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Abstract. Rotational-translational addition theorems for the scalar spheroidal wave

function ^\(h; r],£, (f>), with / = 1,3,4, are deduced. This permits one to represent the

mnth scalar spheroidal wave function, associated with one spheroidal coordinate system

(hq\ rjq, $q,<j>q), centered at its local origin Oq, by an addition series of spheroidal wave

functions associated with a second rotated and translated system (hr; Tjr, ̂ r,<j>r), centered

at Or. Such theorems are necessary in the rigorous analysis of radiation and scattering by

spheroids with arbitrary spacings and orientations.

1. Introduction. The formally exact eigenfunction solution to the problem of acoustic or

electromagnetic scattering of plane waves by two or more spherical or spheroidal scatterers

requires a knowledge of certain addition theorems. About a quarter of a century ago scalar

translational addition theorems for spherical wave functions were presented by Friedman

and Russek [1]; Stein [2] and Cruzan [3] later gave us the corresponding theorems for the

vector (electromagnetic) case. Moreover, Stein [2, pp. 17 and 20-21] also described

addition theorems for the case of rigid body rotations in spherical coordinates. The vector

translational theorems were successfully applied to the problem of electromagnetic scatter-

ing by two spheres by Bruning and Lo [4],

More recently, Sinha and MacPhie [5] obtained translational addition theorems for both

scalar and vector spheroidal wave functions, with the vector function M J,"] given in terms

of the scalar function ^fmn by the generating operator = V^„,„ X a, where a = x, y,

z. The alternative formulation, where a is given by the radius vector r, has resulted in the

translational addition theorems for and = k 'v X M ','7, due to Dalmas and

Deleuil [6, Sec. 2; 7], These theorems have found application in the problem of electro-

magnetic scattering of a plane wave from a pair of perfectly conducting prolate spheroids

whose major axes are in parallel alignment [6, 8, 9]. Moreover, very thin conducting

spheroids can be used to model thin-wire dipole antennas, and translational addition
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theorems have recently been used to deduce the mutual admittance of spheroidal dipole

antennas in parallel configuration [10].

In this paper we consider the more general scattering problem in which the major axis

of each spheroid is arbitrarily oriented. Such configurations serve as models in such

practical disciplines as radar scattering from complex targets, microwave heating of

complicated samples, and biomedical engineering.

Section 2 treats the quite simple problem of obtaining an addition theorem for the case

of scalar wave functions when one spheroidal coordinate system is transformed into

another by a simple rigid body rotation. The rotation is described by means of the

well-known Euler angles (a,/3, y). In Sec. 3 the rotational addition theorem of Sec. 2 is

coupled with the translational addition theorem previously obtained for scalar wave

functions to deduce the required scalar rotational-translational addition theorem in which

the mnlb scalar wave function ; r ), associated with the 17th spheroidal coordinate

system, is given by a series expansion in terms of the spheroidal scalar wave function

ty£P(hr\rr) of the rth spheroidal coordinate system. The coordinates (tj, £, <£) and nota-

tions are those given by Flammer [11], and the reader not familiar with such matters is

referred to this work. However, in the present paper h = kF, where k is the wave number

of the assumed harmonic radiation and F is the semi-interfocal distance of the spheroids.

In Section 4 it is shown that the coefficient of ^^(hr; rr) in the series expansion of

hq> rq) can represented in terms of a matrix product, each factor of which can be

identified with a step, e.g., rotation or translation, in the overall transformation. Section 5

concludes the work with a discussion of the related problem of obtaining rotational-trans-

lational theorems for the vector case.

2. Rotational addition theorem for scalar spheroidal wave functions. We consider, as

illustrated in Fig. 1, two Cartesian coordinate systems which share a common origin O.

The unprimed system (x, y, z) is, by rigid body rotation, transformable into the primed

system (x\ y', z') by means of rotations through the Euler angles a, /3, y, as described by

Edmonds [12]. Our task is the relatively simple one of transforming the scalar spheroidal

wave function ^^(h; rj, £, <j>), having coordinates whose axis of symmetry is the z-axis of

the unprimed Cartesian system (x,y,z), into an addition series expansion of spheroidal

scalar wave functions tj', £',<£')> whose symmetry axis is the z'-axis of the primed

system (x', y', z').

