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1. Introduction. The foundation of consistent theories of laminated anisotropic shells

has attracted increasing attention during recent years. This interest was stimulated by the

advent of new materials such as pyrolitic graphite, fiber-reinforced composites

(glass/epoxy, boron/epoxy, graphite/epoxy), etc., as well as by the interesting properties

characterizing these structures which are more and more used in various fields of modern

technology. The available monographs [1-6], as well as the bibliographical papers [7-10]

reviewing in depth the literature in the field, illustrate in a best way the great interest

afforded to the analysis of laminated anisotropic shells. As it was fully outlined (see e.g.

[1,4,5]) the classical theory of multilayered shells (based on the Love-Kirchhoff (L.K.)

assumptions), in spite of its successes, is no longer applicable in many important cases.

They occur whenever the multilayered shell (or plate) is composed of anisotropic materials

characterized by high degrees of anisotropy, even if the classical thinness requirement is

fulfilled (or in other words, even if the composite shell is "geometrically thin").

Such a property is typical for fiber-reinforced composite and pyrolitic graphite material

systems (see e.g. [4]). In their case, the ratios of in-plane Young's moduli to transverse

shear moduli vary between 20 and 50 while the coefficient of thermal expansion in the

thickness direction is many times greater than the one in the isotropy-plane.

It has been shown conclusively that in these cases, more refined theories are needed to

describe in an accurate manner the static and dynamic behavior of geometrically

thin/thick/anisotropic multilayered (and single layered) shells. Such refined theories

should include transverse shear deformation and transverse normal strain effects and

should account for the high-order effects.

There are a number of methods used to model the refined theory of multilayered shells

(and plates).1

In one of them appropriate assumptions for each layer, separately, are to be stipulated2

(see e.g. [12-14]).

'Received September 19, 1983.

1 For an excellent account of the available methods in the field see [11] where, in addition, a theory of

multilayered plates based on the Cosserat continuum concept is substantiated.

2 This possibility is also appropriate in the modeling of the theory of sandwich/multisandwich type shells

(see e.g. [5, Chap. VI, 15, 16]).
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In this case, however, we are confronted with a cumbersome system of governing

equations involving an increased number of unknown functions (dependent on the

number of the constituent layers). Other methods utilize one expansion for the displace-

ment field throughout the entire laminated thickness. It was largely used in the foundation

of anisotropic multilayered plate [17-20] and shell [21, 22] theories and will be employed

in the present work, too.

In the following development, a Lagrangian formulation of a refined geometrically

nonlinear theory of anisotropic laminated shells of arbitrary shape will be given. Toward

this end, use is made of a modified variational principle of the 3-D nonlinear elasticity

theory together with a high-order representation of the displacement field throughout the

laminate thickness.

The resulting field equations are expressed in terms of the high-order stress-couples and

strain measures (including those of the transverse shear and transverse normal strains).

The theory is general in its character in the sense that it incorporates the effects of the

material anisotropy, structural lamination, high-order dynamical effects as well as the

presence of a steady temperature field. In addition, the theory is free of any further

assumptions beyond those that are initially stipulated (namely the statement of the

elasticity of the material of the layers as well as the one which concerns the representation

of the displacement field across the shell thickness.)

Attention is also given to the problems of the continuity conditions at the surfaces

between the contiguous layers, as well as to some simplified variants of the general theory

developed in the first part of the work. Owing to the inherent complexities which appear

when the L-K assumptions are discarded, the literature in the field has dealt with the

modeling of the theories of laminated flat plates (mainly) and shallow shells; references to

the pertinent contributions are appropriately traced in the paper. However, substantiation

of a general theory of laminated composite shells, free of the traditional assumptions and

incorporating a number of important effects (such as those mentioned previously), should

be of a great practical and heuristic importance. As far as the author of the present paper

is aware, no attempt to substantiate such a theory has been given in the specialized

literature. It is in fact the basic object of the following developments.

2. The geometry of the laminated shell. Assumptions. Let us consider the shell composed

of a finite number N of individually homogeneous layers (sometimes called laminae). Let

2(k)h denote the uniform thickness of the A:th layer (k = 1, N). Let us assume in addition

that:

(i) Each constituent layer has its own geometrical and physico-mechanical characteris-

tics.

(ii) The material of each constituent layer is linearly elastic and anisotropic.

(iii) The layers are in perfect bond; no slip between two adjacent laminae may occur.

The points of the 3-D space of the shell in its undeformed state will be referred to the set

of curvilinear normal coordinates x'\ x3 = 0 defines the undeformed reference surface 0a

(which is chosen to coincide with the mid-surface of the bottom layer), while xa denotes

curvilinear coordinates on f)a.
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Fig. 1.

The distance (measured along x3) between the reference surface 0a and the mid-surface

of a generic A'th layer (see Fig. 1) constitutes another important parameter of the

composite shell. It will be denoted by (k)z(k = 1, N), where (1)z = 0.

The corresponding spatial metric tensor of the undeformed shell-space reads:

gap = gafi =

ga3 = ga3 = 0' g33 = £3 3 = 1- (1)

Here aKa denotes the metric tensor of the undeformed reference surface, while defined

by

^ = 8f - x3b$ (2)

is referred to as the "shell tensor", where 8f" is Kronecker's symbol; bp is the mixed

curvature tensor of the undeformed reference surface.

As shown in [23] is. nonsingular. Its unique inverse (/i"1)^ satisfying (ju.-1)^" = 8g

is expressible in convergent series of x3 as:

00

(rx);= E (b%{x>y (3)
n = 0

where

{b")ap = ${bn-iyx = (4)

and in addition (b°)p = 8$ and (b")p = 0 for n < 0. By virtue of (1) and (3), gaP may be
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expressed as follows:

00

g°e = a'x E (1 +p)(b")x(x3)P- (5)
P=o

Concerning the relationships between covariant derivatives of space and surface tensors

(see [23] and also [5]), the ensuing ones turn out to be useful in the following developments;

Ta\ I/? = 3 — bypTj ) ; r„||3 = Ma^y,3'

^3||« = ^3,a + ^3||3 = ^3,3'

^lly = - ^f35). (7)

The shifted components are denoted by an upper bar; the double and single strokes are

used to identify the covariant differentiation with respect to the space and surface

undeformed metrics, respectively, while a comma denotes partial differentiation.

