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Summary. Asymptotic methods are presented for obtaining approximate solutions to

unsteady flows in oscillating cascades. The formulation is in the framework of linearized

potential flow, and the problems considered include low-frequency and low-solidity

expansions for subsonic and supersonic cascades. For the supersonic cascade, simple

formulas are obtained for the unsteady lift and moment, valid to first order in a frequency

parameter. It is shown that terms of successive orders can be obtained by solving a

sequence of quasi-static problems, with the effective upwash at each step modified by the

lower-order solutions. The approach is in the spirit of matched asymptotic expansions,

and different expansions based on different limit processes are sought for the subresonant

and superresonant regions. For cascades in subsonic axial flow, the acoustic resonance

phenomenon leads to a nonuniformity with respect to the interblade phase angle. The

location of the singularity can be moved by suitably redefining the limit process,

permitting uniformly valid expansions to be obtained separately for the subresonant and

superresonant regions. Numerical comparisons with the full unsteady solution indicate

that the present approximations are remarkably accurate in the range of reduced frequen-

cies of interest in aeroelastic analyses.

1. Introduction. For reasons which are not clear, asymptotic solutions to unsteady

cascade problems have not been explored to the same degree as in the corresponding

isolated wing problems. A possible explanation is that analytical difficulties and uncer-

tainties about the validity of any approximations thus obtained have discouraged such

efforts. This paper is an attempt to illustrate how the methods of asymptotic analysis can

be applied to obtain useful engineering approximations and also an improved understand-

ing of the problems themselves.

The unsteady supersonic cascade is probably the most studied problem in this respect.

The motivation for many of these investigations is no doubt the increased recognition of

supersonic flutter as a serious and often limiting design constraint for advanced fan rotors.

For current technology rotors, it is necessary to consider the subsonic leading edge locus
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problem, where the velocity component normal to the leading edge is subsonic. Kurosaka

[1] appears to have obtained the first asymptotic solution to this problem, valid to first

order in a reduced frequency parameter. Similar low-frequency expansions have since

been obtained by a number of investigators [2-4]. A characteristic feature of these

solutions is a singularity at an interblade phase angle of a = 0, indicating a breakdown of

the solutions as a -* 0 or 2it. The origin of this nonuniformity is now well understood; it

arises from the collapse of the superresonant region to the point k = a = 0 as the reduced

frequency k approaches zero. Since the expansions are not valid in the superresonant

region or at the resonance points, a singularity at a = 0 is to be expected.

These observations cast doubt on the practical usefulness of approximation of this type

in aeroelastic studies. In a recent study [5], however, a uniformly valid solution was

obtained for the subresonant region by suitably redefining the underlying limit process

k -* 0. In the present paper it is demonstrated how different expansions, based on

different limit processes, can be constructed for the subresonant and superresonant

regions, thus covering the entire range of interblade phase angles. These ideas are then

shown to be extendable to subsonic flows. Also treated is the low-solidity cascade, where

asymptotic expansions are obtained in terms of a blade spacing parameter. Such expan-

sions provide insight into the importance of cascade effects in low-solidity rotors, such as

propellers and propfans.

2. Governing equations. Within the framework of linearized potential flow, through a

harmonically oscillating cascade, the spatial dependence of the perturbation quantities

satisfy the Helmholtz equation. The associated boundary value problem for the infinite

two-dimensional cascade can be recast in the form of a set of dual integral equations

involving the upwash v0(x) and the pressure loading [ p(}(x)\ on the zeroth (reference)

blade and its extension - oo<x<oo;_F = 0:

v0(x) = ^-e±rkMxr G(r)F0(r)e'**dr, (1)
L 00

r°°
[?0(x)]=e±ikM-* F0(r)erxTdr, (2)

•'-00

where the plus sign in the exponents is to be taken in the subsonic case and the minus sign

in the supersonic case. The derivation of these equations is given in [6, 7] for the subsonic

case and in [4, 8] for the supersonic case. Here F0 is an unknown function to be

determined, and the reduced kernel G(t) is

G(t) = /

4k2 ~ t2 sin(s2p/k2 - t2 )
 =    V  L f (for M < 1),
(t + &/M)[cos(s2p/k2 ~ t2) + cos(fi -

A2 - k2 sin^/JVV2 - k2)

(t - k/M)[cos(s2^^V2) ~ cos(£2 - Jjt)]

(3)

(for M > 1).