We begin with an integral representation [11, p. 48; 5, p. 145] of the mnth scalar

spheroidal wave function in the unprimed system, in particular, that which is of the first

kind, representable in the radial (£) direction by a series expansion of Bessel functions of

the first kind:

r,, £,<#>) = [2" f ejkrcos A°S^(h, cos 60)eJ""Posin0Q d60 d<f>0. (1)
4 777 J0 J0

In (1) A0 (see Fig. 1) is the angle measured from the vector r to the propagation vector k0

(with modulus k) of an incoming plane wave propagating toward the direction (0O,</>O).

The spheroidal angle function of the first kind S^(h, cos#0) in the integrand of (1) is

normally represented [11, pp. 16 and 22] by a series expansion of associated Legendre
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functions

00

S£>(A,COS0O)= £' d™"{h)P™ |m|(cosfl0), (2)
<7 = 0,1

where the summation is over q even if n — m is even and is over q odd if n — m is odd;

moreover, (2) is valid for both positive and negative values of m.

Substituting (2) into (1) and interchanging the order of summation and integration

yields

*V(h\r,,S,*)= £' — eJkrcos A°P™+\m((cos 60) sin90 dd0 d<j>0.

(3)

Fig. 1. The coordinate geometry of the two Cartesian systems (x, y, z) and (x\ y', z') with a common origin O

and related by the Euler angles (a,/}, y).
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But if we use the well-known integral representation [13, p. 410; 11, p. 48, Eq. 5.3.7] of the

spherical scalar wave function

P„m(cosd) jn(kr)ejm* = —^ f27T f e^rcosA°P;"(cos0o)^m*<>sin0od0od4>o, (4)
4 TTJ A) J0

then (3) reduces to
00

Z' j',+ lml-nd^(h)P;'+lJcose)j^lJkr)e^. (5)

q = 0,1

Moreover, if s = q + \m\, then (5) becomes, after suppressing the ^-dependence,
OO

= E' f-"dr\m\(h)Pr(cos0)js(kr). (6)
s= | m | ,| m \ + 1

This expression has previously been given by Dalmas and Deleuil [6, p. 1119] and differs

from that provided by Flammer [11, p. 48, Eq. 5.3.8] by the factor js~". It is noted that

the mslh spherical wave function (scalar and of the first kind) is

=js(kr)Psm( cos0)^"'*. (7)

Then (5) can be rewritten as
00

£' r-"dr^i(hy^(>-,6A). («)
s = |m|,|m| + l

In (8), both the spheroidal coordinate system (17, £, <f>) and the spherical system (r, #,<£>)

are based on the original unprimed (x, y, z) Cartesian reference frame with the z-axis as

the axis of symmetry.

If we now transform the unprimed system into the primed (x\ y', z') system by

rotations through three Euler angles (a, /?, y), then as Stein has remarked [2, Appendix I],

there is no change in the nature of the scalar radial function in (7) but the msth

unnormalized spherical harmonic can be represented in the new primed system as follows:

11 =-s

Psm(cos6)ejm* = £ ^/(a^Y^cosflV"*', (9)

with

/C/(a,j8, y) = (-1)
'Nms

1/2

e^ad^(p)eJm\ (10)

This coefficient is discussed in detail in the Appendix.

If (9) is used in (7), after which the result is substituted into (8), then with r = r' we

obtain
00 s

^>(A; !,,{,*)= Z' js~"d?n\m\{h) Z RZ;(a,p,yy%ll)(r',0',<t>'),(U)
s=|m|,|m| + l f =

which is recognized as a series expansion of the spheroidal scalar wave function

V> £> <t>) terms of spherical wave functions 6\<f>') = js(kr') Pf(cos 0')e

of the first kind expressed in the rotated (primed) spherical coordinate system.

Our final task is to relate '^1)(r', 6', </>') to the set of spheroidal scalar wave functions

<#>') based on the same rotated frame (x',y',z'), with z' as the axis of

symmetry. To this end we now consider the integral representation of the ju,5lh spherical
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scalar wave function [13, p. 410; 11, p. 48] of the first kind:

= -^—s f2' f eJkr cm A°Pf(cos0q ) e^^sin6q d0$ d<j)'0. (12)
47TJ J 0 J 0

For the exponential factor of the integrand of (12), Sinha and MacPhie [5, p. 145] provide

the following series expansion, including negative values of the index m'\
00 v .v

ejkrcosA'o = 2£ L ,r \LI S^(h\cos0O'7,', <f>'), (13)

r = 0 m' = -„ m'v\ )

where Nm,v(h') is the normalization coefficient [11, p. 22] for S^l(h'). If (13) is substituted

into (12) and the integration on <£' is carried out, then only if m' = ju does the integral not

vanish. Moreover, if S^v(h\cosflg) in (13) is replaced by its Legendre series expansion [as

given in (2)], the orthogonality of the associated Legendre functions for |cos0q| < 1 is such

that (12) reduces to
00 jV — S

L' ?,*'). (14)
xHmUH + i N^h >

It is to be noted that the series expansion (14) has been previously established for positive

values of /jl only, by Flammer [11, p. 49] and by Dalmas and Deleuil [6, p. 1119] for the

spheroidal scalar wave function of the third kind.

