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1. Introduction. This paper concerns what we term a parabolic-elliptic interface problem

in the plane. It arises in the study of two-dimensional eddy-current problems in electro-

magnetic theory. The physical situation is discussed in Sec. 7.

Let F be a smooth, simple, closed curve in the plane with interior £2" and exterior £2+.

Let a be a smooth, positive function in and K a smooth field of symmetric, positive

definite linear transformations in £2 ~. We denote by L the parabolic operator

Lu = ait — div(Kgrad w), (1.1)

where ii indicates differentiation with respect to t.

We let T > 0 be fixed, and for any set R o E2 we write RT for R X (0, T). For any /

on Ej we write /1 for its limits on Tr from Slf. If n is the outer normal to I\ we denote

by and W the operators

u„ = gradw-n, Wu = (Kgrad u) ■ n. (1-2)

Suppose we are given smooth functions Fon tiT, / and g on rr, and A on [0, T], Then

consider the following:

Parabolic-Elliptic Problem (PEP). Find u such that

Lu = F infif; \u = 0 in ,

u(x, 0) = 0 in fi",

u~= uf+ /, Wu~= + g on Fr,

u(t, x) — A(t)\og\x\ = 0(1) as|.x|—>oo.

We will not state precise smoothness conditions except to say that (1.3) should hold

pointwise and Green's theorem should be applicable. The latter yields the following

elementary result proved at the end of the section.
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Theorem 1.1. (PEP) has at most one solution.

We show in Sec. 7 that the eddy-current problem leads to the following problem.

Parabolic-Hyperbolic Problem (PHP). Find u such that

Lu = F in £2f ; Aw — p2u = 0 in fijt,

u(x,0) = 0 in S2 ; w(x,0) = m(x,0) = 0 in£2T, (1-4)

u + + /, Wu~= u* + g on rr.

We do not, as yet, know how to treat (1.4). For a large class of problems, however, the

parameter (I2 is very small, and it is common practice to take it equal to zero (the

quasistatic approximation). Thus we are led to (PEP). The extra condition (1.3)4 is a

technical consequence of the approximation (see Sec. 7). It causes considerable mathe-

matical complication but is essential if the problem is to be physically meaningful.

In the eddy current application we will have

Ir
gds = 0, (1.5)

and we assume from now on that this condition holds.

In Sec. 2 we will convert (PEP) to a problem (NLP) in which

Lu = F in£2r; u(x,0) = 0 in S2 , (1-6)

but we have a nonlocal boundary condition on Tr. In Sec. 3 we give a variational

formulation (VP) for (NLP). We also present a Galerkin procedure for (VP), consisting of

a family of approximate problems (AVP)^ depending on a parameter h. We have two

main results:

1. The problems (AVP)/? have solutions that converge to a (unique) generalized solution of

(VP).
2. The convergence is optimal.

These results are stated precisely in Sec. 3 and the proofs are presented in Sees. 4 and 5.

Sec. 6 contains some remarks on numerical implementation. Many of the ideas here come

from [1] and [7],

Proof of Theorem 1.1. It suffices to show that the only solution for F, /, g. and A all

identically zero is u = 0. Suppose u is such a solution. We multiply the differential

equation in £2^ by u and integrate over £2,". Green's theorem yields

^ f u(x,t)2dx+ (' I K(jc)grad u(x, t) • grad u(x, r) dxdj
2 Jq A) Ja-

-f f Wu(x,t) u(x,t) dxdr = 0.
J0 Jr

Since u is bounded as |x| -> oo and Am = 0 in £2^, we have Vw = 0(|x|-2). We can

perform a similar integration outside (with a limiting argument), obtaining

f f |grad u(x, r) | dxdT + f f u*(x, t)u(x, t)+ dx dr = 0.
Jo Jo -t

We add the results and use (1.3)2 and (1.3)3 to conclude that u(x,t)= 0 in £2",

grad u(x, t) = 0 in £2+, and u + (x,t)= u (x, t) = 0 on T, so h(x, t) = 0 in £2 \
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2. The nonlocal boundary problem. We need some results from potential theory. Let

g(x, y) = (2ir )_1 log|x — y\ and let y and 2 denote the simple and double layers:

= f cp(y)g(x, y) dsy;
Jr

@[<p](x) = /r <p(>')-^-g(x,y)dsy. (2.1)

For smooth T and qp, the following results are well known:

Ay[<p] = A^[q>] = 0 in Q±,

(2.2)
y[<p]+= y[q>] = s[<j>] on r,

(3>[(p])± = + + D[<$>] on T,

[dy[cp]/dn]± = + on T,

y[cp] = m[cp]log|x| + o(|jc| L), m[<p] = (2w) 1 <p(y) dsv as |x| -* oo.

Here S is an integral operator with logarithmic kernel, while D and N are integral

operators with smooth kernels.