Throughout the paper the Einsteinian summation convention is adopted for tensor

quantities; Greek indices run over the range 1,2 while the Latin ones run over the range

1,2,3. Superscript (A:) in brackets attached on the right (or left) of any quantity identifies

affiliation to the A: th layer.

3. Preliminaries concerning the derivation of the field equations. A modified version of

the Hellinger-Reissner variational principle (see [24, 25]) (referred to as the Hu-Washizu

variational theorem) will be used in order to derive the basic field equation of the

geometrically nonlinear theory of laminated shells. In its terms, the stationary condition

applied to the functional

j - v,)

= foPioH ~oh)Vdr + J (s'Jeu - W) di
OT

"/+ ym+ HI, KUJ)s"d,

+ ( s'V,dQ, + f s'iVt -V,)i/a (8)
0Os

where the stress tensors s'J, the strain tensor en and the displacements Vt are allowed to

vary independently throughout the volume and on the boundary of the body, yields the

basic field equations and the boundary conditions of the nonlinear elasticity in terms of a

reference state as presented, e.g., in [26].

In Eq. (8), s'1 stands for the second Piola-Kirchhoff stress tensor correlated with the

Cauchy stress tensor a'J as s'J = (G/g)l/2o'J, where G and g denote the determinants of

the metric tensor of the deformed and undeformed body, respectively. In the nonpolar

case (as considered in the present paper) s'J is a symmetric tensor, thus fulfilling the

equation

eijks^ = 0. (9)

In addition, e- stands for the Lagrangian strain tensor; 0h' and 0H' are components of
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the acceleration and body force vectors per unit volume of the undeformed body

(0h =0h'gl-, 0H =0H'giy, Vt are the components of the displacement vector V(= V,g');

0i2s, 0flK denote the two parts of the total undeformed boundary surface where the

stress and displacement vectors, respectively, are prescribed (0£2 = 0fiv U0S2K); 0t denotes

the volume of the undeformed body; s' stands for the stress vector referred to base vectors

in the undeformed body while W denotes the strain energy function measured per unit

volume of the undeformed body; the bold letters denote a prescribed quantity; 8 denotes

the sign of variation.

As it may be remarked, the functional (8) involves integrals over the undeformed

configuration of the body. The importance of this feature in the general context of the

nonlinear solid mechanics was underlined in [27]. Operating in (8) the variation on the

nonprescribed quantities, assuming 80H = 80h = 0, and using Green's theorem correlat-

ing surface and volume integrals, all these yield the variational equation expressed under a

convenient form as:

5

8J = E SJ, = 0, (10)
7 = 1

where

SJi =/ {[*''(«/ + KUJIO+opG."'—0A')]}«W*.
0T

SJ2 = jfJ*y \j + Vj\I + n \,K\ Ij)\ss'Jdr,

flu 1 / dW 3^\\ 0

SJ4 = f [s' -0njSJr(8i + V'\\r)]6V,dQ,

(K-VJSs1 dQ,
J.n..

rij denoting the components of the outward unit vector normal to the external bounding

surface of the undeformed body. By invoking the arbitrary character of the variations SVt,

SetJ, 8s'J (throughout 0r and on 0fiK and 0S25), the coefficients in the five integrands

appearing in &Ji (i - 1,5) must vanish independently, thus yielding the basic field

equations of the nonlinear elasticity theory in terms of a reference state.

The full nonlinear form of (8) and its linearized counterpart have been used in the

substantiation of refined shell theories in [5, 25] and [23], respectively. In the next

developments, the geometrically nonlinear theory of anisotropic laminated shells will be

substantiated by using the variational principle (8).

4. Displacement field in the shell. Let us consider the displacement vector V(xu, x3) of

the 3-D points of the laminated shell expressed in terms of the spatial and their shifted
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components as

V = VaSa + V3d3 = V% + V%, (12)

ga and aa denoting the space and surface base vectors in the undeformed body (related by

Sa = where g3 (= a3) stands for the unit normal vector to the undeformed

reference surface 0a. It is easily seen from (12) that:

K = r3 = v, (13)

where Va = Va(xu, x3, t ); V3 = V3(x",x3,/) denote the shifted displacements (with

respect to the reference surface). They will be represented across the entire laminate

thickness as

JL (r)
Va{x",x3\t) = 5>3r VQ(x",t),

T=s w (14)
V3(x",x3]t) = J2(x3yV3(x",t),

3 = 0

where R and S (R ^ S) are two natural numbers defining the level of truncation in the

series expansion, while r and s are summation indices. For the sake of simplicity we shall

assume R = S = 8%. As it may readily be inferred, the results could easily be modified

when such an equality is not invoked a priori.

In the general case R^ S, the unknown functions of the problem (2R + S + 3 in

number) are: {Va(r>, V3(s); r = 0, R\ s = 0, S}. In the case R = S = 0t, the unknown

functions reduce to {V^r), r = 0, ^}, being 3<? + 3 in number.

A large diversity of high-order theories of multilayered plates [17-20] and shells

[21-22], relies upon the various selection of the degree of approximation of (14).

5. Modified expression of SJ. The variational equation (10) of the 3-D elasticity theory

will be modified to include the peculiarities of the laminated shell.