The notation is the same as in [8]: k = ub/U, x = x/b, b = semichord, fi2 - M2 - 1

(supersonic) or 1 - M2 (subsonic), M = Mach no., k = kM/fi2, fi = a + sJcM (super-

sonic) or a - sJcM (subsonic), = s sin#, s2 = s cos6, s = s/b, s = blade spacing
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along leading edge locus, and 0 = stagger angle. Unless otherwise noted, an overbar

signifies a nondimensional quantity: lengths with respect to semichord b, velocities with

respect to flow velocity U at infinity, and pressures with respect to p0U2.

To ensure the existence of certain integrals and the convergence of the infinite series

representation of G(r), the reduced frequency k is assumed to have a small negative

imaginary part; k = k1 — ik2, 0 < k2 «: 1, and the limit k2 -* 0+ is implied throughout.

Also in Eq. (1) and all subsequent Cauchy-type integrals, the Cauchy principal value is

implied. The radiation condition and boundedness at infinity require different integration

paths and branch cut choices for the square root in the subsonic and the supersonic case,

as illustrated in Fig. 1. In the subsonic case the integration path remains fixed along the

ImT

Branch cut

-kj + ik2

_ ^ Rei

k, - ik.

a) Subsonic flow

Imx , i

Branch cut ->

*1 + ^2

k2n JJ
Ret

ki " lk2zIntegration path

b) Supersonic flow

Fig. 1. Branch cuts for the square root in the cascade kernel and integration path for Eqs. (1, 2).
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real r-axis, while in the supersonic case the path is displaced by an amount -ik2M,

approaching the real axis from below in the limit k2 -* 0+. Incidentally, the branch point

singularities of G are removable, but it is sometimes convenient to split up G in a manner

which reintroduces the branch point singularities. They also occur in the isolated airfoil

kernels.

The upwash is known for |3c| < 1 from the flow tangency conditions, and pressure

continuity across the wakes and ahead of the cascade requires the jump [/?0(x)] to vanish

for |x| > 1. For blades undergoing bending and torsional oscillations with amplitudes h0

and a0, referenced to an elastic axis located a distance x = a behind the mid-chord, the

boundary conditions become

y0(jc) = -ikh0 - [l + ik(x — a)] a0 for |jc | < 1, . .

[ Po(x)} = 0 for 13c| > 1.

Thus, the solution of the problem has been reduced to the determination of the

unknown function F0(t). Similar dual integral equation formulations of a number of

mixed boundary value problems can be found in the book by Sneddon [9]. In view of Eq.

(2), F0( t + kM) is simply the Fourier transform of the blade loading. One convenient

feature of this formulation is that the lift and moment (about mid-chord) amplitudes are

directly related to F0(t) and its derivative at the single point r = r0:

L0 = -2t7p0£/2/>F0(t0),

M0ac = 2mpJJ2b2FJ(r0),

positive up and clockwise, respectively, and where t0 = — kM in subsonic flow and

t0 = + kM in supersonic flow.

3. Low-frequency expansions. In constructing low-frequency approximations for the

solution of Eqs. (1, 2), the singularities of G(t) play a major role. It is therefore necessary

to distinguish between operating regions where these singularities differ in type or

number, i.e., subsonic vs. supersonic flow and subresonant vs. superresonant operation.

The approach is in the spirit of limit process expansions [10], and it is important to keep

in mind what variables are considered fixed in the associated limit k -» 0.

