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Abstract. We consider the problem of scattering of a longitudinal or a transverse plane

elastic wave by a general ellipsoidal cavity in the low-frequency region. Explicit closed-form

solutions for the zeroth- and first-order approximations are provided in terms of the

physical and geometric characteristics of the scatterer, as well as the direction cosines of

the incidence and observation points. This was made possible with the introduction of an

analytical technique based on the Papkovich representations and their interdependence.

The leading low-frequency term for the normalized spherical scattering amplitudes and

the scattering cross section are also given explicitly. Degenerate ellipsoids corresponding

to the prolate and oblate spheroids, the sphere, the needle, and the disc are considered as

special cases.

1. Introduction. In [7] we gave a systematic analysis of the elastic scattering problem at

low frequencies. We studied the four basic problems corresponding to either a longitudinal

or a transverse incident wave which is scattered by a rigid body or a cavity consisting of a

smooth, convex, and bounded three-dimensional set. In [8] we applied our method to the

triaxial rigid ellipsoid, which is the most general second-degree geometric figure where the

method of separation of variables and eigenfunction expansion can be applied. It turned

out that the lack of rotational symmetry for the scatterer makes the problem very difficult

to solve in closed analytical form, and a new calculational technique had to be introduced

in order to find the first two low-frequency approximations in terms of ellipsoidal

harmonics, Lame functions, and standard elliptic integrals. The present work refers to the

application of our general method to a triaxial cavity, thus completing our program of

studying the theory and applications of fundamental elastic scattering problems. The

technique used in [8] to evaluate the low-frequency coefficients for the rigid ellipsoid
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cannot be applied to the ellipsoidal cavity since the surface traction operator on the

surface of the cavity complicates the boundary conditions. As a result, a more involved

technique had to be elaborated in order to be able to find closed-form solutions in finite

steps. These difficulties are expected since the surface traction operator involves not only

the unit normal but also surface differential expressions which must be expressed in

ellipsoidal curvilinear coordinates.

Ying and Truell [16] were the first to study the elastic scattering problem for longitudi-

nal incidence on a sphere. The scattering problem for transverse incidence on a spherical

cavity was investigated by Einspruch, Witterholt and Truell [9], Lawrence [12], using an

analytical method developed by Barratt and Collins [1], was able to evaluate the leading

low-frequency term for the scattering cross section of an ellipsoid. Analytical work on the

theory of scattering by ellipsoidal bodies can be found in [2-4,6]. The basic scattering

theorems are given by Twersky in [14],

In Sec. 2 we formulate the two problems we discuss in this paper: the scattering of a

longitudinal or a transverse wave by an ellipsoidal cavity. For completeness, we include all

the necessary formulae, far-field expressions, integral representations, fundamental solu-

tions, scattering amplitudes, and scattering cross sections. The wave problem is reduced to

a sequence of elliptic problems which can be solved iteratively. The solution of these

problems provides the corresponding low-frequency approximations of an appropriate

expansion in powers of the wave number. By introducing Papkovich potentials, the

solutions of all these elliptic problems are reduced to evaluation of the coefficients of

appropriate orthogonal expansions of harmonic functions. To be able to evaluate these

coefficients it is necessary to use the dependence of the vector and scalar Papkovich

potentials to produce independent systems of linear equations with finite numbers of

equations and unknowns. All the ellipsoidal harmonics, Lame functions, and elliptic

integrals used in this work are given in the Appendix (Sec. 8).

In Sec. 3 we apply our technique to solve the zeroth-order coefficient problem, while

Sec. 4 contains the much more elaborate first-order coefficient of the low-frequency

expansion. The final forms of these low-frequency approximations are expressed in a

compact way that includes higher-order tensors, which describe the geometric and

physical characteristics of the scatterer, and specific contractions with the directions of

incidence, polarization, and observation.

The normalized spherical scattering amplitudes and the scattering cross section are

evaluated in Sec. 5. In Sec. 6 we discuss the special cases that correspond to degenerate

ellipsoids, such as the sphere, the prolate and the oblate spheroid, the needle and the disc.

The final Sec. 7 includes a discussion of the physical implications of the results and a

comparison with the case of the rigid ellipsoid.

2. Formulation of the problem. Let us assume that the space R3 is filled with an isotropic

elastic medium characterized by the Lame constants A, /i, and the normalized mass

density p = 1. The infinite medium includes the triaxial ellipsoidal cavity

1 x2
L -7 < 1, 0<a3<a,<a1<+oo, (1)
; = i «,

which represents the scatterer.
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Denote by V the complement of the ellipsoidal cavity and by S its boundary.

The time dependence of the problem is carried through the harmonic factor exp{-/wr},

which, in the equation for the corresponding spatial oscillation, replaces the explicit time

dependence t by the angular frequency «.

The elastic medium in V is excited by a plane wave O(r), which propagates along the

vector k. This incident wave 3>(r) could be either a plane longitudinal wave (P-wave)

fc'(r) = ke'Vkr, | k | = 1, (2)

or a plane transverse wave (S-wave)

$s(r) = be'*'k'r, | b | = 1, (3)

where k = (iv i2, i3), b = (bv b2, fe3), and k • b = 0. The wave numbers k and ks, which

describe the spatial density of the longitudinal and transverse oscillations, respectively, are

connected with the corresponding wavelengths X and Xs by

k = — k = — (4)" A ' s X ' ,j
P A

The ratio of the angular frequency to the corresponding wave number provides the phase

velocities cp and cs for the P and S waves, respectively, as

c2p = f2=X + 2/i, Cla = £ = n. (5)
kP ~ K ~

As a result of the interaction between the incident wave <J> and the boundary S of the

discontinuity in the medium, a scattered wave u(r) appears in V which satisfies the

equation of steady-state elastic oscillations

/xAu + (A + jii)vV • u + w2u = 0, in V. (6)

Due to the linearity of our scattering problem the same equation (6) also describes the

total (incident) and scattered field

*(r) = <D(r) + u(r), r e V. (7)

The total field ^ should satisfy the boundary condition

r*(r) = 0, r G 5, (8)

where T is the surface traction operator given by

T = 2jun • V + Andiv + /xn X rot, (9)

and ft is the outward unit normal on S.

