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Abstract. A similarity transformation is used to reduce the system of second-order

equations, governing elastodynamic plane problems in an orthotropic medium, to a

first-order elliptic system of the Cauchy-Riemann type. A complex variable notation is

then introduced to derive in a straightforward way the solution of two noticeable

elastodynamic crack problems.

1. Introduction. The problem of determining the stress field induced by a steadily

propagating crack in a two-dimensional elastic medium is of primary interest in fracture

mechanics. A great many results have been obtained for isotropic materials, and dutiful

mention is made to the more significant analytical studies.

Yoffe [1] discussed the plane problem of a crack of constant length moving with

constant speed in an isotropic medium stressed at infinity. The same problem was solved

later by Radok [2] who used a complex variable method.

Craggs [3] considered the shape of a semi-infinite crack loaded over a segment of its

edges. In solving the related boundary value problem, he used Cauchy's integral represen-

tation which, however, does not permit one to determine analytically the singular terms of

the solution.

The antiplane problem for various crack configurations has been solved by McClintock

and Sukhatme [4]. Sih [5] revisited, from a mathematical point of view, the problems

studied in [1-4], giving a general treatment founded on a complex variable formulation.

Problems in steady-state crack propagation in an isotropic strip of finite width have

been examined by Sih and Chen [6, 7], Nilsson [8], Tait and Moodie [9, 10], and Singh et

al. [11]. Recently, Georgiadis and Theocaris [12] gave a review on steady-state elas-

todynamic crack problems where the complex variables approach is emphasized.

The counterpart of solved problems for anisotropic materials is somewhat poor, which

may be due to mathematical complexity of such problems. Atkinson [13] applied the

method used in [3] to study the steady-state propagation of a semi-infinite crack in an
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aelotropic medium. He found out, as in [3], the singular part of the solution through a

conjecture concerning the behavior of the material at the crack tip. Kassir and Tse [14]

used an integral transform method to solve the plane problem of a steadily moving

Griffith crack in an orthotropic medium. Danyluk and Singh [15] applied the same

technique to obtain closed-form solutions to antiplane problems of a crack moving in an

orthotropic layer.

The author [16] has recently extended the analysis of [15] to a strip made up of an

anisotropic material with one plane of symmetry. In this paper a similarity transformation

is used to transform the system of equations of motion, governing elastodynamic plane

problems in an orthotropic medium, to a first-order elliptic system of the Cauchy-Rie-

mann class. The complex variable approach is then used to solve, in a straightforward

manner, the boundary value problems related to steady-state elastodynamic crack prob-

lems.

2. Mathematical preliminaries. For an orthotropic medium under plane strain condi-

tions, the equations of motion become [17]

r Qla 4- r 4.r \ —
dx2 dy2 dxdy P ^

and (2-1)

— 4- r 4- r \ —

■dx2 22 dy2 1 12 66j P dt2

in which u = u(x, y, t), v = v(x, y, t) are the displacement components in ,x and y

directions, t is time, p is the density of the medium, and Cl f are the elastic moduli.

The stress-strain relations in terms of the displacement components are as follows:

_ r — + r —
" Ll1 3x + Ludy '

-„-Cu^ + Cu^, (2.2)

_ r I 9" , 9£\
a*y dxj'

where axx, a , and axv are the Cartesian stress components.

Introducing the transformation X — x - ct, Y = y, t = t, where c is a constant speed,

and assuming u = u(X, Y), v = v(X, Y) allows the following simplification into Eq. (2.1)

to be made:

32 u .n32i> 32 u

dx ^dxdY ay2

32f 3 2u d2v

Yx2 + ^ldXdY + 972 ~ °>
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with

2($ = r~—"IT- 2/3,= f
Cu(l-M?) Cjl - A/;-)

c c <24)66 ^22

Cu( 1 - M2) ' 1 C66(l - M2) *

The quantities M = c/i> (7 = 1,2), where v1 = (Cu/p)1/2 and v2 = (C66/p)1/2, are the

Mach numbers which, in what follows, will be assumed less than one (subsonic condition).

The system (2.3) may be rewritten as

30 3$
!Jx + AlW = (), (2-5)

where I is the 4x4 identity matrix and

A =

0 a 2/3 0
-10 0 0

2/Sj 0 0 <*!
0 0-10

<S>(X,Y) =

I \ . .
u>x*1

*3

\«»4

M,y

^ >X

V>yI

(2.6)

in which ( , ) denotes differentiation.