Suppose now that u is a solution of (PEP). Then (1.3)4 can be sharpened to

Da(u(x,t) - A log | jc | - fi(/)} = o(|x|'' ) as |x| oo

for some function B and for any spatial derivative Da. Then one can apply Green's

theorem to obtain the representation

u =S?[u+] - ®[u + ] + C, C = -B infl;. (2.3)

Eqs. (2.3) and (2.2)12 yield

jU + = — £>[m + ] + C on rr. (2.4)

Now we use the interface conditions. We have u + = u~— /, and if we put (Wu)~= <f>, then

u+ = 4> — g. We substitute into (2.4) to obtain

}u-+D[u-]-SM-C = D[/]-S[g]+if=G on Fr. (2.5)

From (2.3), (1.3)4, and (2.2)5 we obtain, by (1.5),

m[<f>] = A. (2.6)

The formulas above lead us to the following:

Nonlocal Problem (NLP). Find { u, <p, C} such that

Lu = F in ; «(.x,0) = 0 in

Wu~ = <f> on rr,

r 1 r 1 (2-7)
\u~+ D\u~] - s[<>] - C = G on Tt,

w[<#>] = A.
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Theorem 2.1. Suppose {u, <p, C} is a solution of (NLP), and we set

u = y[(j> - g] - @[u~ — f] + C infijt. (2.8)

Then u is a solution of (PEP) with <j> = (Wu)

Proof. Let a denote the right side of (2.8). We have = 0 in 12^, while (2.6) and (2.2)5

show that (1.3)4 is satisfied. By (2.2)z, (2.2)3, and (2.5), we have ^+= u~ - f. Now

consider ^ in Slj. By (2.2)z, (2.2)3, and (2.4) we have

«" = S[4> - g] + - D[u—f] + C = 0.

We conclude that ^ = 0 in . But then (2.2)4 yields <t> — g =

Remark. (NLP) is an extension of an idea used in [5] for static problems and in [1] for

time-periodic ones.

3. The variational problem. Eq. (2.7) and an application of the divergence theorem yield,

for an arbitrary function v,

I aiivdx + / K grad u ■ grad u dx — I v~<pds= / Fvdx. (3.1)
Ja Ja Jr Ja

Similarly we multiply (2.7)3 by a test function ip and integrate over F to obtain

f u~\pds + l[ D[ir]xpds - if S[<j)]\p ds - 4TrCm[\p] = 2 f G\pds. (3.2)
JT JT JT JT

Finally (2.9) 4 yields, for any constant k,

= QuAk. (3.3)

Let us introduce the following notation:

a( { w, <p, C }, {v,\l>,k}) = / K grad u ■ grad v dx — / v <j> ds + / u xp ds
Ja Jr

+ 2 f D[u ]\p ds — 2 f — 4irCm[\p] + 4tt km [<?>],
•'r A'

(3.4)

FGA)({lJ'xl/-k})~f Fv dx + 2 f G\p ds + 4irAk. (3.5)
' " -T •'r

Fhen (3.1)—(3.3) give our variational formulation.

Variational Problem (VP). Given { F, G, A} on [0, T), find {u, <p, C} on [0, T) such that

u(x, 0) = 0 and for any (v, ip, k },

( auvdx + a{{u,<pX), {v,4><k}) A)({v,xp,k}). (3.6)
JQ,

Fhe following result is easily verified.

Theorem 3.1. If { u, <p, C} is a solution of (VP) with sufficient smoothness, then { u, qp, C}

is a solution of (NLP).

We also consider approximate problems. Fet {Hb} and {Bh} be families of finite-di-

mensional spaces depending on a parameter h > 0. Put yeh = Hh X Bh X R.
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Approximate Variational Problems (A VP)h. Given {F, G, Aj on [0,7), find

{uh, cph, Ch} g .yeh on [0, T) such that uh(x, 0) = 0 and for any {vh, ik} g JCh,

( aiihvhdx + a{{u\<ph,Ch},{vh,th,k})=^(FGA)({v\>p\k}). (3.7)
Jn

We will obtain generalized solutions of (VP), and we formulate this concept now. We

will require of u and v that they lie in so that w~, v~ lie in Hl/2(T). Since <p is to

be a conormal derivative we expect that (p, and hence xp, should be in H_l/2(T). We put

H = H1(Q), B = H_l/2(Y)

and let H' and B' be their duals with respect to L2(fi) and L2(T). Thus B' = Hl/2(T).

Naturally Hh and Bh are to be subspaces of H and B. We put

JT= H X B X R, JF' = H' X B' X R.