By Poisson's decomposition [15]

u(r) = u^r) + u5(r), r e V, (10)

where

V X = 0, V ■ it5 = 0, (11)

while the longitudinal part u'' and the transverse part uv satisfy the Kupradze radiation

conditions [11]

lim u'(r) = 0, lim [^'(r) - /Arjn'(r)l r = 0, (12)
r~* + oo r—*+oo

lim uf(r) = 0, lim [3,uJ(r) - /Arju'(r)] r = 0, (13)
r—> +oo r-* + oo
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where the convergence is uniform over all possible directions and 3r represents radial

differentiation.

In [7] we indicated that the total field ^ which satisfies the prescribed scattering

problem has the following integral representation:

*(r) = <£(r) + J *(r') • 7rf (r, r') ^(r'), r e V. (14)

The dyadic f(r, r') describes the fundamental solution for equation (6), i.e., f satisfies the

dyadic equation

[(c2Ar- + u2)l +(cj - c2)vr- ® Vr-] • r(r,r') = -4wS(r - r')/, (15)

where S is the point-evaluation (Dirac) measure at r and / =x1®x1 + x2®x2 + \3®

x3 is the identity dyadic. The fundamental dyadic T has the following analytic expression:

k1 p'k>lr_r'l 1 / pikP\r~r'\ — piks\"-t'\ \

f (r,T') ~ t ®V   , «, (16)
co2 | r — r' | w2 \ | r — r' i

which can be separated into its P and S parts as

f(r,r') = f,'(r,r') + F(i\r'), (17)

where

P>(r,r')
co r — r

k2(r - r') ®(r - r')

+ (1 - ^Ir-r-Df/-3(r-r'
2

r - r
(IB)

and

f'(r,r') = -
eiks\r-T' |

w2|r - r'

£2(r-r')®(r-r')

+ (l - iks\r - r'|
- ^(r —rQ®(r-rQ

I /I2
r — r

£2 piks\ r-r'l

+ %7 -/• (19)
w r — r

In what follows the double contraction is defined as

(a ® b): (c ® d) = (a • d)(b • c).

It is also proved in [7] that the normalized spherical scattering amplitudes for the case of a

cavity are given by

gf(?,k) = k2pHp:
2IX „ „

-I + , ~ r ® f (20)X 4- 2/a \ + 2jit

g9(r,k) = k] [2HS: r ® 0 +(hs ■ <p)], (21)

gv{t,k) = kl[2H,:t ® q>-(h, - 6)], (22)
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where

6P = 'tis *(r'} ® h'e~ikpt r'ds(r')> (23)

Hs = ^/s *(r') ® h'e"'^ r'<Mr'), (24)

h, = ^:/^(r')xn'e-'Mr^(r'), (25)

the vector h5 being the vector invariant of the dyadic Hs.

Perhaps the most important quantity in the classical theory of scattering is the

scattering cross section. The scattering cross section is defined as the ratio of the time

average rate at which energy is scattered by the body to the corresponding time average

rate at which the energy of the incident wave crosses a unit area normal to the direction of

propagation. It is obvious from the definition that the scattering cross section is a global

measure of the disturbance to the incident wave caused by the existence of the scatterer.

If we denote by ap the scattering cross section corresponding to P-incidence and by a1

the one corresponding to S-incidence, then, as shown in [7], we obtain

°p = kpf [k;3\g?f + k;3(\gf\2+ \g;f)\d0(t), (26)

°' = kJ [k~P3\gSr\2 + k;3(\gse\2 + \gsv\2)]du(i), (27)

where the superscripts p and s on the g 's indicate whether the scattering amplitudes come

from P- or from S-incidence.

The above scattering problem was studied in [7] in the low-frequency region, where the

wavelength of the incident plane oscillation is much larger than the characteristic

dimension of the scatterer, which is the radius of the smallest sphere that circumscribes the

scattering region.

In this case a substitution of the low-frequency expansions

*(«■) = £ "~r~$«('■). r G V, (28)
n = 0

•M- £ n-^(k-r)", rev, (29)
«=o

and

Hr.O-il (30)
r «=o "■
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where
k = ks

h.
ks cp V A + 2/x

T = ^ = ^= I-J— )' (31)

I k, when $ =

ir" = b _ v n = 0,1,2,..., (32)
—, when $ = <E>\ v '

I t
and

Y„(r,r') =
M""1r - r " + 2 - 1 \ r i T" + 2 ~ 1 (r - r') ® (r - r')

1 +^-—r- /+(«-!)
n + 2 I n + 2 ir_r'|2

(33)

n = 0.1,2,...,

into all the fundamental equations of our scattering problem reduces it to a sequence of

potential problems which can be solved iteratively. In fact, it is proved in [7] that the

coefficient of the expansion (28) is given by

*„(r) = P„(r) + U„(r), (34)

where for every n = 0,1,2,...,

P„(r) = ,r»(k ■ r)" + (") / %(r') ■ Tt,yn_p{r, r') ds(r') (35)
— p = 0

and U„(r) satisfies the following exterior boundary value problem of elastostatics:

r2AU„(r) +(1 - t2)w ■ U„(r) = 0, r e V, (36)

7U„(r) = -TPjr), r e S, (37)

U„(r) = o( —), r -» +oc. (38)

The corresponding low-frequency expansions for the normalized spherical scattering

amplitudes are [7]:

i 00 / • / \ " + 2 n

n=1 p = 0

X [(1 - 2T2)/ + 2r2f ® f]: f $„_p(r') ® n'(r • r')Pds(r'), (39)
Js

c u-lv ('•^)"+2 f mLI^p+1
) 4wt £ n1 £ (p) \ T

n= 1 p = 0

X J [2r ® 0: 0„_p(r') ® n' + q> • 0„_p(r') X n'](r • r')pds(r'), (40)

n=l p = 0

X J [2r ® q>: 0„_p(r') ® n' - 0 • $„ _p(r') X n'](r • r')Pds(r'). (41)
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Substituting (39)-(41) into (26) and (27), corresponding low-frequency expansions for the

scattering cross sections are obtained.