5.1 Modified form of 8Jl. The volume element dj will be expressed in terms of the area

element da of the undeformed reference surface as dt = judodx3, where n = (g/a)1/2,

da = ai/2 dx1 dx2; a = det(aa/3); g = det(g,7). At this point it is more convenient to use

in (11) 1 the Lagrangian stress tensor t'1 connected with the second Piola-Kirchhoff stress

tensor as

t'J = s»(8j+ VJ\\r). (15)

Employment further of the relationships between space and surface derivative of tensors

(see [23, 5]) all yield the following modified expression of 8J{,

f N H rWz+Wh (

SJi = / ]C]C/ {[(/rfaaX)U - K{vta3) + {n^t^),3

+ oPWpa(oHa-oha)]6Vp(x3)ndx3 (16)

+ \^ta3)\a + ^t33),3 + bpa(fifip,t^) + 0p^oH3 - 0h3)}8V]3(x3)n dx3 1 da
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On the other hand, employment of (6) into (15) yields the more explicit expression for the

various components of t'j as follows

= saS[8£ +(lu"1)xV s] + s^-l)tv'y,

+ *3V1)}?3; (17)

/-3 = j«^+j"3(i + f3,3);

/33 = s3a4>3a + s33(l + F33)

where

- bpV3; = F3,w + (18)

The complete reduction of 8J{ to 2-D quantities will be accomplished further by replacing

(17) and (18) into (16), by considering therein the representation (14) for the shifted

displacements as well as the following definitions:

a) The «th order stress couples afferent to the A:th layer:

W J(k)z_(k)h

(*).Lrn) = = fk)z+<k)h (xT^dx\ (19)

(Ic\tW f<k)z + {k)h / 3\« 33 j 3
(k)L3(3n) = (x3) iis"dx

^ > J(k)2_(k)h

(k)N?\ = f " + h (x3)"iisa3 dx3\
{n> J(k)z_<.k)h

b) The «th order body couples of the k th layer:

(fc)% = f " (x3)n0WHa^0p^dx
J (k) g — (fc) ̂

= /, (Is)
y (fc)z—(fc)/i

(20)

Wz-Wh

c) The wth order inertial couples:

(fc)/(n)=E(,c)m9+nK«,

q=0

* (9)

(fc)/f„>=E(fc)m«J+n^3 (21)

,=0

where

= 9 + 1) - 2H^k)r](n + q + 2) + + q + 3)]

(A: = IjV;«,^ = 0) (22)
denotes the mass term afferent to the A:th layer, while (A°rj(r) is defined by

(k)v(r) = ];[(zik) + h{k))r-(z(k) - h{k))r]. (23)

In (22) H and K denote the mean and the Gaussian curvatures of the undeformed
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reference surface; an overdot indicates differentiation with respect to time t. Furthermore,

by defining the gross n th order stress, body and inertia couples as

J C07T

N

= I
* = 1

(k) I un
n>

/V"3/v<«>

<"> N

= E
A: = 1

/<:>

<*>Lfn) (24)

(k)\ru3
"<«)

(k)qr i•*(»)

(25)

<">'

bJx turns out to be expressed in the form:

-/ £k>
Jo"n=0 {

6Ji= I VJ + cb (26)

where „■> and S3<< will be rendered explicit later.

5.2 Modified form of SJ2. Employment in (11)2 of the relationships (6); of the definitions

(19), (24) and of the representation for etj given by

^ = £(*3)n% (27)

n

yields the following expression of SJ2:

«-/ [E(tfl-XeW> + £
J0<r Ln=0 \ / n=0

2£-l

n=0

(»)
e33 _ "33

(e> -Cea3 °q3 <fo. (28)

(n) (n) (n)

^33' CQ3 will be given explicitly later.

5.3 Modified form of SJ3. Employment in (11)3 of (27), (19) and of (24) yields the

following modified expression for SJ3:
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tap 1 y- / dW{k) dW{k)

{n) 2f-Lw + „(n)
k=i\dea0 d e0a

c (")

2£-2

n=0

" dWm
L'"> .In,

fc-i a e33

*(")0 e33
(29)

2^ — 1

+ £

n=0

1 ^ / dW(fc) dWik)
+"S-jEl tst + tw-

fc=i V 5 ea3 a e3a

(^3 ^ d°

where W(k) expressed as

W(k) = r^,AI* ^Jx3 (30)

stands for the strain energy function of the &th layer per unit area of the undeformed

reference surface.

5.4 Modified form of SJ4. In order to perform the necessary transformations of SJ4 as

given by (11)4 we shall consider the undeformed surface 012( consisting of the edge

boundary surface 0£2S and of the upper and lower boundary surfaces S ± of the shell body.

Making use of the relationships:

0nad& =0vafidsdx^, dS±=n±do, (31)

where 0va denotes the components of the outward unit vector normal to the undeformed

edge surface at x3 = 0, ds denotes the line element along as resulting from the

intersection of 0S2 with the shell-reference surface: fi + = /i|x3_<mz_<a-)A; ju~ = ju.|^3=<i»z._<i)/j,

and employment of (6) and (14), all these yield the following expression of S/4:

5/4 = 8J4 + S/4, (32)j

where

o1 * \ n = 0

(«)

= j I (o^(I)-o^>)« %

(«)
+ (0^-0^))^

; r ( 91 <"> , N <") 1)

H = / E {pU-KU)Vp +{p\n) -n3<n>)^
0°ln = 0L i)

„), , ni n) will be rendered explicitly later.

ds- (32) 2

da. (32)3
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5.5 Modified form of SJ5. Employment in (11)5 of (14) and (19) yields:

». = / {e
^n=0

(n) (n) \ , ((n) (n) \

Vp-vp ova6L%} + V3 - V3j ovaNffi ds. (33)

6. The field equations of the composite shell. At this stage it should be remarked that the

variational equation (10) of the 3-D elasticity theory SJ(s'J, eip V]) = 0 was converted in

terms of 2-D quantities characterizing the state of stress and strain of the multilayered

shell as

6J (LS'L(n)^<n3>. %> y\) = = 0,

where SJt are expressed by (26)—(33). Considering the variations of indicated quantities as

arbitrary throughout the surface 0a and on 0FV and or„, their coefficients in the five

integrands entering (26)—(33) must vanish independently. They yield in succession the

field equations of the refined geometrically nonlinear theory of laminated shells as given

by:

6.1 The equations of motion.

^<nP)U - K^n) + ^<n> - «<_!>

ji, (m) (n + 1)