We can extend a and ^FCA) to X 34? and Jf, respectively. To do this, we need to

interpret some of the integrals as duality pairings. For any space / we write (r,v) for

such a pairing of r g J', v G J. Then we replace frV(pds and fru~\p ds by (u~,<p) and

(u~,ip). For it and F in H', we replace j^auvdx and f^Fvdx by (au,v) and (F,v).

m[qp] and m[\p] can be interpreted as duality pairings with the function which is

identically one. For the remaining terms we need the following result from [4],

Lemma 3.1. For any r > -1/2, S maps Hr(T) into Hr+l(T) and D maps Hr(T) into

Hr+2(T).

Lemma (3.1) shows that we may replace 2/r D[u~]\p ds - 2JrS[<l)]4> ds by 2(Z>[w~], \p)

— 2(£[<f>], \p). Moreover, the lemma and (2.8) show that if / G B' and gG B then

G g B' and we can replace 2JrG\p ds by 2(G, xp). Thus we can put

a({u,cp,C}, {v,\p, k}) = f K grad u ■ grad vdx - + (w-,^) + 2 (D[u~],\p)

-2<S[(p],^> - 477-Cm[i] + A-nkm[(p]^FG A){{v,^,k})

= (F, v) + 2(G, xp) + 477Ak. (3.8)

Our solutions will also be generalized with respect to time. For any space J we write JT

for L2((0, T): J). We set

Qj — {{m,<p,C}. u G H-p, cp G Bj, C G R^-},

0? = {{qp, C} g Qt: u g H't, «(-, 0) = 0}, (3.9)

PT= {{ F,G,A }: F ^ H'T,G ^ B'T, A G Rr}.

Note that w g Ht and it g H'r imply ueC([0,r]: F2(fl)) so that «(-,0) = 0 has

meaning. The bilinear form a extends to QT X QT and ^f_c,a) to a linear functional on

Qt. Thus the following is meaningful.

Definition 3.1. For any [F, G, A} g Pt, {m, tp, C} is a generalized solution of (VP) if

{w, <p, C} g Qj and for any {v, xp, k} g Qt,

(ct.ii, v) + a({u,<p,C], {u,xp,k}) = v> k })■ (3-10)
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We will need two assumptions concerning the spaces Hh and Bh:

A.l. Define the L2 projection Ph: H —> Hh by Phvwhdx = / vwhdx for all wh e Hh.

Then there is a constant y, 0 < y < oo, independent of h, such that

suplzMii<y_ (311)
[iE// IMItf

A.2. For any e > 0 there is an h(e) such that for any h < h(e) and any {m, <p} in

Ht X Bt with w, g H't there is a {uh, <ph} e Hy X B'± such that

|| m - uh\ht + || m, - wf ||//f + ||<p - <p;'||/)r < e. (3.12)

We indicate the meaning of these assumptions in Sec. 6.

We can now state our main results under the assumptions A.l and A.2.

Theorem 3.2. There exists a unique generalized solution {w, <p, C} of (VP). Moreover,

there is a constant K, independent of T, such that

ll{^<P,C}||e; <K||{7%G,/I}lk- (3-13)

Theorem 3.3. There exists an h > 0 and a A', independent of T, such that

(i) For any h ^h, (AVP)^ has a unique solution {uh, yh, Ch}.

(ii) ||{m,<p,C} - {uh,(ph,Ch} ||e+ < inf||{M,«p,C} - { w\ x'\ } ||ef- (3.14)

where {wh,xh,lh} e = X B'+X Rr.

The optimality result, Theorem 3.3(ii), yields an estimate on the order of convergence as

we discuss in Sec. 6. In particular, if one uses piecewise linear finite elements for Hh and

piecewise constant elements for Bh and if {«, cp, C} has enough smoothness, then (3.14)

yields 0( h) convergence, h being a mesh size.

We expect that if one imposes enough smoothness of / and g, then the generalized

solution of (VP) will be sufficiently regular to yield a classical solution of (PEP). We have

not, however, carried out the details.

4. Proof of existence. We will prove Theorem 3.2 in this section. We do so by showing

that (VP) is a compact perturbation of a coercive problem and then using Riesz-Schauder

theory. We let a0 denote the bilinear form

a0({w,(p,C},{u,i//,A'})= I (Kgrad u ■ grad v + uv) dx — (u~,<p) + (u~,\p)
Ja

-2(S[<p],\p) — 4TrCm[\p] + 4Trkm[<f>] (4.1)

on Qt X Qt. We also let 9ft and £ be the bounded linear maps from HT into H'T and

B't, defined respectively by

(0tu,v\ = f uvdx, = -2(£)[«"],i^). (4.2)

To simplify the formulas, we assume a = 1. Then (3.10) becomes

(u,v) + a0({u,(p, C}, {v, xp,k}) = ^F+geu,G+JfuM )({v^,k}). (4.3)
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We consider the auxiliary problem suggested by (4.3):

(u,v) + a0({u,<p,C), {v,^,k}) = 3F(f,g,a)({»^.*})• (4-4)

The approximate problem corresponding to (4.4) is uh(x, 0) = 0, and for any {vh, ^h,k),

(u\vh)+a0{{u\cp\Ch}, {vh,th,k})=&(KG,A){{vh,th,k}). (4.5)

We observe that since K is positive definite, we have

[ (Kgrad u ■ grad u + u2)dx > yJIu||//.
Jq

Moreover, we have the following result, proved at the end of the section.