Supersonic Flow. Let k = e 1, and assume that an asymptotic expansion for the

solution F0 is of the form

F0(t -I- kM) =/0(t) + + v2(e)f2(r) + • ■ • , (6)

where vn+l/vn — 0 as e -> 0. Asymptotic here means that the error can be made

arbitrarily small, with a finite number of terms, by making e sufficiently small. Since the

small parameter e = k enters the boundary conditions, Eq. (4), we write

^o(*) = Vo0)(x) + c«o'(*) + • • • >

[Po(*)l = U0)U)] + "i(e)[^o1>(^)] + ••• •

For bending-torsion oscillations of the type considered here, Vq" = v0h ~ a0 and /J,'/' =

i(a — x)a0. Note that at this point the bending velocity amplitude v0h (= —ikh0) has

been assumed 0(1) rather than 0(e).

(V)



UNSTEADY FLOW IN CASCADES 497

When Eqs. (6, 7) are substituted into Eqs. (1, 2) and the limits e —> 0 repeatedly applied,

a series of dual integral equations are obtained for the /„(t)'s, n = 0,1,2,...:

*r(*) = y r GJt - iO+)f„(T)e^dT + Av^(x), (8)
^ — 00

r i /*°°

[^on)(^)] = / fn{^)e,xrdT = 0 for |x| > 1, (9)
J —

where

^•■,..1^:' -v do)

H"(x) - hrn I TT/
^ e—»0 I Vn(e) J -- oo

cos(s2^t) - cos(S2 - Sjt),

G(T + eM2/p2; e)F0(r + eM2//32)

dr\, (11)-Gx(t + eM2/P2) £ fm(£)/m(r)
m = 0

where e = k = kx - ik2, k2 « 1, and k2 -* 0+ as e -» 0. G^, Eq. (10), is the asymptotic

form of G for k = 0 with S2 fixed, or as |r| —> oo. Thus Gx(t) is the reduced kernel

associated with the quasi-static problem, or the steady problem if & = 0, for which an

exact solution has been obtained [4]. This solution can be used to solve Eqs. (8, 9) by

treating (v^n) — as the equivalent quasi-static upwash at each step. As long as a is

not too close to one of the resonance points, the term Av(0n) can be shown to depend only

on the solutions of lower order and is therefore known at each step. The solution for the

n th correction term is then

00 I ■m K \

/.(')- + , (12a)
m = 0 \ r= 1

where

a(n)= (_ ■),"(2m^+ 1) ji^ _ Av(")(x)]pJx)dx, (12b)

Jm(T) is spherical Bessel function of the first kind of order m, and Pm(x) is the

Legendre polynomial of degree m. The last sum in Eq. (12a) is due to Mach wave

reflections, if present, and expressions for Rr and Qrm can be found in [4],

Thus the asymptotic expansions for F0, Eq. (6), can in principle be calculated to

successive orders 1, vx, v2,... by solving a series of quasi-static problems. The effective

upwash at each step is modified by the lower-order solutions through \v^n). A similar

approach, also involving the solution of a sequence of simplified integral equations, has

been used by Graham and Kullar [11] to obtain expansions for an isolated airfoil in

unsteady flow. As they point out, this process is equivalent to the use of matched

asymptotic expansions, but with the matching replaced by the successive dependence of

the integral equations on the solutions of lower order.

(a) Subresonant region. As long as the interblade phase angle is not too close to the

resonance points, the zeroth-order term /0 in the expansion for F0 coincides with the

quasi-static solution. The next term is then of order v1 = e, and the solution complete to
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first order in £ = k is

2uob

77fi
l-j£{l-2S*(fi*)}

2oq

TTp
l-j2{\+afl2-2S*(n*)}

2k

1 77/33

[yo„ +(^2 - !)«o]. am = 0. m = 2,3,4,...,

(13)

in agreement with Eqs. (16, 17) of [5], Here am = + ea^ + ■ ■ ■, and S* is a function

arising from the upwash term v{0l) defined by

I Sk2/2 for0<«2<2, 1 i fi* , .

for «2 > 2 S(G-)-j + 5co,t, (14)

with fi* = £2 - kJc/M = a + k(sx + s2/P) and k2 = s1 - fis2. Physically, terms involv-

ing 5* in Aug1* represent corrections to the O(k) quasi-static upwash resulting from

upward-propagating disturbances from the blades and vortex wakes below the reference

blade. The fact that S* blows up as fi* —> 2ttv; v — 0, +1, ±2,... is connected with the

resonance phenomenon predicted by most linearized cascade theories. Only one of these

singularities lies in the range 0 < a < 2v, and this pole can be shown to lie inside the

superresonant region.