-n^TNtf-1+m) ^_n£(m + l)L%_1+m) V "
m=0 m=0

+ ^(n> ~ f(n) + PP(n) (= ^{n)) = (34)x

(m + l)

bap£P£) + M(n)\p " nL(l-l) - nJ2^m + l">Lin-l+m) ^3
n=0

(m)

~ n E ^{n-l + m) ^a3 + ?(n) " f(n) + P(n)(= S{n)) =
m=0

where

(m) ^ * (m+l)

+ E *•/ + E (m+1)WS+") v '•
m=0 m=0

^ A (m) 1 (m+l)

Kn) = N(n) + E L(-+n> ̂  + E (m + Wft+n) ^3 (» = 0, *)■

(34)2

m=0 m=0

The equations of motion (34)j must be supplemented with the nondifferential equilibrium

equations

- b?L7n)) = 0 (« = "O), (34)3
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which represent the macroscopic equivalent of Eqs. (8) expressing the symmetry of the

stress tensor s'J. They are obtained in a similar way as their counterpart in the classical

shell theory (see [5, 23]).

6.2 The strain-displacement equations. The strain-displacement relationships result in the

form:

(„) (") («) ("-!) ("-1)

2 ea0 - ^a/3 + <t>l3a ~ K. - ^0 ^a

™ ((p) (n~p) (P)„("-P)„\ / (") \ ,  

+ a 0a 4>0 j 2 Aa/3J (n = 0,2Z);

(„) . (n+1) ^ (p) (n-p+2)

2 e33 = 2(n + 1) V3 + ^2,p(n - p+ 2) V p Vp

p= 1

™ (p) (n-p+2) f (n) \  
+ + ^3 =2S33 (n = 0,2£-2).

p= 1

(n) (n+!) (n) (n)Q (35)

2lel3 = (n+l) V„ -nblV„+ 4,* ' '

+ £
p=0

(n-p) (p+1) (n-p) (p+1)

(p + 1) ^ + (p+l) 3 f3
' (n) 1

= 2<?a3

(n = 0,2£ - l).

(m) (m)

In (35), and are defined as

(m) (m) (m)

<V= y »U - K ^3;
(m) (m) (m)

<^3 = ^ + &£

(36)

(r) (r) (r)3

In all the previous equations V<j>ap, <pn are to be considered zero whether: (i) r < 0

or (ii) r > Z.

6.3 Constitutive equations. From (29), the constitutive equations result in the form:

(n = PI),
fa0 ly^(dWik) dw{k)\

< = -tY. Tsr + Tw" •
k=i\dea0 de0aJ

N

£S) = E-w"' <"=5^3"2)
k=1 a e33
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i N ( atT7(fc) ai?7(fc)

"S3 = \ E2
fc=l

dWv' dwx , ,    x , x
+ (n = 0,2*-l) (37)

~(«) „(")
V d e«3 d e3a

Owing to the evident relationship between the asymmetric and the symmetric stress-couple

measures,

raff _ faff _},af6ff i to \
L{n)-L(n) 0SL(n+l)i K-*°)

the constitutive equations for L^n) result as

1 N
raff 1
L{n) - oL

2fe=1

dw(k) dw{k)

~(") r.(n)

9 eaff 9 effa

-6f \^^T +
dw{k) dw(k)

6 I O ("+1)

3 ea6 3 e6a

(n = 0,2£). (39)

Equations (37)—(39) constitute the generalized counterpart of the ones obtained in [28, 29,

5],
It should be remarked that by virtue of (37), Lfan_ i> - bfL}an) may be expressed as

1 N
T ffa _ kff T~1a —

(n — l) 1 (n) - 2 Zw
k= 1

dw{k) dw{k) L01 dw{k) dw[k) .
+ TW- + TW-I ,40»

8 e«ff d effa \d ea-y 9 e-ya

.a . dW{k) dw(k) \

"* „(«) + „(n) )
9 ^0 9 e0-i J

1 P I o(n+1) a'n+1'
9 e7P 9 ePl

(n = 1,2 R)

It is easily seen that the right-hand side of (40) is symmetric and satisfies identically the

nondifferential equilibrium equations (34)3. In this case the equations (34)3 may be

suppressed. The constitutive equation (37) may be rendered more explicitly. In this sense,

we shall make use of the well-known fact (see e.g. [30]) that the theory implying small

strains but large displacement gradients and rotations may be described by a linear

constitutive equation provided second Piola-Kirchhoff stress and Lagrange strain mea-

sures be used. Based on this fundamental observation and by considering the case of an

elastic anisotropic body (of the elastic-symmetry type with respect to the surface x3 =

0—see, e.g., [31] and [5]) the appropriate strain energy function expresses as:
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W — — FuXt>ep p 4- p
n j ep6eu\^r' eu\e33

■>3a3„ „ , ^ Z73333/ „ \-
+ 2E»3'3ea3pa3+ f£3333(e33r

+ \\»xeuXT+ \\33e337 (41)

where T= T(xu,x3) denotes the temperature excess with respect to the reference

temperature Tr\ E'Jkl and A'7 stand for the spatial tensors of elasticity and of the thermal

expansion coefficients, assumed to fulfill the well-known symmetry properties. For some

special cases of anisotropy (e.g., orthotropy and transverse-isotropy), their appropriate

expressions are presented in [5], On the basis of (37) and (41), and by representing the

temperature field as T(xa, x3) = E^,a=0(x3)'T(x")), the constitutive equations appropriate

to a /c th layer write under an explicit form as

K) =X? +^33(^3~32) +,aVV),
q=n \ /

n+2£-l

N$= 2 £ qB"3a3iqZl (42)
q=n

L?n) = "E (^ ^ + ^3333 (9^332) + 9 A33 V \ .
q=n \ I

(r)

where eIJ and T are to be considered zero whenever r < 0.