Lemma 4.1. There exists a constant y2 > 0 su°h that for any <p e B with m[<p] = 0,

-<S[<p],<p> > Y2IMIb- (4-7)

Thus the form a0 is nearly coercive. In order to exploit this coercivity, we devise a

two-step procedure for solving (4.3).

We let R denote the set of constant functions on F. We assume Bh R and for any

C G R let C denote the corresponding function in R. We have then

Bh = Bh ® R (4.8)

with respect to L2(Y), where iph e Bh implies ra[^] = 0, and for any \ph e Bh,

th = 4>h+(2ir/l)m[\l>h] , (4.9)

where / is the length of T. Note that for any CeR,

||C||B = |C| ||I||B. (4.10)

We put vh = 0, \ph = 0 in (4.5) and conclude that m[<ph] = A. Then (4.9) yields

<j>h = 4>h + 2ttA/1 = + f. This leads to our two-step procedure.

Step I. Find (uh,<f>h), §h e Bh, such that uh(x,0) = 0 and for any (vh, fr), e Bh,

(uh,vh) + a0({uh,<p\ 0}, {vhA\Q})=&(F.Gv({vhAh,Q}), (4.11)

Fvh = (F,vh) + (Gjh) + 2(S[f]Jh). (4.12)

Step IF Find Ch such that for uh, q>h from Step I and any f e R,

<(«T.f> - 2<S[<p*],f> - 4irChm [f ] = (Gj). (4.13)

One verifies that if the { uh, <ph, Ch} are determined by (4.11)-(4.13), then {uh, <ph + r,Ch}

satisfies (4.5).

Lemma 4.2. The problems (4.5) have unique solutions for each h.

Proof. We show first that (4.11) has solutions. If we choose bases for Hh and Bh, then

(4.11) will be equivalent to a system of equations of the form

j(i)h + s#\]h + , u*(o) = o,

- S8TMh = sf. (4.14)
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Here \Jh and & have values in RM, and 4>'' and stf values in for some M and N. Jt

and are M X M matrices, y an A' X N matrix, and 38 is M X N. The mass matrix Jf

is positive definite, and one verifies that (4.7) implies that is positive definite.

Accordingly one may solve (4.14)2 for (J)* in terms of U;' and substitute in (4.14) to obtain

a differential equation for U\ Since J( is nonsingular, this equation has a unique

solution. Once U'1 and are determined, (4.13) will yield C\

We now prove stability with respect to the data for solutions of (4.5).

Lemma 4.3. There exists a constant K, independent of h, such that the solution of (4.5)

satisfies

||{«\4»\C*}||ef (4.15)

Proof. We put vh = uh and \ph = <j>h in (4.11), and we integrate from 0 to T. Equations

(4.6) and (4.7) yield

II Uh{T) ||t2(fl) + || ̂  ̂  || Ht + ll^llfir < A^(||F||//f + II C? II Br + MHr). (4.16)

Since |\(uh) ||fi. is bounded by a constant times ||«A||// , it will satisfy an inequality of the

same type, and then (4.13) shows that the same is true for Ch. It then follows from (4.9)

and the fact that <j>h = $h + 2-nA// that (4.16) holds with <f>h replacing <f>/'.

Now let Ph be the L2 projection as defined in A.l. We have

ii. a/.mi Jauh(r)udx jauh{t)Phvdx
II u (/) || ,r = sup   = sup  .

veil |MI// veH lkl|//

Now we use (4.5) with vh = Phv, xph = 0, k = 0 to estimate the right side of this equality.

If we use A.l and (4.16), this yields

||fi*lk= sup (i/ii u ||//)/</\ phv) + <(phvy,4>h>
nefl I

- f (Kgrad uh ■ grad phv + uhPhv) dx

< ̂ {ll^lkf + ll^lk + lk'lkjsup
llu IIH

< K'2{ ||F||//f + || G || sf + \\At\\ }. (4.17)

The estimates (4.16) and (4.17) yield (4.15).

Lemma 4.4. (i) There exists a unique solution {w, qo, C} of (4.4).