It is assumed that A has no real eigenvalues so that the system (2.5) is elliptic. Hence,

the characteristic equation for the matrix A

X4 + 2a^X2 + a 2 = 0,

where

2a1 = a + a, — 4/?/?l5 a2 = ocat,

provides the conjugate pairs of eigenvalues Xl 2 = ±ip and X34 = ± iq, with

/ / , \l/2\!/2 / / 2 \1/2\V2
P = - K a2) J ' 1 = + K - a2) j

positive constants.1 The corresponding eigenvectors may be chosen to be

hm = —t
a — p2

2 Pp2

ilfip

-ip(a - p2)

a- p2

, hw, 1
2

a — q

2 pq2

i2Pq

-iq(a - q2)

a - q1

h(2). (2.7)

In the new basis

(Im h(l\ Re h{1), Im /;(2), Re h(2)), (2.8)

''Note added in proof. This is the occurrence in many cases of practical interest. The case of complex

eigenvalues may be also considered in the context of this approach.
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the matrix A is represented by the matrix B = T~lAT with

0 ^4 0
a — p a — q

T = 2Pp n Wq
2 2pz a — q

0

-p 0 -q 0

0 10 1

(detr^O). (2.9)

Moreover, the following invertible transformation,

<D(X, y) = T*(X, Y), (2.10)

holds where *(.¥, 7)isa4x 1 matrix-valued function with real entries of the indepen-

dent variables X and Y. Hence, in the basis (2.8) the system (2.5) may be rewritten as

3* 3*
I*y + bw= 0' (2-11)

where it may be shown that

B =

dX ' "dY

0 -p 0 0

p 0 0 0
0 0 0 -q

0 0^0

(2.12)

Consequently, combining (2.12) with (2.11) yields

23*! 3*2 3*! 3*
ITT = "aTi""'

3*3 _ 3*, 3*3 3*4

dX ~ 9^ ' 3Y2 ~ dX ■

(2.13)

with Yx = Y/p and Y2 = Y/q.

Assuming continuity of the partial derivatives up to the second order, the Cauchy-Rie-

mann equations (2.13) grant that *y ( j = 1,2) and *A (k = 3,4) are pairs of conjugate

harmonic functions in the z1 = X + iY1 and z2 = X + iY2 plane, respectively.

Combining (2.10), (2.9), and (2.6) and substituting into (2.2) leads to

Q6
J XX 2fip2 +(20-a)

(a - p2)( 1 - M2)

2 /3q2

*2

+ + (2/3 - a) *4 , (2-14)
(a - q2)(\ - M2)

aYY = Q6 [ P2k\^2 + q 2^4 ] > (2-15)

°XY= ^*66 t + ^4^3]' (216)
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in which

kx = a] p2 [(! - M22)(a - p2) - 20], k2 = a ] q2 [I1 ~ Mi)(a ~ I2) ~ 2j8],

k3 = -(A^ + M2), A-4 = -(^2 + Mj?).

Introducing complex notation by setting

fii(zi) = % + i%, Q2(z2) = *3 + /*4, (2.17)

where fl^Zj) and fl2(z2) are holomorphic functions, the more relevant stress components

(2.15) and (2.16) become

ayy = ^66 ^m[ P2k$i{zi) + Q2/c2^2(^2)]' (2-18)

aA'y = (-66 ̂ e[ P^3^l(zl) + ( ^2 )] • (2-19)

By means of the representation (2.18) and (2.19), closed-form solutions to boundary value

problems, related to some elastodynamic plane problems of cracks in an orthotropic

medium, may be obtained.

3. Two remarkable examples. The linear relationships (2.18) and (2.19) allow one to

reduce some boundary value problems to appropriate Dirichlet problems for sectionally

holomorphic functions. The first example is to find the solution of the plane problem

referring to a semi-infinite crack, steadily moving at a constant rate c along the x-axis,

when a uniform traction p0 applied to a finite segment a of its edges and the medium

undisturbed at infinity is assumed. Taking into account the symmetry and referring to the

moving coordinate system (A', Y), the boundary conditions become

O yy( X, 0) ~ ~P0> ^ ^ ^ 0,

ayy(*,0) = 0, -oo < X < -a, (3.1)

a^y(Z,0) = 0, 1*1 <oo,

with all stress components vanishing at infinity.

Using (2.18) and (2.19), the stress boundary conditions (3.1) yield the following

Dirichlet problems (see Appendix):

ReA;(X) = ~°<X<0,
J 10, -oo <X<-a, '

where

A,
4 (3-3)

a / ^ - qk2k3)n , ,
A2(z2)= Y "2(^2)

are sectionally analytic functions, behaving respectively as 0(l/z,) at infinity. The

solutions to (3.2) are given by [18]:

a / \ Po P JXdX
AAZJ> = r r J (3-4)
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Evaluating the Cauchy-type integral (3.4), combining with (3.3), and substituting into

(2.18) and (2.19), yields:

JYY~ „/ „L V 1 L \ Im pk\kt
■n{pk^4 - qk2k3)