In order to solve the exterior boundary value problem (36)—(38) we use the Papkovich

representation [13] in terms of harmonic functions given by

U„(r) = A"(r) + V [r ■ A"(r) + 5"(r)], (42)

where

AA"(r) = 0, (43)

AB"(r) = 0. (44)

Although the scalar potential B" is not independent of the vector potential A" [a fact that

is assured from the homogeneity of Eq. (36)], it is very important to introduce the

fictitious body force, which is represented by B", in order to use an improved version of

the technique introduced in [8] and be able to evaluate the coefficients. In the case of a

rigid ellipsoid the boundary condition separates into "Cartesian" and "ellipsoidal" parts,

while for a cavity, in addition to these, we must also deal with the "ellipsoidal-derivative"

part, which comes from the action of the surface traction operator on the displacement

field.

The ellipsoidal coordinates (p, ja, v) are related to the Cartesian coordinates (xv x2, x3)

by

x, =
h2h2

where

p2 - h2^2-h2jh2- v2

h\h 3

<Jp2 - h\]jh2 - n2 \jh\ - v2

*3= Ml '

h\ = "l - a], h\ = al - a], h] = a\ - a\

are the squares of the main semifocal distances and

0 < v2 < h\ < ju.2 < h\ < p2 < + co.

The region V corresponds to p > al while the surface S is described by p = av

The appropriate eigenfunction expansions for the Papkovich potentials A" and B"

which, through (42), produce the field U„ that satisfies Equation (36) and the asymptotic

condition (38) are given by

oo In +1

A'(r)=E E c^F™(p,/!,»-), (45)
n = 0 m — \

OO 2/7 + 1

B'(r) = L L ?(p,p,v), (46)
n=0 m=1
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where F"' are ellipsoidal harmonics of the second kind (see the Appendix). Substituting

(45) and (46) into (42), we obtain

oo 2n +1

U/(r) = -(r2+ 1) £ E c'n<mFnm(p,p,j>)
n = 0 m — 1

1 oo 2n +1

+ 2(t2~1)I £ (f^ + j8„''")vF,-(plP,»). (47)
« = 0 m = 0

On the surface p = of the scatterer the action of the surface stress operator T on U,

should be equal to the action of T on -P,, where P, is given by (35). We observe that P, is

of degree / in the Cartesian components xx, x2, x3 of r. Hence, since T includes one

differentiation in each term, TP, is of degree / - 1 in x, and the same is true for TV,.

Therefore, U, should be of degree / in xt, or equivalently U, should include ellipsoidal

harmonics of degree not greater than /. This shows the completeness of the finite

expansion [8]

U,(r) = \{(t2 + 1) E E c^(2« + l)C(p)E:(p,M,r)
I n=0 m = l

I 2n + l

+ (t2-1)L E {t ■ c'r)(2n + l)/;'(p)vE,7(p,M,")
n = 0 m= 1

/+1 2« +1

+ (t2-i)E E r(2« + i)/;(p)vE;'(p,F,,)
n=0 m=1

-hr2- 1)-== P  ( E E (r ' c^'m)(2« + 1)(E™(p))~2E™(p, p., v)
VP M VP ^ I n=0 m= 1

+ E E /3n/'m(2« + l)(£r(p))"2E,T(p,M,")l (48)
n = 0 m = 1 /

where

<Jp2 - ju.2 ]/p2 - v2

h» = rr-A-n ?" (49)/p- - /if |/p- - /if
is the square root of the ellipsoidal metric coefficient that corresponds to the variable p,

p-fE ; 'L (50)"p ,_i p - ai + af

is the unit curvilinear vector relative to the variable p, and x,, / = 1,2, 3, are the Cartesian

base vectors.

3. The zeroth-order field. In order to evaluate the zeroth-order field 4>0 we only need to

determine the coefficients c°,m and m in the expansion (47) in such a way that

T% = r(ir° + u0) = ru0 = 0 (51)
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on the surface p = ax of the ellipsoid. It was shown in [8] that the field U0 has the

following expansion in terms of surface ellipsoidal harmonics:

i / 2 i i 3 o0,m

U0(p,n,v) = -(t2 - 1) T2 — co°a/o(p) + 3hxh2h3 £ -j— Am(p)x„
I ^ m = l m

1 . £ IcSiKEflp) , vr Llllc1 >1
2 1)R\A +„?,i MA E™(p) j 1 ( )J'

(52)

where

Re = (p2 ~ H2)~1/2(p2 ~ v2y1/2p- (53)

The first bracket in (52) is the Cartesian part and the second bracket is the ellipsoidal

part of U0. Since

a,a, 3 , ,

"^vU°= n—tn=^vPv<>- (54)
]Ja( - p \)a{ - v~

T2

and

v ' u°= ~^r=Tn==ft>' c°°'1' <55>
]ja( - p. ]Ja{ - V

V X U0= ===r-===rp X Co0'1, (56)
,2_ „2/ai2 ~ P2 {aJ

the boundary condition (51) provides the following relation on the surface of the ellipsoid:

-Cn' -

2 I ^3/ 2 3m = 1 Aw \ ala2a3

/a2 - fx2 Jal - r2 2 V 9P /\ ° m = 1\ *iM3

C0mhmal 3/?!°'"^!2jta2q3 V

ja2 - p2 (a2^2 2 m^\hihih^

At2

at
\E™(p)E?(v)

(p • Co0'1) - ~F=-zr 1 , , p X(p X Co0'1) = 0.
*>2Jaf - p.2 - v2 ]/a2 - p.2 {af

(57)

The above form of the boundary condition involves three types of terms. Terms, such as

those in the first bracket, that do not contain the characteristic ellipsoidal vector R'

constitute the Cartesian part of the boundary relation. The ellipsoid part is constituted by

all the terms that involve the vector R'. Finally, all the terms that contain the normal

derivative 3pRe form the ellipsoidal-derivative part. Now looking at the boundary condi-

tion as consisting of the three parts above and using the dependence of the scalar on the
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vector Papkovich potential, we establish the relation between the /? and the c coefficients

by vanishing the ellipsoidal-derivative part independently. This will give us the relations

A?'1 = 0, |

no,m o,! m — \ 2 3 |
Pl 3hlh2h3C°""

Note that these expressions are the same as the corresponding relations for the rigid

ellipsoid [8] [relations (64)] since the vanishing factor that reduces to (58) is connected to

the ellipsoidal part in the case of a rigid scatterer, while for the cavity it is connected to

the ellipsoidal-derivative part. The additional difficulty that appears in our case of a cavity

is due to the fact that, after establishing the connection between the /?'s and the c's, we are

still left with two types of terms and with no more freedom to vanish terms independently.