(ii) There is a constant K such that

||{«,<p,C}||e? < K\\{F,G,A)\\Pt. (4.18)

Proof. This is a standard argument, which we only outline. From the estimate (4.15) we

conclude that there is a subsequence of the {uh, <ph, Ch} converging weakly to u, with

{uh} converging weakly to ii. Then one shows from A.2 that u is the generalized

derivative of u and that (u,<p,C) satisfies (4.4). The estimate (4.18) follows from (4.15)

and lower semicontinuity.
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To show that the solution of (4.4) is unique, it suffices to show that the only solution for

{F,G, A} = {0,0,0} is {0,0,0}. For such a solution, (4.4), with v = 0 and \p = 0, yields

m[<p] = 0. Then we put v = u, \p = <p, and k = C in (4.4) and integrate from 0 to T.

Equation (4.12) and Lemma 4.1 yield

||«(- > T) ||z.2<0) + ||"||«r + II <P II = 0-

Thus u and <jd are identically zero, and (4.4) yields C = 0.

Since the solution of (4.4) is unique, it follows in the usual way that the entire Galerkin

sequence {uh, <p\ Ch} converges weakly to the solution {w, <p, C}.

We turn now to (VP). Let us first establish the uniqueness. We use a combination of the

proofs of Theorems 1.1 and 2.1. Again let {u, <p, C} be a solution of (3.10) for {F, G, A}

= {0,0,0}. We set u = 0 and xp = 0 and deduce that m[y] = 0. Now define « by

* = y[<p]-2>[u~] + C. (4.19)

For ip in 5 or B', (2.2)x is still true pointwise, as is (2.2)5. Also y[<p] and 2d[y] are in

/^(fl ). &[<p] is in + y[<p] e H1(£2 + ) if m[y] = 0, and y[cp] is always in

H1'oc(fi + ) (see [4]). Formulas (2.2)2-(2.2)4 continue to hold if interpreted by the trace

theorem.

We take v = 0 and k = 0 in (3.10) and conclude that ju~+ D[u~] — S[<p~] — C = 0.

As in the proof of Theorem 2.1, this implies ^+= u a~= 0, and = cp. Now we

proceed as in the proof of Theorem 1.1. We apply Green's theorem with a limiting

argument to obtain

f f \gvad u\~ dx dr + ( (u~,4>)dT = 0. (4.20)
Jo Jo

On the other hand, if we take ip = 0, k = 0, and v — u in (3.10) and integrate from 0 to t,

we obtain

~r f u(x,t)~dx+ f f Kgrad u ■ grad u dx dr — f dr = 0. (4.21)
1 Ja~ Jo Ja- Jo

We conclude that u = 0 in and a = 0 in ; hence <p = 0, and by (3.10), C = 0.

Lemma 4.4 states that there is a bounded linear map ^0: PT - Qj with y0{F,G,A}

the solution {u, cp, c} of (4.4). Now consider the map J: Qj -> PT defined by

/{«,(£>,C} = {^u, ^u,Q}, (4.22)

where & and ^ are defined in (4.2).

Lemma 4.5. J is a compact map from Qj into PT.

Proof. Let {u„,<pn,Cn} be a bounded sequence in Qj. Then {un} is bounded in HT,

and iin is bounded in H'r. This implies ([6]) that {«„} is bounded in Hl/2(0,T:

[H, H']1/2) = Hl/2{0, T: L2(Q)). Now the injection of Hy(0, T: X) into L2(0, T: Y) for

any y > 0 is compact whenever the embedding of X into Y is compact. Taking X = L2(ti)

and Y = H' we see that the injection of Hl/2(0,T: L2(£2)) into H'r is compact. Hence

there is a subsequence {un} which converges in H'T.
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Next we see that since {un} is bounded in both HT and //1/2(0, T: L2(fl)), we have

u~ g Hl/4(0, T: L2(T)) (see [6]). But by Lemma 3.1, D is a bounded map from Hr into

Hr+2; hence {Dun} is bounded in Hl/4(0,T: H2(T)). The embedding of H2(F) into

Hl/2(T) is compact so that, as above, //1/4(0, T: H2(F)) is compactly embedded in

L2(0,T: Hx/2(Y)). Hence ^u„ = Dun has a convergent subsequence in B'T. This com-

pletes the proof.

We see that {w, <p,C} is a solution of (3.4) if and only if it satisfies

{ «, <p,C } = .9>0{F,G,A } +y0J{u,cp,C}- (4.23)

Now Zf is a bounded map from PT to Q£, and by Lemma 4.5, J is compact from Q£ to

PT. Hence £PJ is compact from to itself, and (4.23) is a Riesz-Schauder system.

Uniqueness for (VP) shows that the only solution of the homogeneous equation for (4.23)

is {u,(p,C} = {0,0,0}. Hence (4.20) has a unique solution and so does (VP).

