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Abstract. The separation of seismic reflection times into the component parts due to

source static, receiver static, structure time, and residual normal moveout is exhibited in

terms of simple differential and integral operations on the reflection time. The solution is

valid for all component parts which possess an L2 norm on the open one-dimensional

domain of common midpoint. The equations yield simple, explicit solutions for each

separate component. Possible methods of implementing these direct solutions for real

travel-time data are presented with suggestions for avoiding, or bypassing, the differential

operations. These solutions are presented both to provide a novel viewpoint for examining

the so-called statics equation and as an aid to those who are actively pursuing the problem

of finding methods for successfully optimizing statics problems in divers and diverse

situations.

1. Introduction. The problem of obtaining expressions for receiver static, source static,

residual normal moveout, and structural terms given the travel time T(x, y) as a function

of the common midpoint (CMP) jc and offset y has conventionally been attacked by

using (a) expansions in terms of orthogonal functions followed by a least-squares

approach to determine the best values of the expansion coefficients [3], (b) trigonometric

expansion again followed by a least-squares approach to obtain the coefficients of the

trigonometric expansion [1], or (c) direct spectral inversion for each desired wavelength

[2]. The purpose of the present paper is to point out that the conventional statics equation,

regarded explicitly as a mathematical equation in its own right, has an exact unique

solution for the receiver, source, residual normal moveout (RNMO), and structure terms

provided only that each of them has a bounded Fourier transform (of measure L2 on the

open set). The solution is exhibited in terms of integrations and differentiations applied to

the travel time T(x, y). Armed with this exact solution, the numerical accuracy of the

travel-time data then becomes the overriding concern for determining the precision of the

four terms as functions of CMP. The improvement is clear: the problem of "solving" the

statics equation is no longer tied so tightly to the accuracy of the travel-time data.
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Concentrated efforts to improve the travel-time data so that the relevant statics factors

(for which exact expressions are now available) are most sharply defined, and to provide a

"best" method for implementing the mathematical solution in accord with given data

quality, now become the major goals, in line with the philosophy of Wiggins et al. [3] and

Marcoux [2],

Section 2 sets up and solves the statics equation in terms of mathematical operations on

the travel time regarded as a smoothly continuous function of CMP and offset. The

solution clearly separates the terms due to source, receiver, RNMO, and structure.

Section 3 suggests some ways in which the expressions for the four terms can be

determined from real data and also suggests ways of encoding the solution presented so

that we can obtain the best practical method of implementing the mathematical solution,

and compare and contrast the accuracy of this solution with the conventional methods of

handling statics problems. Our concern in this paper is not so much with the overall

problem of providing general methods of attack for optimally delineating all successful

statics applications. With Marcoux [2], we recognize that such would be the subject of a

very long paper indeed. Instead, our major thrust is to attempt to express directly, in terms

of simple differentiations and integrations applied to the travel time, the receiver statics,

source statics, RNMO correction, and structure term viewed as a mathematical equation.

Methods for handling the imprecision of real data pertaining to the statics equation have

been entered into by others (e.g., [2, 3]).

Our hope is that by presenting a different method of viewing the statics equation we

will stimulate research into more and better ways of allowing for data imprecision in real

situations.

2. The statics equation and its solution. The computation of residual "statics" correc-

tions to seismic waves takes place in two steps. First is the measurement of reflection times

by some method such as cross-correlation of each seismic trace with a reference trace. The

second stage, and the one we are concerned with here, is the reduction of the measured

travel times according to some geophysical model, including structure and (RNMO) terms

as well as surface consistent statics.

A simple illustration of the static component of model reflection times as a function of

(CMP) and offset is shown in Fig. 1 (taken from Marcoux [2]), where the source static

appears as a positive dipping event, whereas the receiver static shows negative dip.

Conventionally [1-3], the travel time T(x, y) is taken to satisfy the equation

where

T(x, y) = R(x + j>) + S(x - y) + y2M(x) + C(x), (1)

R (x + y) = receiver statics term

S(x - y) = source statics term

M(x)y2 = RNMO correction

C(x) = structure term

x = CMP

y = offset/2.
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Fig. 1. Pictorial representation of the static component of model reflection times as a function of common

midpoint (CMP) and offset. The source static appears as a positive dipping event, whereas the receiver static

shows negative dip. (From Marcoux [2].)

The question is, does Eq. (1) have a unique solution in which the terms R(x), S(x),

M(x), and C(x) can be individually obtained from the travel time T(x, y) and, if so, how

is the solution expressed in terms of simple differential and integral manipulations on the

travel time? We will show here that the answer is yes under the mathematical condition
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that T(x, y) is known and bounded for all x and y. As a reviewer of this paper correctly

noted, it is important also to point out that the computation of the unknown functions at

a given (x, y) pair requires measurement of T(x, y) only up to some bounding (x, y). We

shall return to this point later in Sec. 3, where we shall also consider the limitations

imposed by finite range, and discrete, data for T(x, y).