2/J-r - log
][z^ + i{a

]fzi ~ i{a

-qk2k

Po^-3^4 d„It( r®~ rq

2'Vf "log
2

y- 2 + IVfl

- iia
(3.5)

^ 77(pk1k4 - ^2/c3)Re 2'lV zi V z:

+ log (3.6)
{JT2 + i{a}{Jz[ - i{a)

(yST ~ + 'Vfl)

Introducing polar coordinates (^, 8f), measured from the tip of the moving crack, with

r1 = (r/p)( p2 cos2 8 + sin2#)1''", r2 = (r/q)(q2 cos2 8 + sin2#)1/2,

tan0x = (tan 0)/p, tan 82 = (tan 0)/q,

being (r, 6) polar coordinates in the physical plane, permits us to represent the closed-form

expressions of the relevant stress components as

■Jr(pkik4 - qk2k3) \pk^k*

-qk2k2

a 81 _i . .
— cos ~Y + tan 1 ©!(/"!,
r\ z

a 02
cos — -1- fn"Y + tan 1 02 (r2, d2) (3.7)

= Ppk3kA

1xY 77( pk\kA — qk2k3

a . f/, a . v 2
— sin — w — sin
f i 2 \l r2 2

fl(r2' )
T log

/l ( rl > )
(3.8)

where

2 Jarj cos 0 /2 (r. + a) + 2^ sin (9/2

8,M)- 0_rj . /,M)-
(r; + a) - 2^arj sin6^/2

When an isotropic medium under plane strain is considered for which Cn = C22 = A +

2ju, C12 = A, C66 = jn, where A and jn are Lame's elastic constants, the above results are in

agreement with those reported in [3, 5], In particular, the stress component (3.7) coincides

with that given in [12] where the above problem has been recently revisited.

The second example finds the solution of the plane problem referring to a straight crack

of constant length 2a, with uniform tractions p0 applied to its edges, propagating along

the x-axis with constant speed c, in an orthotopic medium undisturbed at infinity.
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Taking the symmetry into account and referring to the moving coordinate sysem (X, Y),

attached to the midpoint of the crack, the boundary conditions may be written as

ary(*0) = ~Pqi l^l<a' , ,

aXY(X, 0) = 0, | A'| <oo,

with all stress components vanishing at infinity. Starting again with (2.18) and (2.19), the

sectionally analytic functions (3.3) are determined from the boundary value problem (see

[18], §46.4, p. 457):

ReA j(X)=Po/C66, \X\<a. (3.10)

The solution to (3.10), unbounded (Holderian) at the ends x = ±a, is (cf. [18])

aM = 7T TTTT-!|. (3-11)
C,66

Z;

Hz,)

where F(z;) = (zj - a2)l/2 is the Plemelj function.

Combining (3.11) with (3.3) and substituting into (2.14), (2.15), and (2.16) yields the

following expressions for the stress components:

Po I k 4
O YY —

a(pklk4 - qk2k3) \ p

k.

2Pp' + w -«)

_1
q

{a-p2){l-M?)

2/8 q2

Re
z

1 -

+ (2/3 - a)

°YY (pk1k4P-qk2k3){pklk*Re

(a - q2)( 1 - M2)

qk2k3 Re

Re
z

1 -

z
1 -

-p0k3k
Oyv = / , , , / Im'XY

{pkxk4 - qk2k3) F{z,)

F{zi)

- Im

1 -

Hz2)

z,

n* 2)

1
Hz2)

n* 1)

, (3.12)

(3.13)

(3.14)

It may be shown, with a lot of algebra, that the above results coincide with those

presented in [14] where an integral transform method has been employed to solve the

problem.

The isotropic case is recovered according to [5].

Appendix. By (2.19), the boundary condition (3.1) has the form

pk3[ttt{X) + ^(X)] +qk4[ai(X) + £22+(*)] = 0, 1*1 <00, (Al)

where a bar denotes complex conjugation and (X), i = 1,2, are the limiting values of

R,(z,) as z, -> X from the upper half-plane, Y > 0. By defining two functions

/^3fii(zi), Y > 0, (qk4n2(z2), 7>0

MZJ [-pkfri'i).- Y< 0' h[Zl) \-qk4Q2(z2), Y< 0'

where fi,(z,) = S2,(z,), the relation (Al) becomes

[f1(X)+f2(X)} + =[fl(X)+f2(X)]~, \X\< 00. (A2)
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Recalling that the stress components must vanish at infinity, the Liouville theorem will

ensure that fx(zx) + f2(z2) = 0 when zx = z2. Consequently,

pk$x(zx) 4- qk£l2(z2) = 0, zx = z2. (A3)

By (A3) and (3.3) the stress component (2.18) becomes

°YY = ~^66 -/^l('zl) = ~Q6 -^2(z2)' Z1 = z2> (A4)

whence boundary value problem (3.1) yields problem (3.2).
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