)

and the result now follows from (49), (50), and the fact that

rs  dji  97t , .

5>o '0 (l + 7)2)(l +(<p - tj)2) ^ 2(1 + <p2)
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Lemma 2. Suppose the functions k -> kpEn( + k, 0) and <p —> <jr(<p) satisfy the hypotheses

of Lemma 1. Then

/1 2\l tt t \\ [0o,/>,o + 40o,/>,2 + (9",^2/2)(2i,/>,o + (3i,/>,2/4)] , .
sup(l + <p2) < 1 £    2 2 -    L (52)

<p»0 1 - 97T ̂ 2/8

and

sup (l + (p2)|i/1>;,((p)| ^ |01,j>,O + 4 01,/>,2
<p»0 H

[0O,/>,O + 4Qo,p,2 + (9"'?2/2)(0l,p,o + 01,p,2/4)] , .
+ w^2 —  (53)

1 - 9n ql/%

provided

l-^>0. (54)

Proof. Our starting point for (52) is the identity (39). An easy consequence of (37), (39),

nd th<

satisfy

— def 9
and the inequalities (45) and (47) is that hQ p = supv>0; S>0(1 + <p )\H0p(<p, s)| must

ho,p < [0O,/>,O + 2o,/>,2/4] + 2 [01,P.o + 01,/;,2/4] + X (55)

sup (1 + <p2) f - r    —-+  —
<p> 0 J0 I + 11 Jo I + r2\l+(cp + rj - ry \ +(<p + r_T?)

.s> 0

drd-q

The fact that

Ci 2\ fs 1 fv drd-q m2 ^
i1 + <P ) I ~ ~ 2 I 7 77/ 7 <P > 0 and s > 0,

Jo I+tj^o (1 + r2)(l +(cp + 77 — r) ) 4

and

^2tt2, 0 < s < cp,
ti ,2\ fs 1 fv drd-q /

(1 + t)/o Tw/o 77T3T7T—T-^5V< Ui:+ V2 0 (1 + r2)(l +(<p + r — 1j)2) | ^—, 0 < cp < s,

when combined with (55) yields

V ^ [00,,,o + 00,,,2/4] "+ 2 [0i.^,o + 0i,p,2/4] "+ g ^o,p' (56)

and this yields (52) provided 1 — 9ir2ql/% > 0. The inequality (53) follows directly from

(38), (45), (52), and the fact that

\f q{T))H^p{<p - T), J]) dr\ <q2h0 J* - — ^ —
' 0 1/0 (1 + r,2)(l +((P-t,)2)

2""<72^0,,
^(W)'

where again A0>/( = supv>0.,>0(l + cp2)\H0p(<p, j)|.
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We now turn our attention to the system

dC
d(p ?(<P)C (<p), C(0) = c(t = 1), (57)

%-ck' m"■ (58)

a(w) ieh(<p) (C2(<p) - l) , .

16t7C3(<p)7,(<p) 2C3((p)T(<p)

where cp -* h(cp) is a smooth, imaginary-valued function satisfying

sup (l + (p2)|/z((jp) | = /i j < oo. (60)
<p> o

Our basic results for (57)—(59) are summarized in

def ,,

Lemma 3. If 6 = |C (0) - 1| < 2/3 and

(57)-(60) satisfy the following estimates:

def ,, . 
Lemma 3. If 5 = |C"(0) — 1| < 2/3 and 0 < eh1 < 85^/1 - 36/2, then the solutions of

1-f <C(<p)</ 1 + f, (61)

rw>1+^#' (62>

'C ^ < 2(1 + cp/^J 1 + 35/2) ' ^

?(<p) < EHx

16«r(l - 35/2)3/2(l + (p/,/1 + J6/2)(l + <P2)

35

4(1 - 36/2)3/2(l + cp/v'l + 36/2 )2

Proof. We start with the observation that (57)-(59) is equivalent to

(64)

-'»-£& <65>

and

dT 1
, r(0) = l. (66)

dy C(<p)

Integrating (65) yields

r(c2(<p) -1) = (c2(0) - 1) + ^ jT ^ A, (67)

and this combined with T(y) ^ 1 yields

|C2((p) - 1| < a + ^ • y. (68)
min 2



INTERACTIONS IN A STRETCHED STRING 553

Moreover, the right-hand side of (68) is bounded from above by 38/2 provided ehl <

88^/1 — 38/2. To obtain the last inequality we have used the fact that |C 2(<p) — 1| < 36/2

iff jl - 35/2 < C(<p) < ^1 + 38/2. The upper bound (61) now combines with (66) to

yield (62), and (62), (67), and eh1 < 88yl - 38/2 combine to yield (63). The inequality

(64) follows from (59), (61)-(63), and the hypothesis sup(l + <p2)|/i(<p)| = hr < oo.