Proof of Lemma 4.1. It is known [4] that — 5 is coercive, that is,

-(£[$],<!>) > y'||$||b, (4.24)

provided that the diameter of T is sufficiently small. Assume the origin is inside F. For a

(p with m[<p] = 0, we have for any §,

■y\1 f 1 f
£[<?](-*) = Jr <p(^)log|x - y | dsy =2~J <p(>')log- ds„

Put x = y — St], q)(Sri) = 3>(tj), and T' = T/8. Choose 8 so that the diameter of T'

is small enough for (4.24) to hold. Then 5[(p](x) = 55r4>(S|), where Sr is the simple

layer for T'. Eq. (4.24) yields

fTi9(t)srMS)dst> y'IWOII*,

and reversing the transformation yields

-<S(p,<p) > y'5||<pH-i/2,

which is (4.7).

The proof of Theorem 3.2 is now complete.

5. Proof of optimality. We follow the ideas of [3]. We require the following definitions.

Definition 5.1. The Galerkin operator Gh for (VP) is the map on defined by

Gh{ u,(p,\p) = {w, <p, C}, where u(x, 0) = 0 and for any {vh, \ph, k},

(u,vh) + a({ w, 9, C}, {vh ,\ph, k}) = (u,vh> + a({ m, <p, C}, {vh,xph, k}). (5.1)

Definition 5.2. The Galerkin operator Gft for (4.5) is the map on Qj defined by

(?o {u,<p,\pj = { m, i//, C}, where uh(x, 0) = 0 and for any {vh, \ph, k},

(u,vh) + a0({u,y,C). {vh,\ph,k}) = (u,vh) + a0({«,<p,C}, { vh, \ph, k }).

(5.2)

Lemma 5.1. Gfi is well defined and for any {«, <p,C} e

||{ m, <p,C} - Go { u, <p, C} ||e+ -> 0 as h -» 0.
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Proof. It follows from Lemma 4.2 that Gg is well defined. The stability result (4.15) can

be used to show convergence of Gq {u, <p, C} to {u, <p, C} as follows. Let {wh, xh-r>>} be

an arbitrary element of Qj and put

{ei,e2,e3} = G0{w,cp,C} - { w\ xV"}.

{ei, e2, e3} = {C} ~{wh,xh^h}.

Then (5.12) yields

(ex,vh) + a0({e1,e2,e3), {u\X*.*}) = <el,uh> + a„({e1,e2,e3}, {«*,**,*}).

(5.3)

The right side of (5.3) can be written in the same form as in (4.5), and the estimate (4.15)

can be applied to yield

||{Cl,C2,C3} |!e; < ^11 { el> e2> e2 } II fir •

Thus we obtain

\\G0{u,<p,c) - {u,cp,c}\\Q+ ^ K inf || {u, cp, c} - { w\ X\ rh} ||gf .(5.4)

Equation (5.4) and our assumption A.2 yield the assertion of the lemma.

Lemma 5.2. ||Gq || is bounded independently of h.

Proof. Put {w\xV*} = {0,0,0} in (5.4) to conclude that G<J - I is uniformly

bounded and hence so is Gft.

Let P1 Qj be the solution operator for (VP). We know this exists and is

bounded from Sec. 4.

Lemma 5.3. Let J be defined by (4.22). Then

||y/(/ — Go) 0 as /; -» 0. (5.5)

Proof. We note that J(I — Gq) is an operator from Qj into PT and is a bounded

operator from PT into Qj. Suppose (5.5) does not hold. Then we can find e > 0, a

sequence hn |0, and {v„,cpn,Cn} e Qj with \\{vn,cpn,Cn}\\Qf = 1 such that ||yj(I -

> £• Since ||7 - G^|| is uniformly bounded, (I - GS"){vn,<pn,C„} =

{wn> rn} is a bounded sequence in Q11 and, by construction,

(w„,vh") + a0({wn,x„,rn}, {vh", ^h«, k}) = 0 (5.6)

for any {vh", \ph\ k) e h\ Since the sequence {wn,x„,/"„} is bounded, it has a subse-

quence converging weakly to {w, x>M and from (5.6) and A.2 one concludes that

{w, x, r} is a solution of (4.5) for {F,G, A} = {0,0,0}. Hence [w, x, r) = {0,0,0}. But

the map J is compact, so that /{wn, x„, rn) converges strongly to zero and hence so does

SfJ{ wn, x„, rn}, which gives us a contradiction.

By Lemma (5.3), we see that the operator Gh = Gq[I - S?J(I - Gq)]-1 exists for h

sufficiently small.
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Lemma 5.4. Gh = Gh.

Proof. Put Z = (z,£,p) = (/ - I - Gq))~1U and U = {«,<p,c}. Then Z - yj(l

— Gq)Z = U and, in obvious notation,

(z,v) + a({z,£,p}, {v,xp,k})

= (u,v) + a({u,<p,C), {v,\p, k}). (5.7)

If we use the definition of J in (4.22), we see that (5.7) is the same as

(z,u) + a0({z,£,p}, {v,i,k}) +&jG*z({v,t,k})

= (i/, v) + «({ «, 9, C}, { v, \[/, k}). (5.8)

But we have, again by (4.22),

= u(GqZ, [v,\p, k}) - o0(GqZ, {v,^,k}).

