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Abstract. In the simplified model of geodesy where the earth is conceived as a rotational

ellipsoid, if the eccentricity of the ellipsoid is to be determined from gravity measure-

ments, an equation of the form y = x — zh(x) is to be solved for where y and z are

small parameters whose values can be measured and h is a known function. We obtain the

expansion of jc in powers of y and z by means of the general Lagrange-B'urmann

formula.

1. The problem. Using the standard notations of physical geodesy,

a = major axis of the earth ellipsoid,

GM = product of the earth's mass and the gravitational constant,

J2 = a constant in the expansion of the normal gravity

field in spherical harmonics, and

co = angular velocity of the earth,

the equation satisfied by the eccentricity e of the ellipsoid may be stated as follows [1,4]:

(1)

Here 2 q0 is a known function of e,

2q0 = (l + 3/e'2) arctane' — 3/e', (2)

where

?' = e/]/1 — e2 (3)
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is the "second eccentricity." The constants a, GM, J2, to are either known or can be

obtained accurately from gravity measurements. Equation (1) thus serves to obtain

accurate values of e from gravity measurements. Our concern is with solving the equation

and with exhibiting the dependence of the solution on the parameters.

The equation has the form

y = x — zh(x), (4)

where

y =

2 3
co a

GM '

are known and x = e2 is to be determined. The function

4 r3/2
h(x) = TT~ —j— (5)

15 2<?o(/0

is known. In the physical problem on hand, the numerical values of y and z are both of

the order of 3 X 10"3.

2. Numerical solution of the equation. This is discussed very thoroughly in [1], and

values of e are obtained that are more accurate than those given in the literature. It

follows from Eq. (4) of [1] that

<6)

where F is the hypergeometric function. Thus h is analytic not only for 0 < x < 1 but

also at * = 0. Moreover, since all coefficients in the series (6) are positive, as x increases

from 0 to 1, h(x) decreases from h{0) = 1 to h( 1) = 4/15ir. By writing (4) as a fixed

point equation,

x = y + zh(x), (7)

we see that for positive y and z such that y + z < 1 the equation has precisely one

solution, which, if z satisfies the additional condition

|zh'{y + z) | < 1,

can be found as the limit of the iteration sequence defined by x0 = 0,

xn + l = y + zh(x„), n = 0,1,2,....

The only numerical problem that arises is a considerable loss of accuracy, due to

subtracting large numbers that are nearly equal, if h is evaluated by means of the defining

relations (5) and (2). It is much preferable to compute h from the series expansion (6),

which converges rapidly if x is small.

3. Analytical solution. Iteration does furnish a numerical solution of (4) for given y and

z, but it does not show how this solution depends on the parameters. We therefore

endeavor to find a series solution for (4). Our tool is the multidimensional Lagrange-Bur-

mann formula as discussed in [3], We summarize these results briefly for convenience.
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Let P = (Pu P2,..., P„) be an admissible system of n power series in n indeterminates

x = (jCj, x2, ■. ■, x„). ["Admissible" means that Pj = c-x - + higher-order terms, where

Cj =£ 0.] Let Q denote the inverse system of P. ["Inverse" means that Q substituted into P

yields x.] Let R be an arbitrary (single) Laurent series in x. Then the series obtained by

substituting Q into R is given by

R°Q = Z Res(tfP"kT')x\ (8)
k

where the summation is with respect to all index vectors k = (kv kn), and where

Y k   v^l V^2 . . .
A Aj A2 ,

e = (1,1 1),

P' is the Jacobian determinant of the system P, and Res denotes the residue, that is, the

coefficient of x"e, in a Laurent series. The result (8) holds formally, that is, regardless of

whether or not the series involved are convergent.

We require an application of (8), also given in [3]. Here we consider two systems of

complex variables,

X = {xl,...,xp), y = (y1,...,yq),

and a system of p functions

fi(x,y), / = 1,2,..., p,

analytic near (0,0). We write f = and we denote by f' the Jacobian determi-

nant of this system with respect to the x,, regarding the y; as parameters. Assuming

f(0,0) = 0, f (0,0) *0,

the system of equations

f(x,y) = 0 (9)

for sufficiently small \yj\ has precisely one solution x(y) which is analytic in y and which

satisfies x(0) = 0. We wish to find the coefficients of the power series x(y) or, more

generally, of r(x(y),y), where r is a given analytic function.

For a solution by means of the Lagrange-Burmann formula we assume, without loss of

generality, that the matrix

|^-(0,0)j, i,j = l,...,p,

is the identity. (This can be achieved by forming suitable linear combinations of the

functions /, and of the variables xy.) In the power series expansion of f(x, y), let By denote

the terms that are linear in the v., that is,

f(x,y) = x + By + terms of degree > 2.

(B is a matrix with p rows and q columns; we think of y as a column vector.) Consider the

map of a (p + g)-dimensional neighborhood of (0,0) defined by

(»)-(f(x,y)-By) (w)
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The system of p + q power series representing this map near (0,0) is admissible; in fact,

its Jacobian matrix at (0,0) is the identity. Hence the inverse system

<»>

exists and can be represented by the Lagrange-Biirmann series. Letting

P = f(x,y) - By,

and noting that the Jacobian determinant of the whole system (10) is just P', the Jacobian

with respect to x, one obtains in view of y = v for an arbitrary function r

r(x(u,v),v) = Yj Res{r(x,y)P"k~ey m"eP'(x,y)}ukvm. (12)

1i£Z'
me 7.1

Now evidently f(x,y) = 0 if and only if u = Bv. Since v = y, the solution of (8) thus is

x(y) = x(-By, y),

and from (12) we find the explicit series expansion

/■(*(y).y)= L Res{ ••• }(-By)kym, (13)

k 6Z'
me?

where the residues are the same as in (12).