The results of Lemmas 1-3 together with

(C2(0) - 1) = 3' (Q0flja - 2H10(0)) - ^ K(k)K{~k)dk (69)

now easily combine to give

Theorem 2. If

\

/OO

k2w*(k)w*(-k)dk
- 00

\ p = 0,1
m-0,1,2

822 = max

is sufficiently small , then q(y) = (l/C(<p))dC/d(p satisfies

for some order one constant K2.

We now turn to a discussion of the system

^~(A:-<P)= ~^r~e 2ik<fA(k,y),

i(A:,0) = C1/2(0)|^(£,0) - ik'8(k,0)

and

(70)

def
q2= sup(l + <p2)M<p)| < K2e81 (71)

0 <<p

^(k^)=-^-e^B(k,cp), (25)

(26)

^r-{k, 1 ) - ikC1/2(0)wG(k,\ ), (72)
C1/2(0) dt

B(k, 0) = <C1/2(0)|^(A:,0) + ik8(k,0)

= ^(k,l-) + ikC^(0)wo(k,l~), (73)

where Hlp(-), C(-), q(-), and T(-) are determined by solving the closed

system (37)-(42). In the sequel we shall assume that S2 is small enough that the system

(37)-(42) has a solution satisfying the estimates of Lemmas 1-3 and Theorem 2. We note

3 This condition may be achieved by taking |w,|4 small enough.
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that this constraint can be achieved if |w*|4 is small enough. It is not difficult to show

that, as defined, A and B satisfy the following consistency conditions:

/OC . A A

e~ <pkp(A(k, s)A( — k, s) 4- B(k, s)B( — k, s)) dk, p = 0,1,
- 00

(74)

/OO A. A

e-2^kPA(k,<p)B(-k,q>)dk, p = 0,1, (75)
- 00

and

C'M ~ 1 _ 32^C(^)2-<9>)("00<0,,P) "

F /-OC

~ 8irT(<p) / k2w*(k)w*(~k) dk- i76)

To obtain additional information about A and B we note that

f((:

(78)

where a(k, y) and /?(k, <p) satisfy

<x(k,<p) = 1 ~ \ r e2iksq(s)fi(k, s) ds,
Z Jq

/3(k,<f>)= - \ f e~2iksq(s)a(k,s) ds,
z Jo

and

a(k,cp)a(-k,<p) - 0(k,<p)fi(-k,(p) = 1. (79)

Moreover, if 1 — qlir2/\6 > 0, a and [i satisfy

sup |«(/c, qo) | <   ] , (80)
o«p i - qfrV16

— oo < k < oo

sup \P(k,<p)\< -7- —T. (81)
o«p 4(1 - qjiT2/\6)

— oo < k < oo

, X /, \ t <72(V2 - arctan cp) ,o^
sup \a(k,<p) — a(k, co) \ ^ —r  . , (82)

— cc < k < oo 2(1 - q$1T2/l6)

and

,nf. \ \ i , ?2(V2 - arctan<p)
sup |^(/c,(p) — /?(/c,oo)| < ——r-  . . (83)

— oo < k < oo 2(1 - 92^ /16)

Equations (77) and (80)-(83) then imply that for all qp 2s 0

(l + ?2V/16)
1/2

sup(|i(fc,<p)|, |£(&,<p)|) < V/-, ^22^nr\ Mk,0)\2 +\Kk.0)\2 . (84)
(1 - qi?rz/\6)
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and

sup(|^(/c,<p) - A(k,oo)\, \B(k,<p) ~ B(k, oo)|)

<85)
2 (1 - qW/4)

In what follows we shall assume that

,2 ,2\
f k2p[\A(k,0) |2 + \B(k,0) |2) dk

J — CO

/oo A A a a def

k2P(A(k,0)A{-k,0) + B(k,0)B(-k,0))dk= 2-nMj < oo (86)
- OO

for indices p = 0,1, and 2. The assumption (86), together with (84) and (85), implies that

the functions

def 1 /-oo A

2vC l/2(<p)

and

def 1

27rC1/2((p)

are well defined in cp ̂  0 and satisfy the estimates

f°° I 3" , ,\2 (l + qjtT2/l(>) , /

£ /  7T—o E^ (89)
„=0J-oc\ox I (l - ^7r2/16) c(<p) «-0

and

^ rx ( 3" , ,\2 (l + qW/^) £ ,
E / ^^'(■x'<p) ^ E Mp-

„=0 00 \ ' f 1 — /7j?7r2/1fi^ » = ?