A suitable limit process for the subresonant region is to keep fi* (and all other variables

except a) fixed as k -» 0 [5], This preserves the locations of the singularities of S and

permits a uniformly valid solution to be obtained, to O(k):

an =
2[t;ot ~ "ol1 ~ iak}]

*j8[l + i{l -25*(fi*)-/T}A:/^2] ' ^

k r, . „ ., 2ka0
a,= -—a0[l + 2ikS*(Q*)] - ^ ,

where

T = /?sinh(i2A:)/[cosh(J2A:) - cosfi*]. (16)

This solution agrees with [5] except for the term involving T. Although strictly speaking a

second-order term for fi* fixed, it has been found to improve the accuracy of the

approximations sufficiently to warrant inclusion. The differences between Eqs. (13) and

(15) arise from the fact that close to the resonance points S ~ 0(1/e) as e -» 0 with fi*

fixed; therefore the term eAu'/' grows to order one and must be included in the

zeroth-order equation to preserve the uniformity of the expansion. This makes the upwash

correction term eAv^ also a function of a'00> in Eq. (12b) and leads to the solution in Eq.

(15).
(b) Superresonant region. Formally, the expansion procedure for the superresonant

region is the same as for the subresonant region, and Eqs. (6-12) apply. However, it is

clear that in the superresonant case one cannot keep fi* fixed as k -» 0, since this results

in a nonuniformity within the superresonant region.



UNSTEADY FLOW IN CASCADES 499

Mathematically, the difference between the two regions is the appearance, in the

superresonant case, of one or more sets of complex poles in the kernel G, Eq. (3). The

singularities of G consist of a pole at t = k/M and an infinite set of poles at the points

t,1 given by

d2^ = —s^Ittv - £2) + /3s2\{2ttv - ~(kd) , v = 0, +1, +2,..., (17)

where d2 = s2 - /32s2. Recall that the reduced frequency k has been assumed to have a

small negative imaginary part, -ik2, and the limit k2 -> 0+ is implied. This has the effect

of displacing the "real" poles slightly from the integration path, so that in the limit

k2 -* 0+ the set t„+ approaches from above and the set t~ from below.

The case where the radical vanishes corresponds to the resonance condition, which from

Eq. (17) implies that a pole of order two would occur for k2 = 0. In the subresonant

region, the radicand is always positive and all the poles t/ are real, corresponding to

propagating acoustic waves. In the superresonant region, the radicand is negative for at

least one value of v, and both spatially decaying and propagating waves are produced.

The contribution from the pole at k/M represents the effect of shed vorticity from the

cascade on the upwash on the reference blade.

To obtain useful expansions for the superresonant region one must therefore ensure that

the contributions from the complex poles are evaluated correctly. For cascades of practical

interest only one complex pair will occur in the low-frequency region presently considered,

since led < 2tt except under unusual circumstances. Let v = vc correspond to this pair. To

capture its contribution to the integral in (11), consider the limit process with

t) = (2uvc — Q)/k = [2^7^ — fi(e)] jtt (18)
eM

fixed as e = k -> 0. Keeping tj fixed is also equivalent to keeping (2ttvc - il*)/k or

(2ttvc - a)/k fixed; thus £2, S2*, and a all approach 2ttvc as e -» 0. This preserves the

residues of G at the complex poles rc± = , which are given by

G ,
Rc (t * - k/M)\d1Tc± + s^lnv - fl)]

with v = vc. Details of the calculation of the upwash correction term and the expansion

coefficients can be found in [12], For the case of no Mach wave reflections, the solution

complete to order vx = e = k is

fl(0) = 2[^°* a(0) _ o
° nj8[l-c0]* 01 (20)

= -4ic3a^/3{l - c0), a}1' = -2<xJ-n$ - c5a(0°\
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where

Co = !Al + 1 A2 - Gk + 2i

c3 = — b0 — ik(Mr\ + k2)/8/?4,

c5 = -bi + 1//32,

b0 = Gk/2 + ^0 + Re{ McGRc } '

bi = Gk-di + 2i\m{tiGRc), (21)

do = [l/«c2 - lAi +(lAz - 1Ai)W02]/2.