4. Application to the geodesic equation. To apply (13) to the solution of (4), we let

p = l,q = 2,

*-<*). »-(£)-(,)•

The equation to be solved is /(x, y) = 0, where

/(x, y) = x - y - zh(x),

which in order to isolate first-order terms we write in the form

/(x,y) = x - y - z - zxg(x),

where

g(*) = ^(M*) - 1) = 0(1).

We see that

By = -y - z.

The map (10) in our case is thus

o- I p\
y\, P = x( 1 - zg(x)).
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If r(x, y) = x, (13) now yields

x{y,z)= E Res {xP-k-lP'y-m-lz-"-x}{y + z)kymz\ (14)

k> 0
(m,n)eZ2

and it only remains to evaluate the residues.

Since P does not depend on y, we need m = 0 to obtain a residue in y. Using

p-k-ip' = _hP-ky
k

we thus get

x(y,z) = - E T Res^f*^"*)^""-1}^ + z)kzn,
k>o K

o

where the residue now is taken only with respect to the variables x and z. In view of

P = x(l -zg(x)),

we may use the binomial series to obtain

p~k = x-k{\ -zg(x))~k

= x-kt(-l)l(~jC)zlg',

1=0 v < /

where ("*) is a binomial coefficient. Now for given k > 0 and n 2; 0,

Resxz{ x( P~k)'z~"~l} = Resx. of coefficient of z" in x( P~k)'

= -Res,, of coefficient of z" in P

= -coefficient of xk 1 in (-!)"( Jf]gk-1 I i\n( ~k\„n

where Resv denotes the residue with respect to the single variable x, and where the

coefficients g[n) are defined by

[g(*)]"= E 8k")x"6k*Kk

k = 0

We thus finally let

oo / i \ n

(y,z)= E n)si"\{y + z)kzn
k>o * x '

= J + z + E + *)**". (15)
k> 0
«> 0
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5. Truncation error. In numerical computation, the series (15) will have to be truncated,

for instance, by neglecting the terms where k + n ;> p for some positive integer p. We

therefore estimate the truncation error

From (6), the coefficients an in

k + n =p

k>0,n>0

[A(*)l 1 = £ anxn
n= 0

are easily seen to satisfy \an\ < 1. In view of a0 = 1 we therefore have for |jc| < p, p < 1,

|[/!(x)]_1| ^ i - p - p2 - ■ ■ • = (1 - 2p)/(l - p),

and thus, if 0 <, p < 5,

(! - P)/(l - 2p).

Using the principle of the maximum, there follows for |x| ^ p <

1
|g(*)l<

Cauchy's estimate now yields

P \ 1 - 2p 1 - 2p"

I w I 1 1 1
(1 - 2 p)n pk' <P< 2-

Now let \y 4- z\ ^ px, \z\ <? p2■ In view of

(-■0 [ -k\ = }_(k + n — l\= ^ (k + n\
k \ n ] k\ n ) k + n\ n )'

there follows

£ ^-(~nk)gi"-\(y + z)kzn^ l (2)(i -2pynp-k+vip"2
k + n = q 'v v ^ k + n = q

k > 0,n > 0

Pi Pi + P± 1

q \1 - 2p p

Therefore, if

Pi . Pi
CT =

1 - 2p p

we find the truncation error estimate

P o

+ ^<1, (16)

tP(y>')\Zp (1?)



LAGRANGE-BURMANN EXPANSION IN GEODESY 171

Choosing, for instance, p = j, there results the simple formula

■ I 1 (3Pl + 3p2)p

6. Numerical values. It remains to compute the coefficients g["\ This is a routine

computation which is best performed with a symbolic manipulator. Using the MAPLE

program of the University of Waterloo [2] we computed the g[n) as well as the coefficients

(.>_ (zni(-k
k k

of the series (15) in rational arithmetic for 1 k <; 10, 1 ^ n ^ 10. Complete tables of

these values are available from the authors on request. Here we give only the values that

are required to write the terms of the series for k + n < 5:

h(x) = 1 ^ _ 13_X2 _ J18^3{> 14 392 181104

, , 9 13 4189 ,

392*~ mi04X ~ '•

r , ,l2 81 117[g{x)] = 196 + 2744X + •••'

3 729

x — •

[g(*)]~ = " 2744

This results in

/ ^ / Jn 9 81 2 729 ,x(y,z) = (y+z)l[l--z + — z -—z +

, ,i( 13 351 2
+ ^y + ^ { 3922 + 5488z + "

. ,31 4189
+ (^ + z)rTmo4z+ "

(19)

From the values of the parameters given in [1] we have

y = 3.247890 X 10"3, z = 3.461391 X 10"3.

Substituting these into (19) we get

x = 6.694379 X 10"3

with a truncation error t5(y, z), which by (18) is less than

J_ [3 X 6.709281 X 10-']s_L25x
15 0.979872

and which thus is less than the error in jc due to rounding or measuring errors in y and 2.
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