Equations (85) and (86) also imply that the functions

def 1 fOC

and

satisfy

and

cp-* OO

(90)
(l — q^iT2/16)~C(<p) « = 2

ictions

def I r°°

-^oo(*)=W e A(k, oo) dk (91)
277 •'-oo

def 1 /* co A
(x)=— eikxB(k,oo)dk (92)

2" J-x

lim s/(x + (p,<p) = s/x(x) (93)

lim ®(x - <p,<p) = ^X(x) (94)
Cp-* OO

in the following strong sense:

E/ + <P'*P)-•<(*))) ^ E Mp (95)
„=o 00 ^ I 2(1-^2t72/16) «=o
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and

i f (&W* -v,*)- *m)\\ < «'(;/2 (%)
B_0-'-co\0* / 2(1 - ^22772/16) n-o

Definitions (87) and (88), together with (25) and (26), also imply that

3j/ 3j/ 1 dC, . , .

3^ + 07 ~ " 2C(<p) ^

^-^ = -2^y (98)

/ \ 1 3wn . . 3wn . . .

/ \ 1 9wn / \ 3wn . . . .
^(x,0)= c(oy ^r(x'1_) +^(x'1_)' (100)

and these equations, together with the fact that (3w0/3f )(*, 1 ~) and (3w0/3jc)(jc, 1 ~) have
def ,

compact support in |x| < lx = t(a, b, e)/e + J,\a_h<e) c(s)ds, guarantee that the functions

s# and Si are supported in |x| < lx + cp, <p ̂  0, and that the functions and 86x(-)

defined in (93) and (94) satisfy

s/x(x) = 0, x > /j and 8dx{x) = 0, x < —l1. (101)

Equations (97) and (98) also imply that

d(p(@ s/) dx(@ + Jtf) 0,

jj{C{<p)(a + s/)) - C(<p) -j/) = 0,
(102)

and (102), when combined with

/oc f)u;n roo BvVrv

-r—(x,\')dx = [ -T- (x, 1") dx = 0, (103)
-00 ^ — oc

imphes that for all cp > 0

f s/(x,cp)dx = f1 * jtf(x,cp)dx = f 88(x,<p)dx = fl ^ 88{x,y)dx = 0.
— OO l\~ <P OO * — /t — <p

(104)

Equations (102) and (104) also guarantee that the potential

S(x,cp) =f ^ ( (&-s/)(x,cp) = j f &(£,<p) d£ + y f'1 *sf(£,<p)d£
ZJ~oc lJX

(105)

"See Eq. (5) of this section.
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satisfies

925 02S 1 dC 96 . /in,.
dtp2 dx2 C(<p) dtp dcp' <P>

S(x,0) = w0(x,l~) and ^107^

C2(cp)/^ ^j2(x,<p)dx= ^-(HOfi(0,<p) + 2Huo(<p)), (108)

C ^)^o,(°,<p)-2^o(<p)), (109)

c!(,>) _1 " irfe/.l ((I!) (x'v>-{^r) w)*' (no)
and

•C H*'® +(S) - !)3
tar£Miil4

We are now set up to prove the asymptotic results claimed in the introduction. The

identities

r *(*,¥>)#= r+9^(i-<p,<p)^, (in)
j-h-<p j~k

f'1+cp s/(£,<p) d£ = fh s/(£ + <p,q>)d£, (113)
J X JX~(p

together with (104), (105), and (93)-(96), establish that

def 1 /•/,
+ (p,(jp; = o^xj

<p—*oc

and

def 1 cx

lim S(x + <p,<p) = Sr(x) = j fl s/x(£) d£ (114)
w —* OC ^ J V

That

det I rx

lim S(x - cp,<p) = S,(x) = -r I SSx(£)d£. (115)
(p -» oo W

j™./_;(H)/_i((§) +(§) (n6)
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and

lim
<p —► 00 J — 00

/.: (S) ((%) +(§) iw't <»7)
follows from (108) and (109), the identities lim Hl 0(cp) = 0, lim ^CXqp) = 1, and

(73). The latter equation implies

/OC ^ A

(A(k, oo)A( — k, co) + B(k, oo)B( — k, oo)) dk, (118)
y — -OO

and this, together with (91)-(94), Parseval's identity, (114), and (115), yields the desired

result.
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