Ji = 1/kj + 1/k2 +(1/k12 + 1/k2) A/tj//?2,

Gk = 2^"2/[/^22 + M2(f) + VW)2/j8!],

Mc = (Tc+ - kM)/k, ^=^ + ^2, K2 = sl-ps2.

Subsonic Flow. The ideas used to construct asymptotic expansions for the supersonic

case are readily extended to the subsonic case. By taking F0( t - kM) in the form of Eq.

(6) and proceeding as before, a sequence of quasi-static problems is again obtained. The

resultant dual integral equations are of the same form as Eqs. (8, 9), but with Gx now

being the corresponding quasi-static kernel corresponding to the subsonic problem:

r,uh(l] sinh( fjs2T)

00 cos1i(/352t) - cos(£2 — Sj-r) '

where fl = a — sJcM, and the limit process must specify the dependence of £2(e) and a(e)

on e = k as e —> 0. The choice of limit process must be based on an analysis of the

behavior of the singularities of the subsonic kernel, Eq. (3), and the resultant effect on the

upwash correction terms, Eq. (11) [in the subsonic case, the arguments t + t:M2/(i2 in

Eq. (11) become t — eM2/j82].

Now the singularities of the subsonic and supersonic kernels are of the same type

(simple poles), and all except for the " vorticity producing" pole at t = — JcM (= + kM

for M > 1) correspond to the generation of acoustic waves. The major difference between

the subsonic and supersonic kernels is in the location of the "acoustic poles" in the

complex plane. In the supersonic case these poles approach the integration path as

k2~* 0, corresponding to propagating waves, except in the superresonant region when one

or more pairs of complex conjugate poles appear, representing spatially decaying waves.

In the subsonic case, the situation is reversed. In the so-called subresonant region only

attenuated waves are present (t* poles are complex), while the superresonant region is

characterized by the appearance of at least one pair approaching the real r-axis.

Based on the work of Lane and Friedman [6] and Whitehead [7] for the full unsteady

case, one would expect that the solution to the dual integral equations (8, 9) should be of
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the form

00

/,(') = E (23)
m = 0

where Jm(t) is the Bessel function of the first kind of order m. Such a series can be made

to satisfy the Kutta condition at the blade trailing edges and induce the correct (square

root) singularity at the leading edges. Work is presently under way by the author to

determine the expansion coefficients a'n">.

4. Low-solidity expansions. Recent renewed interest in propeller-driven aircraft has

resulted in interesting "propfan" designs, which may be expected to behave aeroelastically

more like turbomachinery fan rotors than propellers. For low-solidity cascades representa-

tive of propellers or propfans, it seems reasonable to seek asymptotic expansions in terms

of a blade spacing parameter. When the blade spacing is large, the first term in such an

expansion is the isolated airfoil solution, and the second term represents a correction

arising from the cascade effect. A suitable limit process in this case is

s2 = \ oo, sx/s2 fixed (6 fixed), (24)

which preserves the stagger.