It remains only to substitute (14) into (11), and we obtain
00 00

*£i( h ;v, (,+)= E E' ?,#), (15)
fi = - CO »_|^|,|M| + l

where
CO -N

E' 1rr^d^m[(h)d^(h')R;;{a,^y).(l6)
S = S0,S0+ 1 lynr\n )

In the expression for occurs the product d™m\(h)d^M(h')-, consequently, 91™"

does not vanish if and only if n and v have the same parity. In addition, the lower limit s0

of s in the summation is given by \m\ or |ju|, whichever is greater, and moreover s0

becomes s0 + 1 if \n + v - j0| is odd.

The above analysis has focused on spheroidal scalar wave functions of the first kind

whose radial behavior is of the standing wave type, expandable in terms of Bessel

functions of the first kind jm+r(h£) [11, p. 31]. If we now turn to the travelling wave type

of spheroidal wave functions such as tj, £, <p) with / = 3,4, whose variations with |

can be represented by a series combination of Hankel functions r(hi;) with i = 1,2,

then except for a change of limits for the integral representations (from 0 < 6 < 77 to
7T

0 < 6 < — ± joo), the analysis is formally the same. In view of this fact, we recall that the

series expansions (6) and (14), transforming spheroidal wave functions into spherical ones

and conversely, have been previously established for i = 3 [6, p. 1119]. The case i = 4,

corresponding to the use of eju' instead of e'Ja\ leads to similar expansions. Conse-

quently, (15) can be generalized to
00 00

I L' a™(h,h'-,a,p, y)^°(A'; 1|', €',*') (/ = 1,2,3,4).
H = -00 »_|M|,|M| + 1

(17)
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It is interesting to note that, contrary to translational addition theorems [5-7] for

spheroidal scalar wave functions, in the present rotational addition theorem there is never

any change of the index i from one side of (17) to the other.

3. Rotational-translational addition theorems for scalar spheroidal wave functions. In the

interest of generality and in anticipation of the problem of several spheroidal scatterers

with random positions and orientations, we now consider the case of N spheroidal

coordinate systems whose local origins Oq are located at positions d(/ (q = 1,2,..., N)

relative to the global origin O, as illustrated in Fig. 2. The coordinate frame (xq, y , zq) is

obtained from the global Cartesian reference frame (x, y, z) by rotations through the

Euler angles (otq,Pq,yq).

Our purpose is to deduce an addition formula which represents the mnth scalar

spheroidal wave function ^ml{hq,i]q,iq,^>q) in the qlh coordinate system in terms of a

series expansion of spheroidal wave functions in the rth system

centered at Ar and with a local Cartesian frame (xr,yr,zr). As in the case of simple

rotation (Sec. 2), we again begin with the integral representation

*Ll)„(hq-rq) = ~jf2" /J eJk^A^{hq,cos0Oq)e^smdOqd0Oqd4>Oq, (18)

where rq indicates the coordinate triad (ij^, <#>,,) ar>d Aq is shown in Fig. 2. A series of

substitutions identical to those that led from (1) to (8) permits us to represent ^{n]]n{hq, rq)

as follows:

00

^Mq,rq) = £' f-"dr}m](hqy^(rq,Oq,4>q), (19)
s = | m|,| m\ + 1

where '^^(r , 9q, 4>q) is the jwth spherical wave function in the qth spherical (rq,6q,4>q)

coordinate frame, based of course on the q'h Cartesian frame (xq, yq, zq).

We next rotate the qlh Cartesian frame into alignment (see Fig. 2) with the r'h

Cartesian frame (xr,yr,zr). In relation to the global frame (x, y, z), the qth and rth

frames each have a triad of associated Euler angles, namely (aq, fiq, yq) and (ar, /?,, yr).