The layered shell stiffness tensors intervening in (42) are defined by:

N
-<*>* + <*>* / 3 N

nBtjm,= £ f z+ \(x3)"(k)E'jmldx3,
,  i J'(k) 7 — (k )fj
k = 1

N

CC'W**'- (43)L i_ _ ^ J(k)z_(k)fo

Having in view that both E'jml and A'7 are space tensors, expressible in terms of

corresponding surface quantities as

<*>£*»•« - („-■

'if'"*", (44)
(A)£«3o3 =

where the surface tensors (k)E'jml and (A)A'7 are piecewise constant through the laminated

wall thickness, it results (see [5]):
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+ 1)
N

O7r0y

^ (*)JF
A = 1

cc m m

E E L K»xKtf(b<yy(b«ye
m = 0 r = 0 g = 0

x(b{m-'-q))y)r1(m + n + 1)

J2<x3a3

Bao

Aaa

N
.,Ba°33 = E

*-1

(k)£ir3 y3

(k)£TTy33

(kfyry

SXk^(n + 1)

+ E I%(bm)$k)ii(m + n + 1)
1T\p\u / Y

m = 0

(45)

where are defined in [5]; while 7](r) is expressed by (23).

In the case of symmetrically laminated shells (S.L.S.) (the envisaged symmetry with

respect to the medium layer being both geometrically and physically), an odd number of

constituent layers (N = 21 + 1, / = 1,2...) may be taken into consideration (see [5]). For

this case the reference surface will be selected as to coincide with the mid-surface of the

mid-layer. This entails the following modification in (45) consisting of the replacement:

as weU as °f redefinition of (A)r)(r) as

<k>7,(r) = i[((/°z +^h)r-((k)z -<*>A)r](l' -(-1)') (46)

which results in

<*>T,(r)= ( y[(ik)*+<k)h)r-(lk)z-{k)h)'] for r odd,

I 0 for r even.

In light of (16) and (44), in the case of flat (or very shallow) symmetrically laminated

panels, the constitutive equations split into two independent groups afferent to the

bending and stretching states of stress (under the same conditions a similar splitting arises

in the expression of inertia forces (21), (22)).

In contrast to this case, for arbitrary laminated panels, such a splitting in the

constitutive equations does not occur.

6.4 The static and geometrical boundary conditions. Having in view (32)2, the static

boundary conditions on ory result as

0^L(, O^a

* (m)

L% + E Lti+n)
m=0

(m+l)

+ £>+ !)*$+„> V »
m=0

(- v.c%)
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' ~ (m)

N(n) + ^2 +L<(m+n) ̂
V m=0

(m+l)N

m=0 /

(=0f«A$). (47)

From (32)3, the B. C. on 5 ± are:

„p _
P<n) -

^ (m)

/i/i^3<V)" + MS3" £ ^p(l3)m+n

m=0

p , -> iN)z-Wh
*• (m+l)

T)3
P(n>

+ /is33^(m+l) V ^(z3)m+n

m—0

(m+l)

Ms33(x3)" + /is33 J] (m + 1) y3 (x3)m+n

m=0

* (m)
<£Q3(z3^m+n

m=0 J (i)2_(i)h

(i)2_(i)

(=nfn)). (48)

"?»>)

while from (33), the geometrical B. C. on 0Ty write as:

(n) (n) (n) (n)  

^=Vp; F3=V3 (r» = 07X). (49)

7. 77ie continuity conditions at the interfaces. In the case of laminated shells, there are

some specific requirements (of a geometric and static character) which are to be fulfilled.

They are referred to as the continuity conditions at the contact surfaces between two

consecutive layers.

The geometrical continuity conditions (GCC) require:

^(xw,*3)|xJ=<*,,+<*>„= ^(*",*3)|,3.,^*+i,a (50)

while the statical continuity conditions (SCC) require:

[«^3*]L+1)i_i+v (51)

[m'33]L3 = '4>z+<*)A = [/*'"] |.x3_(t+V-(' + ')A

(k = 1, N - 1 )

where x3 =(k)z +{k)h and x3 = (* + 1)z -(k + 1)h identify the two contact surfaces between

the layers k and k + 1, respectively.

In light of (14) it is readily seen that (50) are identically satisfied. Concerning the

S.C.C., they are to be analyzed in more details.

Towards this end we consider the expressions [mjuJ/3'''] and [/xr33], which will be

multiplied by (x3)", so resulting in [jujuJ?3,,'(x3)"] and [ju,?33(x3)"], respectively. On the

other hand, from the 3-D equations of motion (determined by equating to zero the
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(n) (n)

coefficients of 8 Va and 8 V3 in the expression (16) of 8J}), the expressions of

[pp^t3'l'(x3)n] and [p.t33(x3)n] available in an arbitrary point x3, ({k)z - {k)h < Jt3 < (A)z

4- (k)h), of the A'th layer, result as

= -(*' A"dx3 +(A)0P,

:ra" (52)
[/i/33(x3)"l = - fx A3dx3 +<*>$3,

J(kh-(k)h

where,

A" - [(/i'"K)l« " b£(pt") + 0pw>{0H°-oha)](x3)n

-nw$t3+{x3)"-\

A3 = [(/i'a3)|„ + bpa{wpita4') + PonioH3 -0/r3)](x3)" - n(*3)"_1/tf33 ( 53)

where (<:)<I>P =</c)$p(xu, /) and (t)$3 =ik^3(x", t) are defined by:

<*>$" = [/x/i^3,''(x3)"]|x3 = a,z_(MA,

(A:><t>3 = [m'33(*3)"]L3-«>z-«V

Expressing the B.C. on S ± as under the form:

(54)

[W^3^3)™]! x3=(N)z+(N)h = P(n)>

[/if33(x3)n]\x3=(N)z + (N)h = P^}

and

(55)!

[^^^(X3)"] |x3=(1)z_,.>A = P(n)< (55)2

[/xf33(x3)"]|xJ=a,z_«.,,, = p3(n},

and employing them in (52), one obtains:

r(N)z+l»)h

pfn) + / APdx3 = W$p(x",t),
V ' J(N)z^(N)h

+ 3
r<N>z+^h

+ Asdx3 = w$3(xV)
J(N)z-(N)h

(56),

p3„>=<1>«i>3(x",o.
(56)2

Employment of (52) and (54), considered in conjuction with the S.C.C. given by (51),

yields the result
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(*>$0 _(*-D$p + ((k)z {k)h a" dx3 = 0,

(*)<j>3 _(A-1)$3 + f(k)2 <k)f> A3dx3 = 0 (57)

J(k-\)z_(k-\)h

{k = 2,7V).