Supersonic Flow. The reduced cascade kernel G can be written as a product of the

isolated airfoil kernel G, and a "cascade function" C;

G(t) — Gj(t) ■ C(t), (25)

where

_,V^Tp

T - k/M

and

00

C(t) = £ exp[;m(fi — i^) — i\m\s2fi^T2 — k2 ]
m= — oo

= / sin(s2/3^t2 — k2 )/[cos(.s2/?\/t2 — A:2) - cos(12 - ^t)]. (27)

For an isolated blade, C(t) = 1, corresponding to m = 0 in the infinite sum in Eq. (27). If

we write

AC(t) = C(t) - 1 = Yj 2cos[m(fi - Jjt)] exp j -ims2(3^T2 - k2 }, (28)
m = 1

then the governing equation for the upwash, Eq. (1), can be written as

iB r00 — —
v0(x) = — G,(t + kM)F0(T + kM)e'XT dj + Au0(x), (29)

^ m
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with

Av0(x) = ^r G,(t + 1cM)F0(t + ~kM)\C(r + kM)erxTdi (30)
^ - 00

representing the cascade effect on the upwash on the reference blade. If we treat Au0(Jc) as

known, Eq. (29) supplemented with Eq. (2) can be solved [12] to yield

F0(t + kM) = £ cj -j==^===j„(u)j0(T - u) du, (31)

n-o 00 y(M + kM) - k2

c" = /' [0o(*) - Au0(x)]/»„(*) <ix, (32)
77/3; ^ _ 1

where jn, Pn are spherical Bessel functions and Legendre polynomials, respectively.

Proceeding as in the low-frequency case, we assume an expansion of the form of Eq. (6)

with e = 1/A -* 0. From the Riemann-Lebesgue lemma it follows that At50(3c) -» 0 on the

airfoil (|3t| < 1), and the leading term in (6) represents the isolated airfoil solution, given

by Eqs. (31, 32) on setting Av0(x) = 0. The succeeding terms in the expansion can then be

found by first obtaining an asymptotic expansion for the integral (30),

Av0(x) = f1(e)A^1)(j) + v2(e) Av^(x) + • • • , (33)

and then solving a sequence of isolated airfoil problems for the terms of order vl,v2 • • • .

The method of steepest descent, or a combination of the method of stationary phase and

Laplace's method, can be used to evaluate the integral in (30) for X -* oo. Evidently

v1 = 1/ \/X , from the contribution of the stationary points of the exponents of AC(t).

Subsonic Flow. The above procedure is readily extended to subsonic cascades. By

factoring out the isolated airfoil kernel, as in Eq. (25), a set of relations analogous to Eqs.

(29, 30) is obtained. Proceeding as before, the successive terms in the expansion for the

solution can be obtained by solving a sequence of isolated airfoil problems. In the

incompressible case these solutions can be expressed in closed form in terms of Bessel

functions Jn. In this case the upwash correction term Av0 involves only Laplace-type

integrals, and the first cascade correction term is expected to be of order 1/A as X -> oo.

5. Numerical results and discussion. Typical results calculated by the present asymptotic

formulas are shown in Figs. 2-9, including comparisons with the full unsteady solution

and with previously obtained approximations. In all of these calculations, the uniformly

valid expansion coefficients were used. For convenience, lift and moment coefficients are

introduced as follows:

CFv = -F0(kM)/v0h, CMa = iFo(kM)/2a0. (34)

Data is presented for a low-solidity cascade with no Mach wave reflections, for which

F0(kM) = a0 and F^(kM) = ax/3, and for Verdon's cascade A, for which the corre-

sponding expressions are given in [4],
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Figures 2 and 3 compare the present approximation of lift and moment coefficients CFu

and CMa with previously obtained (nonuniform) solutions [1, 2] and the full unsteady

solution [8], for Verdon's cascade A at progressively higher reduced frequencies. The

present uniform approximation is seen to be remarkably accurate, even for the higher

reduced frequencies. The standard nonuniform approximation is also quite good, except

in the vicinity of a = 0 or 360°. Also, the latter approximation is restricted to the

subresonant region.

0 60 120 180 240 300 360

0" (DEG)

Fig. 2. Comparison of low-frequency approximations to lift and moment coefficients for Verdon's cascade A:

(O) present approximations without T-term; ($) present approximations with T-term; (—) nonuniform

approximations [1, 2]; (—) full unsteady solution [8]. M - 1.345, 9 = 59.5°, s2 = 0.8, a = 0.