Hence (5.8) can be written

a{G*Z, {»,*,*}) + (z,d) - a0(Z — GqZ, {«,*,*})

= (u, v) + a({ w, <p, C}, { v, xp, k}). (5.9)

Now set Z = GqZ = {z, |, p}. Then,

(~z,vh) + a0{z,{vh,ih,k}) = (z,vh) + a0(Z, (u\^,kj). (5.10)

If we combine (5.10) with (5.9) for (v, xp, k} = {vh, 4>'\ k}, we obtain finally

(i,vh) + a({z,i,p), {vh,\ph,k}) = (u,vh) + a({u,cp,C}, {vh,\ph,k}),

which proves the lemma.

We can now complete the proof of Theorem 3.3. By our construction, we see that Gh is

uniformly bounded in the operator norm. Now for the solution of (VP), we have

Gh{ w, <p, C} = { uh,<ph, Ch}, the solution of (AVP)a. For any {w\ x\lk} we have

Gh{ wh, x\ lh} = (wh, xh< lh}- Hence,

||{w,<p,C} - {uh,<ph,ch} \\Q*

- Gh{u,cp,C} + Gh{wh,xhJ"}

<||{«,<p,C} -{wA,x\/A}||e; +\\Gh{{u,<p,C})-{*>h,Xh,lh}\\Qt,

from which (3.14) follows.

6. Numerical considerations. In this section, we discuss approximate subspaces for

which assumptions A.l and A.2 are satisfied and show that quasioptimal convergence is

obtained for such spaces.

We introduce polygonal grids Afi and Ar on and T, respectively, with generic mesh

spacings ha and hT. Let Mh c H'(£l) be a space of piecewise polynomials of degree

< k — 1 on An and Bh c H_l/2(T) a space of piecewise polynomials of degree < / — 1

on Ar. We identify the parameter h with max(/;£2, /jr). With the above definitions of Hh

and Bh, we can show that the Qhr = Hj X B? X Ry flpproximstc ^y lri the sense of A.l.
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We consider the case of k = 2 and 1=1, that is, when piecewise linears are used on 0,

and piecewise constants on F. Let

Z = {(u,^,C)|« e L2(0,T: H2(Q)), v g L2(0,T: H^Q)),

P(0) = 0,CeRr,^L2(0,r: H1/2(T))}.

Then it is known [2] that, given v G H2({2) and \p g H1/2(T).

inf \\v - vfA||i,a < Kh\\v\\2,a, (6.1)
wheHh

inf ||>// - xA||-i/2,r < ^||V'l|i/2,r (6.2)
xheBh

for some constant 0 < K < oo independent of h. Hence, given V = (v,ip0,C) g Z, we

can integrate (6.1) and (6.2) in time to obtain

inf ||K- Wh\\qt < K'h, (6.3)
wh G q!

where K' depends upon V but not h. Moreover, we can simultaneously approximate v

and v by a function wh(t) G H£ and its derivative such that for almost all t, we have (6.1)

together with

\\v(t) - wA(0||o < ^||<K0 lli,a- (6.4)
Integrating (6.4) with respect to t and combining it with (6.3), we obtain for V G Z,

inf||F - Wh\\Q+ < Ch. (6.5)

A.l is then a consequence of the following lemma.

Lemma 6.1. If Z is a dense subspace of Qj such that (6.5) holds, then inf ee*||K - Vh\\

—> 0 for all V g Qj as h -» 0.

Proof. Let V G Q+/Z. Since Z is dense in , there exists a sequence { K"} g Z such

that ||F" — V\\q+ —> 0. Now

inf || F - K* ||e? < || V - V" ||ef + inf || V" - Vh ||e? -

The right side can be made arbitrarily small by choosing n sufficiently large and then with

n fixed, letting h -* 0.

In order for A.2 to be satisfied, a sufficient condition is that Hh satisfy the following

inverse property, which will hold for any grid An that is regular.

Definition 6.1. Hh is said to have the inverse property if there is a number 0 < C, < oo

such that

|| 17*||i « C,h-al\\vh\\0 forallu*e Hh. (6.6)

Let v g H'(&) and Phv be its L2 projection in Hh, as defined in A.l. Then for any
Wh G Hh,

\\Phv - w*||0 <||» - w*||o. (6.7)

Also,

||^*w||l <||«||x +||« - wA||i +|| phv - wh 111

< ||f ||i + ||f - wA||i + Cjh^\\v - w^llo

< clklli
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since

inf (II v - wh 111 + CfhaWv - wA||0) < AT|| u ||i
i»4e Hh

(see [2]). This proves A.2.