Then, as in the case of simple rotation, when (8) was transformed into (11), we can

rewrite (19) as

00 5

<l)n{hv-,rq)= r"dT:\m,(hq) Y. R%{«qr,Pqr,yqr)Vg{rq,Oqr,*qr),
5=|m|,|m| + l f1 s

(20)

in which rq remains rq, the radial distance of M (see Fig. 2) from the q\h origin Oq located

at Aq\ however, 9q becomes 6qr and <pq becomes <pqr. The qrth and rlh Cartesian coordinate

frames are now aligned and separated by the displacement vector dqr = dr - dq.

In (20) we note that '^'(r ) is the spherical wave function in the rotated reference

frame. Cruzan [3, Appendix B] has given a translational addition theorem for spherical

scalar wave functions and Flammer [11, p. 49] a theorem which allows us to convert

spherical scalar wave functions into spheroidal ones (without translation and rotation).

The use of the first theorem for the translation Oq —> Or gives us the following series for
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•\J

oo /

£ <1)<(^,^,*„)^1)('>,®r,4»,), (21)
/=0 /i = -/

with

^^(dqr'Oqr'tqr) = (~WLj'+P~'(21 + X) « ( /* . *I'"M > 1 \P )'^-^p (' ^qr , </V ) '
P

(22)

where (dqr, 6qr, <f>qr) are the spherical coordinates of the displacement vector d /r = - dr

(see Fig. 2) in the qrih coordinate frame. By using the second theorem due to Flammer

Fig. 2. The coordinate geometry of the two Cartesian systems (xq,yq,zq) and (xr,vr,zr) with arbitrary

positions and orientations relative to the global system (x, y,z).
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cited above, (21) becomes

(23)
i> = 0 fi = -v

with

(-I)*1 00

a)AlsMqr) = 7T7TT £' (2/+ \YN„drUhr)Y.jp+v-s
%v\nr) /=|#t|,|M|-H p

■a(ji,s\-iitl\p)(dqr, dqr, 4>qr). (24)

The final step is to use (23) in (20); we find that
00 V

^mn(hq^q) = L £ <1)ei;p(V'^'V;d?^F)(,,r; O- (25)
r = 0 n = -v

In (25), the (1)Q%,rn;ill, coefficients are the rotational-translational expansion coefficients of

the first kind that we have been seeking. It is straightforward to show that can be

written as follows:

(1te^(v</V,Y?r; d„) = £' drlm] (\)
s = | m | ,| m | + 1

s oo TV

■ E RZ;{<*qr,Pqr,yqr) Z'
P—s /=|m|,|/*| + i f^y r)

(26)

In (26), if « — |m| is even (odd) the lower limit of the summation on j is \m\ (|w| + 1); a

similar rule governs the lower limit of the summation on /. As can be seen, (25) transforms

spheroidal scalar wave functions of the first kind expressed in the q<h coordinate system

into a series expansion of spheroidal scalar wave functions of the first kind expressed in

the rth coordinate system.

In the same way, scalar rotational-translational addition theorems for the wave func-

tions of the third and fourth kinds can be obtained, but the two cases, rr < dqr and

rr ^ dqr, must be distinguished during the translation operation, as is done for the scalar

addition theorems of spherical wave functions given by Cruzan [3] and used here.

We first limit our attention to the case rr < d , a case very useful in studies of multiple

scattering of scalar or vector spheroidal waves. In the same way as for ^^(hq; rq), it is

easy to deduce a rotational-translational addition theorem for ip^„(h \ rq) when i = 2,3,4

by using, in place of the following coefficient:

(0</K'^>y = (-l)'£/+'-'(2/ + l)a(^s\^J\Py^p{dqJqr^qr),
p

(27)

obtained from the form 5-1 of the addition theorem for spherical scalar wave functions,

given in [3]. In addition, we recall that the series expansions (19) and (13) are also valid for

i = 3. Taking into account the definitions of the spherical Hankel functions of the first

and second kinds, it is evident that they are also valid for i = 4 and i = 2. Therefore, we
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can write
00 V

E {i)QZnAa^Pqnyqr^qr)%l\h-Tr), (28)
p = 0 n = -v

valid only if rr < dqr. The formula for i')Q^r„-flp is deduced from (26) by replacing (1)ap

with 0)afi given by (27), and the choice of the parity of the indices s and / obeys the same

rules as for (X)Q%n.^v.