In fact, if we substitute (58) into (57) we obtain

/*«oo'1 + (^2 + /x)p(p • Cq'1 )

+ 2ji(t2 - l)flifl2fl3 y— E 2~ C0nt = 0. (59)

]fa{ - IU~ ̂Cty - V m = l Um

In view of the relation

ala1a-i ^ x

- ri 7 l—2 T ^ ~f*«' (60)
\ja[ - H y'dy V m = 1 am

the boundary condition (59) assumes the form

/xc^'1 + [(At2 + jx) + 2^(t2 - 1)] p(p • Cq*^) = 0. (61)

and since r2 = [i/(\ + 2ju), ju. > 0, (61) reduces to

Co0'1 = 0. (62)

By virtue of (58) and (62), relation (52) implies

U0(p,jii, p) = 0 (63)

and

$0(r) = it0. (64)

Therefore, the zeroth-order low-frequency approximation for a longitudinal wave scattered

by an ellipsoidal cavity is

$o'(r) = k, (65)

while for a transverse wave scattered by an ellipsoidal cavity it is

$o(r) = b (66)

4. The first-order field. The first-order field has the form

3>i(r) = ir^k ■ r) + Uj(r), (67)
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where the general polarization vector tt1 is equal to k for /'-incidence and to r 'b for

S-incidence. The field should satisfy the boundary condition

^i(r) = 0, p = alf (68)

and the asymptotic relation

O^r) = TT1(k • r) + r -* + oo. (69)

Condition (69) is automatically satisfied since we assumed that U^r) has the particular

expansion given by (48) for / = 1. The finite expansion (48) involves Cartesian as well as

ellipsoidal expressions for the observation variables. Therefore, our objective is to express

all the observation variables is terms of surface ellipsoidal harmonics and then use the

orthogonality of these harmonics to evaluate the coefficients.

In fact, we have

_1 3

• r) = h h h £ imhmE^(p,n,v), (70)
1 2 3 m = i

and using the formulae in the Appendix, Ux(r) assumes the form

Uj(r) = Uf3" + Rei7illip(r), (71)

where

T2 - 1f ycart     
U1 T Ii±|cJ'1/01(p) + 3hth2h3 £ P\-%k(p)y-

T 1 k=1 hk

3

+ I
n = 1

34±7ci'"/i"(p) + 31 ^ctf/ftp)**
T - 1 k = \ nk

hn (A - fl2)(A ~ aj){A - aj) .

,, , h (A' - a2)( A' - a\)(A! - a])
Ef(p,/i,f)

+ 5^1/!2/!3(/?^3/23(p)^ + P12aI1(p)^1)e\(p,ii.,v)
h2 '2 2vr//i3

+ 5/!1/j2/!3( P23ll{p)y^ + $-5/25(p)|^ )ei2(p,/x,c)

+ 5/i1/i2/!3| /?21,4/24(p)|| + /?2u/25(p)^)E13(p,/t,?')}, (72)
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the ellipsoidal vector Re is given by (53), and

t/idlip(r) = -IV1 hxh2h3 E i c\k + A)'1
k = l nk

3

E
n = 1

h 1
 ^—c1'1 +  - 
hxh2h, 1 (£»(p))

5)8] 4

E"(p, p, p)

-(ci^^A' - a2)
£i(p) *M(A-A')

-clf/j^A' - a|) + 3(A' - #3)j

E22(p)E22(p)

5^2'2

+

£22(p) hxh2h3(A - A')

c-i22/!2(A - a2) + cl33/i3(A - a2)j

5#'3 , 3 ' „1,2

+

(£23(p))- \ h^EKp)) h2(E?(p))

5# 4 , ; ru ruc13 . C11

(£24(p))2 A2\A1(£11(p))2 h,{El{p))2

5/3-5?1'5 , 3 ^

+

(£|(p))2 /,i\/.3(£13(p))2 M^Cp))

lE^P,/*,")

E2(p,p,p)

E2(p, p. «*) / • (73)

The surface traction operator T has the following expression in ellipsoidal coordinates:

T = 2iu ,  = 3 =r tt- + Ap div + up X rot. (74)" 9P

Applying T, as given by (74), in the expression

$j(r) = "n'(k • r) + UJ^r) + ReUfUp(r), (75)

and using the formulae

divU^r) = T2divA'(r), (76)

rotU^r) = rot AJ(r), (77)
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which can be proved from expression (42) for n = 1, we obtain the boundary condition in

the form

|p ■ k) + Xp(ir1 • k) + juk(p • tt1 )]

4- 2ju-

/flj2 - ju2 \jal - v2

+ R'( + At2pV • A1 + fip x(v X A1) = 0, (78)

where everything is expressed at p = av

The last two terms in (78) can be written as a sum of a Cartesian plus an ellipsoidal part

as follows:

Ar2pv ■ A1 +^ip X(v X A1)

kV1 + 3 £ ^
M I , , - ^ ci-"

]jal - /x2 Jaf - v2 = i

I m

+ 3hlh2h3 £ ^-[At2cJ„7p + m(p ■ ci'm)xm — /*(p '
1=1 m

3

+ Re| 2}i(t2 - l)(p • cj'1) + 6|i(t2 - 1) E (p"Cl' )-Er(ii)E?(v)
m = 1

(79)

Vanishing independently the ellipsoidal-derivative term

Q 2 I 3
<r)

in (78) we obtain

^iemp(r)lP=ai = 0, (80)

which finally provides the following relations between the [i and the c constants:

Po'1 = -*iM3 I T-cli*, (81)
*-i

S'-jw;4' t = <82>

^ = Sh^h^K - A') 1^(A> ~ ai^ ~ C^MA' - flj) + *i5Ma' - a32)]>

(83)
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P22 = -5 hih^A _ A') [cn1/!i(A - ai) - cnMA - a I) + c\fh3(A - a2)].

*> I ~2 ~2

lit* = " 5 h3 h2u >h

5h2\h3 11 hx

""--5+ <871

The boundary condition (78), in view of (79) and (80), assumes the form

/nir^p • k) + Aj^u1 • k) + juk(p • it1)

+

a2 - ju,2 /a2 - „2

3 cl.

c','1 + 3 E -±-E?{v)E?{v)
m = 1 a">

3 j m

+ 3h1h2h3 £ + m(p ' cl'"')xm - /x(p ■ xjc1-
, h.

m = 1

• 2ft , —(i-ur(r)

+ R£ {2jn

m-l a">

(84)

-<tf + Tr<tf|. (85)

■Jaf - TU ~ >' (^t,'""'r>) + 2-<T' "

+ 6/x(r2 - 1) £ (p"Cl' )£1"(M)£r(")l = 0. (88)

where everything is evaluated at p = ax.