Specialization of (57) for all k,(k = 2, N), followed by the successive addition of the

resulting expressions, yields:

N
rik)z_(k)h

-(dqp + ^ r*- )h A^dx3 = o,
z _-7 Dt-(*-D^

; ' (58)
<AO$3_(l)$3+ £ A3dx3=0.

k = 2Ja~l)z-ik~1)h

In light of (56), Eqs. (58) may be expressed, after a convenient redefinition of the limits of

integration, as

/>><„)+ £ r+(k'hA0dx3 = 0, (59)
rzx J<k)z-{k)hk

N
1 T—« C{k)7 + (k)h 1 T

P(») + E I A dx3 = 0,
k~ 1

± i
where p*ni = ~ P\ny The equations (59) represent nothing but a crude form of the

macroscopic equations of motion of the geometrically nonlinear theory of laminated

shells. In light of preceding developments it may be concluded that the fulfillment of the

macroscopic equations of motion (given explicitly by (35)) and of Eqs. (48) implies

automatically the fulfillment of static continuity conditions.

Remark. It should be remembered that all the developments are based on the fulfillment

of the relationship R = S = However, it may be shown that the obtained results

maintain their form even for R # S.

In this instance, when R > S, ^ is to be assimilated with R and in the summation

process occurring in the field equations only the appropriate nonvanishing terms are to be

retained.

Conversely, when S > R, then will be assimilated with 5 and further the rejection of

appropriate vanishing terms is to be applied.

8. Special cases. The results previously obtained encompass a series of special cases

involving the nonlinear and the linearized theories of multilayered shells. In the following,

several specialized versions of the previous general results are considered and the similar-

ity with certain results encountered in the field literature are pointed out. In addition, the

concept of a refined approximate theory accounting for small displacement gradients and

moderate rotations is briefly discussed.
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8.1 Linearized high-order theory of multilayered shells. Complete linearization of the

nonlinear field equations yields:3

The equations of motion:

^>L +(« - l)bZN<n\ - +P?n) + "/<"„> = 0,

L%)bpa + N&L - "L\l-1> + /><»> + - /(3„> = 0, (60)

£a^(^f"-» " byLy("y) = 0 (/, = 0je).

The strain-displacement equations:

* (r) /* —3\n , (r)

where

2ca/J = /*£$^ W*3)" V(x3)"'
r=0 r=0 (61)

2ea3 = X] (?a3(z3)r;e33 = ^ 733(®3)r.

r=0 r=0

(r) (r) (r)

Ta/3 = ^a|/3 ~~ ̂ a/3 ^3'

(r) (r + J) (r) (r)

Va3 = (r + 1) Va - (r - 1)6- 7, + V3>a. (62)

(-1 (r+i)   

T33 = (r+1) ^3 (^ = 0^)

constitute the nth-order strain measures. However, alongside with (62), several other

variants of the strain-measures may be defined (see in this sense [32]).

The constitutive equations. Starting with the linearized form of the variational equation
(r)

(29) and by adopting ytJ (as defined by (62)) as the strain-measures, one obtains the

constitutive equations under the form:

TOC0 _ 1

(n) - 2 2-,

N ' dW(k) dW(k)
+

  I ^(™) q(")

k=1\d^a0 dl0a.

N aW(k)

^ = E To- (63)
k=i d -y33

NM = 5 E
N ' dW(k) dW(k)

+
2 ^ I a(") a(")

k=1\dloc3 d 13a

3 As in the special case considered in [5, pp. 479-480], some precautions are to be exercised during the

linearization process.
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The boundary conditions.

and

vaL"{»n) = vahl»n) on rs,

"a^f»>="aNf„) («=0)

(r) (r) (r) (r)  

V„ = Vp; y3 = V3 on IV (r = 0^). (64)

P(n> = [/*M503*(*3)"]<,./-ii)A*.

3 T 33/ 3 \ W1 {N)z-{N)h c +
P(n) = l/*a (*') onS-

As it will be shown in a separate memoir, the linearized field equations exhibited before

fulfill a series of necessary requirements which are reminiscent of the ones formulated

within the classical theory of single and multilayered shells (see in this respect [23, 33, 34]

and [5], respectively).

The results include as special cases some linearized refined variants of single and

multilayered shell [21-23, 35] and plate [17-19, 36] theories. In addition, the equations in

Sec. 8.1 may be used to model the high-order theory of isotropic shells undergoing

infinitesimal displacement gradients and finite strains. Towards this end, W in the

constitutive equations (63) must be expressed appropriately (see, e.g., [37-39]).

It is also to point out that for the case of symmetrically laminated flat plates, the

appropriate linearized field equations split exactly into two groups defining the high-order

bending and stretching theories. For single-layered anisotropic flat plates the problem of

splitting of the high-order state of stress was discussed in [5, chap. III].

8.2 Specialized variants of the geometrically nonlinear theory of multilayered shells. A

special refined variant may be obtained upon the following representation of the displace-

ment field:

(0) (1) _ (0) (1)

K= K + *3 K . ^3 = V3 + X3 v3 (65)

(which corresponds to& = 1 in (14)). The basic field equations derived in Sections 6.1-6.5

may easily be specialized for this case. Some results pertaining to this theory are reported

in [25, 5, 32, 40-43]. Moreover, a large diversity of high-order theories may result through

various selection of ^in (14).

Employment in (11) of the partially nonlinear strain-displacement relationship

2<u - ru * vn + Vm <66>

considered in conjunction with (65) and the further suppression in the ensuing develop-

ments of all nonlinear terms depending on Va, all these yield the field equations

appropriate to a refined theory of multilayered shells of a von-Karman type.