In order to solve Eq. (1) exactly, we Fourier transform w.r.t. x so that
rCC

r(k, y) = / T(x, y) exp(-ikx) dx, (2a)
J - OC

/oo [M(x), C(x), R(x), S(x)] exp(-ikx) dx.
~ 00

(2b)

(Note the fundamental assumption that these Fourier transforms exist and are bounded.

This eliminates ab initio any nonuniqueness resulting from unbounded functions—such as

the arbitrary linear solutions reported by Wiggins et al. [3].)

The Fourier-transformed version of Eq. (1) is

t(k, y) = r(k)e,ky + s(k)e~'ky + y2m(k) + c(k). (3)

But equation (3) must be valid for all y. Hence differentiate equation (3) three times with

respect to y to obtain

0T^ ^ = ik[r(k)e'ky - s(k)e-iky] + 2ym(k), (4)

8 = -k2[r(k)eiky + s(k)e-'ky} + 2m(k), (5)

and

d3r(k y) = _ik^r^eiky _ s(k)e-iky]m (6)

Equations (3) through (6) are four linear algebraic equations for the four unknowns r(k),

m(k), s(k), and c(k). They can be solved exactly to give

m(k) = (2y)~l

c(k) = t -

r(k) = (2k2yle~ik

s{k) = (2k2)~1e'ky

3t 2 33t
■5— + k~2—r
9 y dy

\y + (Wl]|j + - k~2[\y + (yk2)-1 j2-

-1 3t 3 T / 1 / 2 \ — 1 \ 3 T

r tj-J? ( +( y) 'l?
, 3t 32t / i / 2 \-1\ 33t-1 + (*V) jT-J

(7)

(8)

(9)

(10)
y 3J dy2 y 13y3

Inverting the Fourier transforms by using equations (7) through (10) then provides

expressions for the four terms R(x), S(x), M(x), and C(x) in terms of simple differen-

tial and integral operations on the travel time. With the aid of the auxiliary functions

h(x> y) = f T(x',y)dx', (11a)
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7„ + i (x,y)=f In(x',y)dx', n> 1, (lib)
•'o

we have

M(x) = (2y)~l dT(x, y) _ 33/2U, v)

9 y a y3
(12)

r( \ T( \ 1 , ->a/2(*>y) 92/z(*>>0
c(x) = T(x,y)-jy dy +y —ay 

_i d3f4(x, y) , 1 d3I2(x,y)—57—+ 2" • <«)

r»/ \ rri/ X , _1 3/2(x - .y, _f) , 5^h(x-y,y)
R(x)=T(x-y,y)+y  ^ + 2~ ^ 

d2I2(x-y, y) , 3 32I3(x - y, y)

 a? + 2>  ap 

and

, 1 _t 33/4(jc — v) , 1 d2I3(x -y, y) ^

+ 2-"  3?  2 5? ' (14)

\ -^h(x+y^y) 5 3Ii(x+y,y)
S(x)=T(x+y,y)+y  ^ j ^ 

d2I2(x + y> y) 3 32I3(x + y, y)

a y2 2^ a y2

,1 _,33I4(x+y,y) 18%(x + y, y) /1C,

+ 2-"  3? 2  ' <15>

Equations (12) through (15) represent the unique solution to the problem of separating

terms due to the source, receiver, RNMO, and structure on the conventional assumption

that the travel time can indeed be represented by equation (1).

Several points are relevant. This seems to be the first time that an exact solution has

been found for the statics equation (1) in terms of simple operations on the travel time.

Second, the terms M(x), C(x), R(x), and S(x) are, by definition, independent of the

offset y and are supposedly dependent only on the common midpoint variable x. The

right-hand sides of equations (12) through (15), however, do not appear to provide

expressions which are manifestly independent of the offset y. This is coupled to the fact

that if, and only if, the travel time satisfies Eq. (1) will the receiver, source, RNMO, and

structure static terms be functions solely of CMP. Any departure of the travel time from

the assumed form of Eq. (1) will lead to offset dependences for the four terms. This is not

unlike the problem of attempting to find m and c consistent with y = mx + c. There we

know that

m = dy/dx, c = y — mx = y — xdy/dx.

Clearly, only if y is indeed linear in x will m and c be constants. But for a given data set

y(x) we often ask for the constant values of m and c which can "best" satisfy the data.
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Here for a finite data set of T(x, y) the analogy is that we want to search for the "best"

values of R, S, M, and C which satisfy the given data set on T(x, y).