In the second expression in braces in (88), which represents the ellipsoidal part

Rc{ • • • }, we perform the following operations:

(i) we express the last term inside the braces in terms of surface ellipsoidal harmonics;

(ii) we operate with 3/dp on £^emp(r) as given by (73);

(iii) we substitute the /?'s in terms of the c's via formulae (81) to (87);

(iv) we evaluate all the expressions at p = a,.

Then, after long and tedious calculations and the use of expressions (50), (53), and

(A.5)-(A.13) of the appendix, the relation

AA, _ A-Efo)3(>) - AC,'(,)£,'(,) _ (89)
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as well as many other well-known relations connecting the various ellipsoidal characteris-

tics we obtain for the ellipsoidal part of (88):

,¥My3L2_luf A"
m= 1 hrnam

«1-}=2^r7;r2 >2-l)pl (90)

which is actually a Cartesian-type term and can be incorporated with the first expression

in braces in Equation (88).

Using (90), the expression

ei...F=^== l ■().)£,"(»)». pi)hih-,h-, [Zi IT /T2 IT ,
1 2 3 yflj — |U 1/^1 — »i = l

for the unit outward normal on S, and relations (81)—(87), the boundary condition can be

written as

3

ci-1 +
3

]JaJ - n2 \Ja2 - v2 \Ja2 - ju2 \ja\ - v2 m = i \ a"<

+ i mTT1 j + \ (ir1 • k)>
jihlh2hi a,

2nala2a3hlh2h3(T2 — 1) I 3 A-k

AA'

3 ,k

1 k
i 2 I

\ A: = 1 " k®k I

+ 3h1h2h3 £ - 8kA'k) + ^2c}^xmj

I J2 w
"m "m ^- = 1 '

2(t2 - 1)(A - a2)(A - a|)(A - a32) /ijt

«m(A - a2)

I v / V' 1 / V 3 / 'lm^m \ T\
+ A - A' 7T TV! aifl2a3A/2

al\ X-T I u

A Ik=1 A - a2)

2(t2 ~ l)(Ar - a2)(A' - a2)(A' - a]) hjim

A A' flm(A'-a2)
ala2a3A'I2

a1 \ 3 1,/c ^

A /*-! hk(A' -a2)j
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1
+ | ^ - ala2a3/2

a.
/?3cn + |x3}£i1(/i)£i1(f)

3M(T " 1) ^ // 1 r3

+ ,, , ;-==f ~ ~T ~ <W3*2
/a2 - M2/a2 - r2 M W ,

1 .Al al ,, a?
+ ̂ - W3/|j|^ + *3J*i2(m)*i2(»0

+ M f v -aJ^
aA\al 1 2 3 2 A V"

+ f^2~ + ^7cli32jx2|(/J-)£-3(^) = 0. (92)

In the form (92) we can use the orthogonality of the surface ellipsoidal harmonics

Eq(h)Eq(v) and k = 1,2,3, immediately and obtain the coefficient

cj'1 = 0, (93)

as well as a decoupled system of nine equations for the determination of the nine

unknown coefficients c\k, k, n = 1,2,3. In fact, by taking the inner product of the

coefficient of E{"([i)E{"(v) by xm, m = 1,2,3, we obtain a 3x3 system for the

determination of c\™, m = 1,2,3. The coefficients c}f and c}^1 are determined by the

2x2 system obtained from the x2-component of the coefficient of El([i)El(v) and the

^-component of the coefficient of £12(ju)£12(j'). Similarly, we obtain c}j3 and cjj1 by

taking the inner product of x3 with the coefficient of Ej(fi)El(v) and of x, with the

coefficient of E^(fi)E^(v). Finally, the 2x2 system that determines c\% and c}32 is

obtained by taking the x2-component of the coefficient of Ef(n)El(v) and the ^-compo-

nent of the coefficient of E^(fi)E^(v). After we find and solve explicitly the above four

systems we obtain the following expressions for the c's:

A.k 1 _1
c it — tt;—;—ik ~ r>;, u u " w Jk

and

where

Dhlh1h

Ck" = ^VlT1

k: Jk, A- = 1,2,3, (94)

1* 1LLL km'3hlh2h
k: Wkm, k * n, (95)

3

3k(p)= E (-1) +m+ Dmk(p) 2xm ® xm + -I ,
m = l

X -

B /' (96)

Jk=jk(a i)> k = 1,2,3,
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D(P) = det[0flt(p)],

D = D{ay),

3\Ilk(p)-2(X+jx)Mnk(p) 3 8nk(2^(p) i

X + 2/x ala2a3

= i)> ",* = 1,2,3,

A(A ~ ai2)(A - fl22)(A ~ a32)

(A-fl2)(A-flJ) 2(P)A - A'

_ A'(A' - af)(A' - al)(A' - a32)

(A' - a2)(A' - a2k)

Mnk = Mnk(a i), «,* = 1,2,3,

/22(p)

(97)

(98)

Dmk(p) = the minor determinant of D(p)\

corresponding to the m/c-entry, > (99)

Dmk = Dmk(a J, m,k = 1,2,3, ]

(100)

= 7TTT(ft* 0 *« + *» ® **>' v
«*»(p) } (101)

Wkn=Wkn(aJ, k,n = 1,2,3, k n,

= +(t2_ 1)(a*+ fl-)72+"(p) -t2(7"(p) + 7"(p))' ^ (102)

k, n = 1,2,3, k*n.