Hence, we see that (6.5) combined with (3.14) yields 0{h) convergence in Qj, that is,

IIV- Vh\\Qf < Ch

provided that the true solution U e Z.

Note that unlike the usual condition obtained when Lagrange multipliers are used for

the Poisson equation, we do not require a restriction of the form ha/hr -» 0 as ha,

hT -* 0. In particular, this implies that Ar can be taken to be the grid introduced on the

boundary by Aa.

7. Physical considerations. The problem we want to consider is that in which we have an

initial electromagnetic field in all space, which we think of as air, a dielectric. Metallic

obstacles are introduced and the problem is to determine the subsequent field. We term

this the eddy current problem.

Electromagnetic fields are governed by Maxwell's equations,

curl<? = -86cuvlJf = J, (7.1)

where £ and 3F are electric and magnetic fields, 86 is magnetic displacement, and J is

current density. For a homogeneous isotropic dielectric, such as air, it is customary to

neglect conduction current and use the constitutive relations

* = ■/=£</„ (7-2)

ju0 and e0 constants. For a nonferromagnetic metal which is electrically isotropic but

magnetically anisotropic and inhomogeneous, one usually neglects displacement current

and assumes

ye = ye' ss, j = oE, (7.3)

where the scalar a and the symmetric positive definite transformation JT' depend on

position.

We suppose that we have an incident field <?°, J(f°, 88° satisfying (7.1) and (7.2) in all

space. Then the distorted field satisfies (7.1) and (7.3) in the obstacles and (7.1) and (7.2)

outside. Across the interface the tangential components of both £ and ye must be

continuous.

We scale the problem. Let L and T be a representative length and time and replace jc

and t by x/L and t/T. Let 88{) be a representative magnitude for 88{] and put

88 = 880B, $ = (L/T )88qE, X' = n^K', (7.4)

so that B, E, and K' are dimensionless. Then

curl E = -Bn curl B = /?2£, in air,

curl E = -Bt, curl K'B = aE in metal, (7.5)

where

P2 = al0e0L2/T2, « = Ho°L2/T (7.6)
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are also dimensionless. We let E and B denote the scattered field, total minus incident,

outside. Then the interface conditions are

£,ang = Kn% + C,g. ()t"ang = ^„g + «tang (7-7)

on the interface, where 4- and — denote limits from air and metal.

We now specialize the geometry. Assume the metallic obstacle is a uniform cylinder of

cross-section £2 parallel to the z-axis with K' and a depending only on x and y and with

K'tJ■ = 0 if i or j = 3. Assume that all fields are transverse magnetic, that is,

E = E(x, y, t)k, B = Bx(x, y, t)i + B2(x, y, t) j. (7.8)

One can verify that such fields will satisfy the Maxwell equations if

Bl(x, y, t) = uv(x,y,t), B2(x,y,t) = -ux(x,y,t),

E(x, y,t) = -u,(x, y,t) (7.9)

with

Am = uxx + Uyv = P2u„ in air,

div(A^grad u) = au, in metal, (7.10)

where

[K u Kh\ lK 22 -K'n
K'=\k' K'Y K' K

\ 21 A22/ \~^12 ^11

so that K is still symmetric and positive definite. If the incident field is generated by u°,

then the interface conditions (7.7) yield

u~=u + +u°, (ATgradw) • n = (gradw)+ ■ n + gradw0 • n on T. (7.11)

The above simplifications yield a u satisfying (1.4)! and (1.4)3 with

f—u°, g = gradw0 • n = u°n on T. (7.12)

We assume all fields start from rest, and then we obtain (1.4)2 and have the problem

(PHP).
For fields that do not vary too rapidly with time, the parameter a is usually 0(1) while

fi2 1. Hence a natural approximation is to set jS2 = 0, in which case we no longer need

the initial conditions in 12+. We do, however, have to impose a growth condition as

|x| -» oo. We require that the total fields remain bounded at infinity. There is a technical

difficulty here. If we require that the incident field generator u° stay bounded at infinity

and be defined everywhere, it would have to be a constant, since Aw0 = 0. Then (PEP) is

trivial. To obtain a meaningful problem, we give up the requirement that u0 be every-

where defined and bounded. We have in mind the case where E° and B° are generated by

wires parallel to the cylinder and carrying current. For such a wire at x° e £2+ carrying

current /(/), the corresponding u0 in the (3 = 0 limit is

u°(x,t) = (l/277)/(?)log|jc - x0|. (7.13)

If we use such a u°, we observe that to keep the total electric field bounded at infinity we

must allow the scattered field generator u to grow logarithmically at infinity to com-

pensate for (7.12). This is the origin of (1.3)4.
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If we assume u° is defined and satisfies Au° = 0 everywhere except at a finite number

of points jc0, then in particular we will have Au0 = 0 in 12"; hence

which is (1.5).

J gds = J u°nds = 0,
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