There is the further point that in real data situations information on travel time is over a

restricted range of offsets and CMPs—contrary to the requirements of the solution

method, where Fourier transforms and their inverses are performed as a matter of course

as though such information is available. Thus the pragmatic determination of C(x),

M(x), R(x), and 5(x) will include errors produced by this lack of detailed knowledge.

Perhaps the greatest error in determining the four individual corrections arises from the

differentiations of the travel time with respect to offset (or of integrals of travel time with

respect to CMP). While the integrations with respect to CMP will tend to smooth out

vagaries in data, differentiation will tend to enhance discordances.

In the next section we address briefly some of these pragmatic considerations for the

functional form of solution we provide, but recognizing that a considerable amount of

research still needs to be done to improve on our primitive exposition.

3. Implementation of the statics solution. Since the exact four terms R(x), S(x), M(x),

and C(x) are nominally independent of offset we can use this fact to try to obtain, from

limited data, approximations to the true statics terms by using variants of the exact

solutions given by equations (12) through (15).

For instance, we see that the expressions for R, S, M, and C all involve derivatives up

to third order with respect to offset. Consider then a set of N measurements of the travel

time Tt (/' = 2,..., N) made at a set of increasing offsets _y,(i - 1,2,..., N). For each set

of four measurements Ti_l, 7], Ti + l, and Tj+1 at the offsets yt_v yj+l, and yi + 2 one

can construct approximations to the derivatives in equations (12) through (15). Thus each

sequential set of four measurements provides the estimate R:, S,, M,-, and C, of the four

statics terms. By superposing these estimates and sequentially increasing i one can

construct a "smooth" estimate of each of the four statics terms which is not so beholden

to any one set of four individual measurements,1 any of which contains some measure-

ment error.

Alternatively, one can see the extent to which an individual estimate of the statics terms

departs significantly from the average value and discard those estimates exceeding some

preassigned criteria of uniformity since the statics terms are nominally independent of

offset—if the travel time does indeed separate as in Eq. (1).

An estimate of the degree of mismatch between the exact analytic solution to the statics

equation and measurements of the travel time can be obtained by taking the smooth

numerical estimates of R, S, M, and C and constructing

Z2 ee A?-1 £ [T(x, y,) - R(x + y,) - S(x - y,) -y?M(x) - C(x)]2 > 0. (16)
;=i

The variation of Z2 with * provides an indication of the domains where the data are

sufficiently accurate that a good residual statics solution has been obtained. The RMS

residual time correction with CMP, x, is then just Z(x).

1 This is also the reason that we did not use just four measurements of t(k, y) in Eq. (3) to determine r(k),

s(k), m(k), and c(k).
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A third possibility is to note that by multiplying the exact solutions by powers of y and

then integrating over offset, moment equations can be generated which obviate the

differentiations and their attendant potential for error magnification.

For instance, from Eq. (12) we see that multiplying by yp+1 and integrating over

Ymin < ^max enables us to write

M(x)(p + 2)'l[Y^2- Y'+2]=\ Yp T(x Y ) - Yp T( x Y )'max-* V > -* max / min"4 V ' Imin/

n_IW , , (Ym„ 33/2(x, y)-pj y" lT(x, y)dy - J ypl —3 dy (17)

7

3/

The last term in Eq. (17) can be integrated three times by parts so that only the first and

second derivatives of I2 at the end points are needed rather than throughout the whole

dynamic range of offset.

Similar moments can be taken of the other statics terms to alleviate substantially the

practical problems of constructing functional derivatives from discrete, bounded, and

noisy travel-time data. The questions of (i) what range of offsets are "best" to use and (ii)

the relevant powers p they should be raised to in attempting to obtain the normally offset

independent factors M{x), R(x), C(x), and S(x) are problems we do not address here.

But one thought is that by minimizing Z2 (p, ymin, Tmax), the degree of mismatch, with

respect to choices for p, Tmin, and Tmax one can determine for a given data set the best

range of values to use.

4. Discussion and conclusion. The major point being made in this paper is that the

conventional statics equation does have a unique solution in which the terms due to

receiver statics, source statics, residual normal moveout, and structure are expressible

directly in terms of the travel time, its integrals with respect to CMP, and its derivatives

with respect to offset, provided only that appropriate Fourier transforms exist on the open

set,

This is apparently the first time that such a solution has been given in terms of simple

differentiations and integrations applied to travel time.

Armed with this solution, the problem of constructing the four terms from real data is

moved to a different level of difficulty. The conventional techniques of attempting to fit to

the statics terms by orthogonal expansions, trigonometric series, or direct spectral inver-

sion now are more directly tied to the problem of seeing how well real travel-time data can

be made to fit the exact solution to the statics equation. The problems of numerically

representing the exact analytic solution and of allowing for the inexactitudes of real

travel-time data are the major remaining concerns.
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