In terms of the given values of the c's, relations (81)—(87) for the fi 's yield

^•1 = -^ir1®k: £ yJk, (103)
k = 1 ^

jB}-* = 0, * = 1,2,3, (104)
OA 3

= <<r>h2h2h2( A a a *it1 ® k: I (-1)*+1A*(A' - (105)5Dh{h\h\(h - A) A = 1

 1 A / 3

006)

ftI3 " ^171711,1 ® k: ("f + (1»7)
j/2i/22^3

#'4 = ® k: («i + *3)^3^13, (108)

^ = aiLT' ® k: (fl2 + aDh2hlW23. (109)
5h{h\h\



726 GEORGE DASSIOS AND KIRIAKIE KIRIAKI

Finally, we substitute (93)—(95) and (103)—(109) into

0,(r) = n'(k • r) + Ui'art(r) + ReU[mp(r) (110)

and perform all the necessary calculations to conclude the first-order field

^(r) = it1 ® k • r + it1 ® k: "^(p) • r

+ H1 ® k: [^(p) + 4£?2(p): r ® r] ® R'\ (HI)

where

R = (p2 - M2)"1/2(p2 - viy1/2l £ 2 ■ r. (112)
"P ,= i P~ ~ a{ + af

4<2i(p) = E

n = 1

L ((t'2+ 1)/1"(p) + (t"2 ]) Aa(p))^„ ® x,

k = \
k =£ n

3t2 I"(p) ~ . , t2 - 1 ^ M„k(p) ~ .

D /z„ " ® x" + Z) ^ hk k "
n k = I K

T2
— [(a2 + ai)/23(p)^i2 ®(xj ® x2 + x2 ® x,)

2

+ (af + a2)/24(p)H/r13 ®(x, ® x3 + x3 ® xj

+ (a2 + fi(|)/25(p) ^23 ®(X2®X3 + X3®X2)], (113)

(A - ai2)(A - a;)(A - a32) lp. (t2 - l)(p2 - a1,) 3 J_

2D(A - A') ^ hk A-a

(A'- a2)(A'- a22)(A'- a32) 1

(£](p))2

A. (H4)
A'(£22(P))"

and

(A - a2)(A - a22)(A - a2) 1V) (p) = ill 1^p2 y y _L
Ql{p) 2D( A - A') ^ ^ ^

(A-a2)(A-a2) (£2Hp))2

(A' - a2)(A' - a\)(A.' - a]) 1

(A' - a2)(A' - a;,) (£2(p))

1

Jk ® *„ ® X„

(r2 - l)(p2 - a2)

 1

(£25(p))2

® Xj ® x2H 7 Wl3 ® x, ® x3

(£23(p))" " " (Ei(p))

Wt-, ® x, ® x. (115)
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As indicated by the left superscript, 4Q„(p), n — 1.2, is a tetradic.

Using the appropriate polarization, we obtain the exact form of the first-order low-

frequency field for an ellipsoidal cavity, which for P-incidence takes the form

<E>f(r) = k0k-r + k®k: 4Qi(p) • r

+ k ® k: [P(p) +4Q2(p): r 0 r] 0 Rf, (116)

while for S incidence it is

$J(r) = —b ® k • r + — b 0 k: 4QAp) • r
T T

+ — b 0k: [-P(p) +4(?2(p): r® r] ® (H7)

5. The scattering amplitudes and the scattering cross section. The leading low-frequency

terms for the normalized spherical scattering amplitudes are obtained from (39)—(41) in

the following form:

ik3- r3
gr(r,k) = - [(1 - 2t2)I + 2t2t 0 r]: F/it0 0 r - J ^(r') 0 n'ds(r') + o{k4),

(118)

t* i\ ik 3<r K
T

it0 ■ 0 — 2r 0 0: f $!(r') 0 h'Jj(r')
J

9 ■ f ^i(r') X h'ds(r')
J c

s

+ 0(k4), (119)

c i \ ik3t V r
—ir° ■ q> — 2r 0 9: I $i(r') ® n'di(r')
T Jq47T

+ 0 • I ^(r') X n'^(r')
J c

JS

,4+ 0(k4), (120)

where
477"

K = -ya^a, (121)

is the volume of the ellipsoidal cavity.

From (118)—(120) we observe that we only need to evaluate the dyadic integral

f ^(r') 0 n'dj(r')
J c

and its vector invariant.

Using the general form (111) for where the r dependence is explicit, we conclude

that

f ^t(r') 0 n'Ji(r') = it1 0 k ■ f r' 0 p'ds(r')
Js

+ 1T1 0 k: ■0i(fli) • / r' 0 p'ds(r') + P(fll) 0 J P *  ds(r')
JS Js J a2 - IX'2 /a2 - v'2

. . r r' 0 r' 0 p' 0 p' , , ,,
4G2(fll):/   /V-% ds(r )

Js /a2 - M'2 /a2 - ?'2
(122)
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Jr 5
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Introducing a combination of ellipsoidal with spherical coordinates, we were able to

evaluate, in [8], the following integrals:

f r' ® p'ds(r') = VSI, (123)
Js

J n—~r ri f ds{r,) = 3K> ̂ 7l** ® **• <124)
/fl? - /i'2 - f'2 A = 1

From expressions (114) and (115) we see immediately that the tensors P and 4()2 vanish

at p = and therefore there is no need to evaluate the last integral in (122).

By virtue of (123) and (124) and the above observation, Equation (122) implies

47
a>[(r'j ® n'ds(r') =

JS

The vector invariant of (125) gives

^ O^r') X h'ds(r') = ^ala2a}[vl X k + g1(a1)], (126)

where

gi(flx) = it1 ® k: [h\l%Wn ® Xj X x2 + ® Xj X x3 + h\l{W23 ® x2 X x3].

(127)

Finally, we insert (125) and (126) into (118)—(120) and derive the expressions

gr(f,k) = l^j-aia2a^{(\ - 2t2)[it1 • k + it1 ® k: ^K): /]

-tr° • f + 2t2[h1 ® k + n1 ® k: 4(?i(a,)]: f ® f} + 0(k4), (128)

ik3
= -3-^1 a2a^T^ ■ (ir1 X k + g^aj)

-IT0 • 6 + 2t[it1 ® k + IT1 ® k: AQi{a\)\: 0 ® f} + 0(k4), (129)

ik3
g<p(f/k) = -(ir1 X k + g^aj)

-it0 • <p + 2t[tt1 ® k + it1 ® k: 401(a1)]: q> ® r} + 0(k4). (130)

When the incident wave is a longitudinal wave we substitute it0 = tt1 = k into

(128)-(130), while for an incident transverse wave we substitute it0 = tit1 = b.