The case rr > dqr can be treated if we consider the form B-2 of the addition theorem of

spherical scalar wave functions [3, p. 40]. In the present notation, B-2 becomes

00 /

= E I La)b-;Udqry^%Jrr,er,<t>r), (29)
/ = 0 \x = -l p

with

WH:,Mqr) = (-1) V+/,"12/+ l)a(^,.|-A,/|^)-^/1)(d<?r). (30)

In (29) the index p is such that p = p0, p0 + 2, p0 + 4,..., / + 5, with p0 = max[|/ — j|,

l/Z — ju|]. However, it turns out that the series on the index / in (29), with p and 5 held

constant, is of a finite number of terms with I = /0, /0 + 2, l0 + 4,+ s, where

/0 = max[|/? - s|, |ju|]. Moreover, it will prove to be very useful to let ju — A = With

these changes of summation indices and summation limits, it is possible to rewrite (29) as

follows:
00 00 p + S

"*£{rq,6qr,4>qr)= EEL' (31)
M = -co ^ = 1^1 / = /0,/0 + l

which simplifies to
00 00

(32)
M--00 p = ImI

where

(1)^;(d„)= E mb-;s-^p{Aqr). (33)

/=/0,/0+i

If, in (32), (rr) is replaced by the series expansion of spheroidal wave functions as

given by (14), which is valid for i = 1,2,3,4, and if one substitutes the resulting expansion

for "xI'-(],(rr 6qn <pqr) into (20), where 1 has been replaced by i, then after rearrangement of

the order of summation we find that
00 OO

^mn{hq\Tq) = E E (X)Pmrn-»v(aqr,Pqr,yqr'>&qr)^v{hr-,Tr), (34)
M = -°o „=|M|

where

(1 )pqr = y, dmn (/, ) V R™s(a ft y )
1 mn,fip s— \m \ \ q) lxns\u-qr>rJqr'> i qr)

s=|m|,|m| + l Jl = -s

r„
Y' (1)6^(d )'N — d*11', ,(h ) (35)ulip\ylqr) '"tip pj ^ ^up-\n\\"rJ- VJ-V
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In (35) if n — \m\ is even the lower limit on 5 is \m\: if n - \m\ is odd the lower limit is

\m\ + 1. An identical rule governs the lower limits on p.

4. Matrix representation of the rotational-translational operator. The rather complicated

formulas for the expansion coefficients for the rotational-translational theorems [see (26)

and (35)] can be succinctly represented in terms of certain matrix products. We first

reorder the doubly-indexed set of eigenfunctions ^{„]l(hq, r;/) as a singly-indexed set such

that the kth element in the latter is related to the mnth element in the former by the

formula

k = mNq + n + 1,

where

' 2m — 1, m > 0,

2|m |, m < 0,

and \m\ < n < N \ consequently, k = 1,2,..., (N + l)2, where Nq is the upper limit on

n, dictated by computational and/or physical restraints.

In a similar fashion we reorder the doubly-indexed eigenfunctions ^J'(hr; rr) so that

j = jxNr + v + 1,

where

M =
2/x — 1, p. > 0,

21/a|, H < 0,

and |/x| < v < Nr\ as a result, j = 1,2,..., (Nr + 1) . We note that, in general, Nq Nr.

It can then be shown that the rotational-translational matrix whose elements

are ^ or a)Qqkrj coefficients, as given by (26), can be obtained by means of the

following matrix product:

[Wgf] = (36)

In (36), [Dr] is a matrix of (Nr + l)2 rows whose element in the or 7th row and ju/th

or column is

o;l - OA, - (37)

where 6- is the Kronecker delta. The number of columns K, depends on the desired

accuracy and on the parameter hr, with an increase in hr = 2irFr/\ dictating a pro-

portionate increase of Kr. The matrix [(1>7] in (36) is the spherical-spherical translation

matrix with Kr rows and Jq columns, where Jq is the number of rows in [A9], a number

which is proportional to hq = 2irFq/X\ the element in the /c}h or jxlth row and or ju^th

column of [(1)T] is

a)TkJl=(1)"V, (38)

where (l)ais given by (22). The spherical-spherical rotation matrix [/?] is square with Kj

elements; in the row and kf or msth column we find

rM2 = = ^r::. (39)
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where RJ" is specified by (10). The final matrix in (36) is [A?] with Jq rows and (N + l)2

columns. In the k* row and kth column the matrix element is

Al2* = W"^M-M|* ,(*,)• (40)

Matrix product representations analogous to (36) can also be obtained for the more

general cases where / replaces 1 [as in (28)] and where rr > dqr [as in (34)]. Thus the

coefficient matrix whose elements are the coefficients in (28) is given by

[Ogf] = [Z)'][<'>r][/?][A«]. (41)

In (41) the matrix elements of [(,)7] are simple generalizations of the elements of [(1>r], as

given by (38) and (22). For the case of rr > dqr we can write

[Vp«r] = [Dr][mT ][/?][A«], (42)

where the element in the kJh row and j{h column of [a)Z"] is

{1)tkJl=(1)bP(dqr) (43)

[see (33)]. All other matrices are the same as those in (36) and are of a quasi-diagonal

nature; thus the elements of [£>'] and [Dq] vanish when fx =£ ju, and m ¥= m, respectively,

whereas the elements of [ 7? ] vanish when s + s. This is, of course, very useful in reducing

the time of computation in practical applications.