Several results belonging to such a theory (appropriate to single and multilayered shells

and plates) are reported in [25, 5, 44, 45] and [4, 5, 20, 46], respectively.

For the L. K. theory of multilayered shells, consistent with its kinematical constraints, it

results (see [29, 47-79]) that:
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(n) I va for n — 0,
V = < 0 o,o

- 4>a + <t> a4>\ for n = 1,

(n)

^3 =

0 for n > 2,

o ^ '
V3 for n = 0,

- |<t>a<j)3a for n = 1,

0 for n > 2,

On this basis, the field equations of the classical geometrically nonlinear theory of

multilayered shells may be obtained by paralleling the preceding developments. For the

case of homogeneous shells, some results, which concern the L. K. theory approached

along these lines, are reported in [47, 48],

The approximate shell theory developed within the classical framework and referred to

in [50] as small finite deflections approximation and in [51] as approximation of small strains

and moderately small rotations may be extended to the refined shell theory as well.

Towards this end we define the tensors of 3-D small strains and elastic rotations:

1/7=2(^11 j+Vmi),

^Vi\\j~ vmi). [ )

By postulating further the following orders of magnitude for the linearized strains and

rotations . ,, . . „ . ,. ,
V0- = 0(e2); 3a = 0(e); Q12 = 0(e2), (69)

where e2 is a small number compared to unity (e2 <k 1), the exact 3-D strain-displace-

ment relationship:

e ij + + + + (7°)

expressed in terms of the quantities defined in (68), becomes

eaP = + 2^3a^3/3'

e33 = 1?33 + I^w3^"3 (71)

Equation {1\)\ shows that in the framework of this approximate theory the transverse

shearing strains are described by linear strain measures.

Employment in (11) of (71) and by paralleling further the developments in Sections

8.1-8.9, (see also [50-52]), all these allow to derive the field equations of the refined

theory of multilayered shells characterized by small displacement gradients, small rotation

about the normal (S212) and moderately small rotations S23a. Such an approximate theory

may be developed both for the first-order transverse shear-deformation and the high-order

shell theories as well.5

4 See also [53],

5Added in proof: The theory of elastic plates was considered, along tnese lines, in the paper "Higher-order

Moderate Rotation Theories for Elastic Anisotropic Plates" by L. Librescu and R. Schmidt, to appear in the

volume "Finite Rotations in Structural Mechanics" (ed.) W. Pietraszkiewicz, Springer-Verlag, (under press),

1986.



ANISOTROPIC LAMINATED SHELLS 21

References

[1] S. A. Ambartsumian, Theory of anisotropic shells, NASA Techn. Transl. F-118,1964

121 S. A. Ambartsumian, General theory of anisotropic shells (in Russian), Nauka, Moskow 1974

[3] la. M. Grigorenko, Isotropic and anisotropic multilayered shells of revolution of variable rigidity, Naukova

Dumka (in Russian), Kiev, 1973

[4] J. R. Vinson and T. W. Chou, Composite materials and their use in structures, John Wiley & Sons, New

York, Toronto, 1974

[5] L. Librescu, Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures, Noordhoff

Internat. Publishing, Leyden, 1975

[6] R. B. Rikards and G. A. Teters, Stability of shells made of composite materials (in Russian), Zinatne, Riga,

1974

[7] E. I. Grigoliuk and F. A. Kogan, Present status of the multilayered shell theory (in Russian), Prikladnaia

Mechanika 8, 6, 1972

[8] C. W. Bert and P. H. Francis, Composite material mechanics', Structural mechanics, A1AA Journ. 12 (1974)

[9] C. W. Bert, Comparison of new plate theories applied to laminated composites, in Mechanics of Composite

Materials, G. J. Dvorak (Ed.). ASME Winter Annual Meeting, Boston, MA, Nov. 1983, 1-9

[10] J. N. Reddy, Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent

research. Shock and Vibration Digest 13 (1981)

[11] A. E. Green and P. M. Naghdi, A theory of laminated composite plates, IMA J. Appl. Math. 29,1-23 (1982)

[12] E. I. Grigoliuk and P. P. Chulkov, On the theory of multilayered shells, in Contributions to the Theory of

Aircraft Structures, Delft Univ., 171-183,1972

[13] L. Librescu, Nonlinear theory of elastic, anisotropic multilayered shells (in Russian), in Selected Topics in

Applied Mechanics, Ed. L. I. Sedov, pp. 453-466, Nauka, Moskow, 1974

[14] L. Librescu, Improved linear theory of elastic anisotropic multilayered shells (in Russian), Mekhanika

Polimerov, Part I. No. 6, 1038-1050, Dec. Nov.-Dec. 1975, and Part II, No. 1 100-109, Jan.-Feb., 1976
(English Translat. by Plenum Publ. Corp.)

[15] G. A. Wempner, Theory for moderately large deflections of sandwich shells with dissimilar facings, Internat. J.

Solids and Structures 3, 367-392 (1967)

[16] E. Reissner. Finite deflections of sandwich plates, J. Aeron. Sci. 15 435-440 (1948)

[16b] I. K. Ebcioglu, Nonlinear theory of sandwich panels, in Developments in Theoretical and Applied Mechanics,

Vol. 4, Ed. Daniel Frederik, Pergamon Press, Oxford and New York, 611-637, 1970

[17a] P. C. Yang, C. H. Norris and Y. Stavsky, Elastic-wave propagation in heterogeneous plates, Internat. J. Solids

and Structures 2, 665-684 (1966)

[17b] J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anistropic plates, J. Appl. Mech.,

1031-1036(1970)

[18] R. B. Nelson and D. R. Lorch, A refined theory for laminated orthotropic plates, J. Appl. Mech. 41, 177-183

(1974)
[19] K. H. Lo, R. M. Christensen, and E. M. Wu, A higher-order theory of plate deformation. Part 2, Laminated

plates, ASME Journal of Applied Mechanics 44, 669-676 (1977)
[20] J. N. Reddy and W. C. Chao, Nonlinear oscillation of laminated anisotropic, rectangular plates, ASME Journal

of Applied Mechanics 49, 396-401 (1982)