The scattering cross section for P-incidence is given by (26)

r'k4 I 5^ —) F/ +(28r5 - 40t3 + 15r - 8)
60 TT I J2

f $j(rO • n'^(r')
Jc-

10

z

f Q^r') Xh'ds(r') + 4(t5 + 4) f 0,(r') ® h'ds(r')
Jo J c

+ 0(k6).

(131)
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The integrals that appear in (131) assume the values

/ <Mr') • fi'^(r') Vs2\"nl • k + it1 ® k: 7|2, (132)

where

2 1^3 M 3t2 3 rn

+ CM)
n=l k=I K n=1 w

f 01(r') X h'ds(r')
y c

2

= F/Iit1 X k + g^flj)!2, (134)

I ^(r') ® n'A(r')
J c

= F/ll-n1 <8 k + it1 ® k: AQx{ax) | . (135)

Consequently, the scattering cross section for P-incidence is given by

V2k4

60 77
5t(t3 + 2) — 10T3|g1(a1) | + t3(28t5 — 40r3 + 15t — 8)|1 + k ® k: J \

~,2

+ 4t3(t5 + 4)||k ® k + k ® k: 4£?1(a1) ||2 + 0{k6) (136)

while the scattering cross section for S-incidence is given by

V2k4
5t( t3 + 2) +(28t5- 40t3+ 15t - 8)|b 9 k: J |2 - 10r|b X k + rg^aJI2

6077

+ 4T(T5 + 4)||b®k + b®k:4ei(a1)||2 + 0(k6). (137)

6. Special shapes

A. Spheroids. A prolate spheroid is obtained whenever ax > a2 = a3, while the case of

an oblate spheroid corresponds to aY < a2 = a3. The elliptic integrals can be evaluated in

closed form for spheroids:

1 i p + h-,\
- In   — , a, > a2,

/o1(p) = fr lP (138)
3i 1 _J ih3 \

— tan — , ax < a2,

AHp) = A(^(p)-tI. (139)hjV"xr' p

I2(p) = /3(p) = --U/oHp) - -T2-^ I, (140)
2hi\ p2 - h
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041)

/22(p) = /|(p) = -^

orl ->
o*>

3(P'l-h\) }

1 3n2 - 1h~
ll(P) - /<(p) = - JL /o(p) - , " 2 ' . (143)

2A3\ Mp ~ hi) I

where

/z3coshW I V^i - coshw, Oj > fl2,

/ij/sinhw " yQ2 _ a2 sinhw, a, < a2,
(144)

and (co,0, <p) are the spheroidal coordinates, which are related to the Cartesian coordi-

nates (jtj, x2, x3) by

xx = pcos#, u g [0, +oo),

x2 = \Jp2 — hi sin6coscp, 0 e [0, v

x3 = \P2 ~ hI sin#sin<p, cp e [0,277).

For p = a1 we obtain

In = — <

2

- 1
~1/2 I ax

cosh"1) 1, ax > a2,

-1/2

cos"'l — I, ax> a2,

(145)

and through (139)—(143) all the other elliptic integrals can be expressed as functions of the

ratio a1/a2, whenever p = av

Having the values of the elliptic integrals, we can substitute them in the corresponding

expressions and obtain the results for an oblate or a prolate spheroid, as the case may be.

B. Needle and disc. The needle-shaped scatterer can be approximated by a prolate

spheroid where ax » a2 = a3. In this case

^-+00. (146)
a2 {ai/a2) a2

In the case where ay « a2 = a3, the oblate spheroid takes the shape of a circular disc

and

^0 + - (I47)
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C. Sphere. The sphere is the shape that corresponds to radial symmetry and comes out

of the case where ax = a2 = a3 = a. The elliptic integrals assume the following values:

/(}1(p) = p ' (148)

A"(p) = A. « = 1,2,3, (149)
3 P

I"{p) = « = 1,2,3,4,5. (150)
5 P

We also obtain p = r, jn = c = 0, and A = A' = a2. In order to evaluate the unde-

termined forms in the various expressions it is enough to approximate the sphere, say by a

prolate spheroid, setting a1 = a(l + e), e > 0, a2 = a2 = a, and obtain the case of a

sphere in the limit as e -» 0 + .

7. Physical implications. The physical interpretation of the mathematical problem

analyzed in this work involves a plane harmonic elastic wave, which could be either a

longitudinal or a transverse wave, that propagates in the three-dimensional Euclidean

space where there exists a cavity with the shape of a general triaxial ellipsoid. The

existence of the ellipsoidal cavity, which is arbitrarily oriented with respect to the

propagation vector of the incident plane wave, disturbs the incident wave, and as a result

a much more complicated wave field is established. In fact, due to the linearity of the

problem, a secondary "scattered" wave is radiated outward from the cavity which is

superposed on the existing incident wave. On the surface of the ellipsoidal cavity the total

(incident plus scattered) field should have zero surface traction, while at large distance

from the scattering region the incident field should be prominent and the scattered field

should die out at a given rate prescribed by the radiation conditions.

The case where the scattering region is a rigid ellipsoid, a physical case which is

characterized by the vanishing of the displacement field on the surface of the ellipsoid,

was studied in [8]. It turns out that, from the analytical point of view, the cavity problem

is much harder than the rigid problem; this is due to the complexity of the boundary

condition that describes the stress on the surface of the ellipsoid.

Problems of longitudinal as well as transverse incident waves are analyzed simulta-

neously by introducing a generalized polarization vector given by Equation (32).

Since the longitudinal wave is faster than the transverse wave, two wave numbers are

involved in the problem. In our low-frequency analysis we use as parameters the wave

number k of the slower transverse wave and the ratio r of the wave number of the

longitudinal to the wave number of the transverse wave. With this choice of parameters k

should be much less than the maximum semiaxis ax of the ellipsoid, and of course

t e (0,1).