5. Extension to the case of vector wave functions. Both spherical and spheroidal vector

wave functions can be generated from the scalar wave functions [13, p. 414; 11, p. 69] by

the simple vector operations

= V*mw X a, (44)

^=VXMW (45)

where a is a constant vector or radius vector.

For the case of simple rigid body rotation and spherical wave functions, Stein [2, p. 17]

has shown that it is "extremely easy" to describe the addition theorems for M Jand

when a is a radius vector. On the other hand, Sinha and MacPhie [5, p. 152] have

demonstrated that for simple rigid body translation the addition theorems for spheroidal

vector wave functions are easily deduced if a is any one of the three Cartesian unit vectors,

x, y, z. The present problem, which involves both rotation and translation, appears to lack

a very simple solution for the vector case. Nevertheless, it is our intent to seek a solution,

which is indispensable for the rigorous analysis of the radiation and/or scattering of

electromagnetic waves from spheroidal bodies having arbitrary positions and orientations.

Appendix. Let R(a,/3,y) be the operator which represents the finite rotation under

present consideration and let D^,}m(a, ji, y) be its matrix representation. This rotation

operator is the product of three operators RyR/iRa with Ra operating on the wave

function first. It can be shown [12, p. 8; 14, p. 51; 15, p. 20] that these rotations may all be

carried out in the same coordinate system if the order of rotations is inverted. In this way

we obtain, according to the notation of Edmonds [12]

D$m(a,P,y) = e^ad±([3)e^. (A-l)
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If we now consider the lmth normalized spherical harmonic [12, p. 24; 14, p. 240]

= 1) (21 + 1)(/ - m)\ 1/2

P,m(cosd)ejm^, (A-2)
477 (/ + m)\

which is related to the associated Legendre functions taken in Ferrer's notation, we have

E (A-3)
m' = -l

In the literature, one can find various expressions for the elements d$m(/3) of the

rotation matrix [12, pp. 57-58; 14, p. 52; 15, p. 22]. In the present work, we select the

following:

(/ 4- m')\(l — m')\
=

(l + w)!(/ — m)\

1/2

p& m •+ m' (cos (1) (cos p/2)+ m (sin 0/2)'

(A-4)

given by Edmonds in terms of the Jacobi polynomials P(a-b\cosfi), which are used

according to the definition of Szego [16, vol. II, p. 167; 17, chapter 22],

Now, we can easily deduce the addition theorem for the unnormalized spherical

harmonics under coordinate rotations. We obtain, in view of (A-2) and (A-3):

/
P,m(cosO)eJm+= £ (-1)

m' = -l

(I + m)\(l — »;')! 1/2

D$m(a,p,y)Pr'{ cos0VmV-
(/ - m)\(l + m')\

(A-5)

If we introduce the normalization factor of the associated Legendre functions

_ 2 (I + m)\

21+ 1 (/- m)\ '

then we write instead of (A-5)

/

P,m(cos8)eJ""l'= E (-1)'

m' = -l

3m
1/2

e Jm'ad(J,L(P )eJmyPlm'( cose')ejm'"',

(A-6)

or more briefly:

/

Pm(cose)eJm+ = E R%l(a,P,y)Pr\cos6')eJm',>\ (A-7)

m' = -/

with

1/2

RZ(l(a,P,y) = (-1)' ejm'ad^m(i8)e*»\ (A-8)

In (A-5)-(A-8) the element can be evaluated by any of the expressions

mentioned above, and, in particular, we can use expression (A-4), given in terms of Jacobi

polynomials. In our opinion, this is the most suitable choice because the Jacobi polynomi-

als are related by recurrence formulas, which can in turn generate recurrence formulas for
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the d$m(f3). Two have been obtained: one by Altmann and Bradley [19, p. 196] and the

other by Gel'Fand and Sapiro [18, p. 288], Moreover, others which are more useful for

programming have recently been developed by the present authors.
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