504 ODDVAR O. BENDIKSEN

As cascade solidity is decreased, the accuracy of the asymptotic solutions at any fixed

reduced frequency appears to decrease. This is illustrated in Figs. 4 and 5 for the

low-solidity cascade with no Mach wave reflections. Note that for this cascade the

nonuniform approximations break down surprisingly quickly with increasing reduced

frequency. The region of nonuniformity now extends over a wider range of interblade

0.20

CR'-Ma

0.10 —

-0.10 —

-0.20 I—
0.1505 0.25

0.3010 0.50

0.4515 0.75

-0.10

-0.20

Fig. 3. Comparison of present low-frequency approximations to moment coefficient due to torsion for

Verdon's cascade A.
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0 60 120 180 240 300 360
<T (DEG)

Fig. 4. Comparison of lift and moment coefficients for low-solidity cascade. Legend as in Fig. 2. M = 1.3,

8 = 60°, s2 = 2.5, a = 0, k = 0.1.

-.02 -

>0 120 180 240 300 360

O" (DEG)
Fig. 5. Same as Fig. 4 at a reduced frequency k = 0.2.
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phase angles, and the improvements obtained by using the present approximations are

significant. Also note that the standard approximation predicts that Im{CMa} is indepen-

dent of interblade phase angle for these cascades, suggesting (incorrectly) that the stability

margin for torsional oscillations should be independent of a.

It should also be noted that the superresonant region increases as the solidity decreases,

for fixed k. This is another indication that important cascade effects remain in the

low-solidity limit and should not be ignored in propeller/propfan applications. The above

observations suggest that it becomes more difficult to obtain useful engineering approxi-

mations as the blade spacing increases. This may appear paradoxical, since cascade effects

due to the mutual interference of the infinite set of blades and vortex wakes should

become weaker as the blades move farther apart. While this is certainly true, one must

remember that a first-order expansion in a frequency parameter imposes restrictions on

the validity of the solution. These restrictions are more severe in the far field than close to

the source of the disturbance. Thus it is not surprising that such an expansion should

become more accurate as the blades move closer, since more of the blades which dominate

the interference effect on the reference blade are now within the near field.

Figures 6-9 illustrate how the accuracy of the present approximations varies with

reduced frequency. In Figs. 6 and 7 the asymptotic solution for CFv and CMa is compared

to the full unsteady solution for Verdon's A, for typical values of k and a of interest in

aeroelastic analyses. For this cascade the critical reduced frequency for single-degree-of-

freedom torsional flutter is about 0.57 for a = 0, and the critical interblade phase angle is

close to 30°. In the absence of structural damping, torsional flutter occurs when Im{CVa }

> 0. Figures 8 and 9 show similar plots for the low-solidity cascade.
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Fig. 6. Behavior of approximation of CFv as a function of reduced frequency k: (•, + > asymptotic solution;

(—) full unsteady solution. Verdon's cascade A, a = 0, a = 30°.
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Fig. 7. Same as Fig. 6, for ImCVo.

superresonant

Fig. 8. Behavior of approximation of CFu as a function of reduced frequency for low-solidity cascade (Fig. 4),

for a = 180°. Legend as in Fig. 6.
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Fig. 9. Same as Fig. 8, for ImCMa.

6. Conclusions. The main conclusions from this study can be summarized as follows:

1. Approximations which are sufficiently accurate to be useful in aeroelastic calculations

can be obtained for both the subresonant and the superresonant operating regions by

solving a sequence of quasi-static problems.

2. For cascades in subsonic axial flow, a nonuniformity with respect to interblade phase

angle is to be expected. The location of the singularity can be moved by suitably

redefining the limit process k —> 0, permitting uniformly valid expansions to be obtained

separately for the subresonant and superresonant regimes.

3. For high-solidity cascades, the effect of Mach wave reflections produces a strong

dependence on interblade phase angle in the lift and moment coefficients. The low-

frequency approximations are remarkably accurate, even for moderately high reduced

frequencies.

4. The cascade effect remains surprisingly strong in the low-solidity limit and should

therefore not be neglected in propeller/propfan applications. Low-solidity expansions can

be obtained by solving a sequence of isolated airfoil problems.
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