[21] J. A. Zukas and J. R. Vinson, Laminated transversal isotropic cylindrical shells, ASME Journal of Applied

Mechanics 38, 400-407 (1971)

[22] J. M. Whitney and C. T. Sun, A refined theory• for laminated anisotropic, cylindrical shells, ASME Journal of

Applied Mechanics, 471-476 (1974)

[23] P. M. Naghdi, Foundations of elastic shell theories, in Progr. Solid Mechanics, Ed. I. N. Sneddon and R. Hill,

4,1963

[24] E. Reissner, On a variational theory for finite elastic deformation, J. Math. Phvs. 32, 129-135 (1953)

[25] L. M. Habip, Theory of elastic shells in the reference state, Ing. Archiv. 34, 228-237 (1965)

[26a] A. E. Green and J. E. Adkins, Large elastic deformation and nonlinear continuum mechanics. Clarendon Press,

Oxford, 1970

[26b] H. Leipholz, Theory of elasticity, Noordhoff Intern. Publ., 1974

[27] B. Budiansky, Remarks on theories of solid and structural mechanics, in Problems of Hydrodynamics and

Continuum Mechanics, SIAM, 77-83 (1969)



22 LIVIU LIBRESCU

[28] P. M. Naghdi and R. P. Nordgren, On the nonlinear theory of elastic shells under the Kirchhoff hypothesis.

Quart. Appl. Math. 21, 49-59 (1963)

[29] P. M. Naghdi, On the non-linear thermoelastic theory of shells, in Non-Classical Shell-Problems, North-Hol-

land, Amsterdam, R.W.N., Warsaw, 5-26, 1964

[30] L. E. Malvern, Introduction to the mechanics of a continuous medium, Prenticc-Hall, Englewood Cliffs, 1969

[31] A. E. Green and W. Zerna, Theoretical elasticity, Clarendon Press, Oxford, 1954

[32] M. Brull and L. Librescu, Strain measures and compatibility equations in the linear high-order shell theories.

Quart. Appl. Math. vol. 40. 15-25 (1982)
[33] W. T. Koiter, A consistent first approximation in the general theory of thin elastic shells, Part I. Foundations

and linear theory, technology, Univ. Delft, August 1959

[34] B. Budiansky and J. L. Sanders, Jr., On the "best" first-order linear shell theory, in Progress in Applied

Mechanics, Prager Univerity Volume, Macmillan, New York, 129-140, 1963

[35] F. B. Hildebrand, E. Reissner and G. B. Thomas, Notes on the foundations of the theory of smalt

displacements of orthotropic shells,NACA-TN-1633,1949

[36] J. N. Reddy, An accurate prediction of natural frequencies of laminated plates by a high-order theory, in

Advances in Aerospace Structures and Materials, (Ed. Umar Yuceoglu) 1983 Winter Annual Meeting of

ASME, Boston, MA., November, 1983 (Report)

[37] W. L. Wainwright, On a nonlinear theory of elastic shells. Int. J. Eng. Sci. 1, 339-358 (1963)

[38] L. Librescu, A physically nonlinear theory of elastic shells and plates, the Love-Kirchhoff hypothesis being

eliminated. Rev. Roum. Sci. Techn-Mec. Appl. 15, 1263-1284 (1970)

[39a] V. Biricikoglu and A. Kalnins, Large elastic deformation of shells with the inclusion of transverse norma! strain.

Int. J. Solids Structures 7, 431-444 (1971)

[39b] Y. Yokoo and H. Matsunaga, A general nonlinear theory of elastic solids, Internat. J. Solids and Structures 10,

261-272(1974)

[40] L. M. Habip and I. K. Ebcioglu, On the equations of motion of shells in the reference state, Ing. Archiv. 34

(1965)
[41] L. Ia. Ainola, Nonlinear Timoshenko type theory of elastic shells (in Russian), Izv. Akad. Nauk. Eston. SSR,

14, 337-344(1965)
[42] K. Z. Galimov, The theory of shells with transverse shear effect (in Russian), Kazan Univ., 1977

[43] K. Z. Galimov, The bases of the nonlinear theoiy of thin shells, (in Russian), Kazan Univ., 1975

[44] I. Oshima, Y. Seguchi and A. Shindo, On nonlinear shell theories. Bull, of the J.S.M.E. 13, 1155-1164 (1970)
[45] I. K. Ebcioglu, Non-linear theory of shells, Internat. J. Non-linear Mech. 6. 469-478 (1970)

[46] C. I. Wu and J. Vinson, Influences of large amplitudes, transverse shear deformation and rotatory inertia on

lateral vibrations of transversely istropic plates, J. Appl. Mech. 36, 254-260 (1969)

[47] K. Sumino, Nonlinear theory of thin elastic shells based on Kirchhoff hypothesis, Recent Researches of

Structural Mechanics, Uno Shoten, Tokyo, 231-244, 1968

[48] T. Nakamura, Foundation of geometrically nonlinear theory of the continuum based on Kirchhoff-Love

assumptions, Report of the Institute of Industrial Science, Univ. of Tokyo, 20, 1-49 (1971)

[49] R. Harnach and W. B. Kratzig, Allgemeine Theorie geometrish nichtlinearer insbesondere leighter

Flachentragwerke, Mitteilung Nr. 73-6, April, Inst, fur Konstruktiven Ingenieurbau, Ruhr-Univ. Bochum,

1976

[50] W. T. Koiter, On the nonlinear theory of thin elastic shells, Proc. Konink Ned. Akad. Wetensch. Ser. B. 69,

1-54(1966)

[51] J. L. Sanders, Jr., Nonlinear theories of thin shells, Quart. Appl. Math. 21, 21-36 (1963)

[52] J. G. Wempner, Mechanics of solids with applications to thin bodies, McGraw-Hill, 1973

[53] R. G. Jeffers and M. A. Brull, A large deflection theory for thin elastic shells, Israel J. Tech. 13, 111-121

(1975); Proc. XVII Isr. Annu. Conf. Aviation and Astronautics, May 1975