The zeroth-oraer low-frequency approximation is a constant vector which coincides

with the unit propagation vector in the case of longitudinal incidence and with the unit

polarization vector in the case of transverse incidence. This behaviour is not shared with

the rigid scatterer, where the zeroth-order approximation was dependent on the observa-

tion point [8].
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The real difficulty of the problem is focused on the evaluation of the first-order

low-frequency approximation, which demands many mathematical techniques, and it is

given by (116) for longitudinal incidence and by (117) for transverse incidence. The

first-order approximation is expressed via the second-rank tensor P and the fourth-rank

tensors 4Q1, 4Q2 given by Formulae (113)—(115). These tensors involve only the semiaxes

a1, a2, a3 (geometric characteristics), the Lame constants A, fi (physical characteristics),

and the ellipsoidal coordinate p, which determines the ellipsoidal coordinate surface that

passes through the observation point r. The dependence of the first-order approximation

on the propagation vector, the polarization vector, and the observation point is explicitly

given in (116) and (117). There are terms independent of r, terms dependent on r, and

terms dependent on r 8 r. As in the case of the rigid ellipsoid, there are a Cartesian part

and an ellipsoidal part, which is directed along the outward normal direction If and

vanishes on the surface of the ellipsoid since the tensors P and 4Q2 vanish for p = al.

Since the tensors P, 4QX, and 4Q2 are proportional to t2 — 1, it follows that the farther

apart the phase velocities of the longitudinal and transverse waves, the more prominent

the first-order approximation. On the other hand, in the limiting case, where t2 -» 1 — ,

we obtain the weakest form of the first-order approximation, which corresponds to the

case of an acoustic rigid scatterer.

The normalized spherical scattering amplitudes gr, g0, g,p are the dimensionless quanti-

ties that determine the strength of the scattered field, far away from the scattering region,

along the radial direction of r and the tangential (to a sphere) directions of 6 and <p,

respectively. Their physical significance is due to the fact that the square of their

magnitude is proportional to the energy density function; i.e., |gr(r, k)|2 specifies the

energy density that is scattered in the direction r for incidence in the direction k. The

values of gr, ge, g are given by (128)—(130). It is observed that they are all proportional

to the volume of the ellipsoid; their leading low-frequency term is purely imaginary and of

order k3. The corresponding scattering amplitudes for the rigid ellipsoid have leading

low-frequency terms of order k [8],

The scattering cross section, which determines the total energy that the ellipsoidal cavity

diverts from the incident wave and radiates in all directions, is given by Eq. (136) for

longitudinal incidence and by Eq. (137) for transverse incidence. The scattering cross

section is proportional to the square of the volume of the scattering region, and its leading

low-frequency term is of order kA. Comparing this result with the corresponding result for

the rigid ellipsoid [8], we observe that the leading low-frequency term of the scattering

cross section for the rigid case is independent of k. Consequently, in the low-frequency

approximation a rigid ellipsoid scatters much more energy than an ellipsoidal cavity.

All the analytical results given in the present work are expressed in a form suitable for

numerical calculations. In fact, they are all reduced to numerical values of given functions.

It is of interest to investigate the special cases of geometric and physical degeneracy

obtained in Sec. 6.

8. Appendix: Ellipsoidal harmonics. The interior ellipsoidal harmonics of degree n are

given by the Lame products

E Z{p,p,v) = E?(p)E?(n)E?(v) (A.l)

for m = 1,2,..., 2n + 1, where is the Lame function of the first kind.
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Similarly, the exterior ellipsoidal harmonics of degree n are given by

F„m(P> ") = FtT(p)EnmMEnm(v) (A.2)

for m = 1,2,..., 2n + 1, where Fnm are the Lame functions of the second kind. These are

related to E™(p) by the formula

FHm(p) = (2n + l)E?(p)l?(p), (A.3)

where the functions

/+ 00 /Jij
Jf— i== (A-4)- [£."(»)] V"'-lilH2-hi

express elliptic integrals.

There are 2n + 1 linearly independent ellipsoidal harmonic functions of degree n

corresponding to the 2n + 1 spherical harmonics of degree n. The Lame functions E"'(p)

correspond to the radial factor r" of the interior spherical harmonics of degree n, while

the Lame functions F„m(p) correspond to the radial factor /• ~" ' of the exterior spherical

harmonics of degree n. In this work we only use the ellipsoidal harmonics of degree 0, 1,

and 2, which are given in the sequel in their ellipsoidal as well as their Cartesian form.

Ej)(p,Ju,,) = l (A.5)

E\(p,p,v) = pfiv

= xlh2h3 (A.6)

Eftp./i.p) = \/p2 - hj^2 - hj^h] - v2

= x2hlh3 (A.7)

El(p,p,v) = Jp2 - h\ \]h\ - r - "2

= x3hlh2 (A.8)

E^p.fi,*) = (p2 - af + A)(ft2 - af + A)(?2 - a\ + A)

= (A - a2)(A - «i)(A - a32)f £ . Xk 2 + 2) (A'9)
\ A- = 1 A ak I

E22(p,n,v) = (p2 - a2 + A')(m2 - a2 + A'){i>2 - a2 + A')

= (A' - «2)(A' - «2)(A' - aA £ ~^—2 + l) (A.10)
\i-l A ak I

E\(p,n,v) = E}(p,p,f)E2(p,/x,f)

= xlx2hlh2h] (A.11)

EA2(p,H,v) = E\(p,n,p)El(p,n,v)

= x1x3hlh\h3 (A.12)

E\(p,n,v) = E2(p, /x, >>)Ei(p, /x, v)

= x2x3h\h2h3 (A.13)
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where A, A' are the two roots of the equation

E ^—2 = 0. (A.14)
, = i A - af

The exterior ellipsoidal harmonics of degree 0, 1, and 2 are given by (A.2) when

(A.3)-(A.13) are used. The Lame functions of degree 0, 1, and 2 that appear in expression

(A.4) for the elliptic integrals /"'(p) are

£<5(p) = l, (A.15)

E\(p) = /p2 - a\ + am ' m = 1.2,3, (A.16)

E\{p) = p2 ~ a\ + A, (A.17)

El(p) = p2 - a2 + A', (A.18)

£23(p) = Pl/P2 - ^3, (A.19)

Et(p) = PyP2 ~ h\, (A.20)

^I(p) = /p2 ~ ^2 V'P2 _ ^3 • (A.21)

For a detailed analysis of the ellipsoidal harmonic functions and the relative useful

properties see [2,10].

The set of functions

{ E™([x) E™(v): n = 0,1,2,...; m = 1,2,3,..., 2n + 1} (A.22)

forms a complete orthogonal set of surface harmonics on the surface of the ellipsoid

2 2 2

-4 + , 2 , + , 3 = 1, (A.23)
p2 p2-/i2 p2-^2

which coincides with the surface of the scatterer whenever p = av
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