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PLASTIC STRESSES INDUCED BY A RIGID RING EMBEDDED IN A

THIN ANISOTROPIC PLATE UNDER UNIFORM TENSION*

By
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Introduction. The presence of a rigid fastening ring (Fig. 1) in a thin infinite sheet,

subjected to remote uniform tension ax, is expected to affect the equibiaxial stress field in

the vicinity of the rigid boundary. Here we present an analytical solution to this problem

for pure power-hardening plastic materials, with transverse plastic anisotropy, modeled by
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Fig. 1. A rigid ring is embedded in an infinite sheet subjected to remote uniform tension aoc. The radial

coordinate is denoted by r and the rigid boundary is at r = a.
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a theory proposed by Hill [1], The effective stress ae is defined as

2(1 + R)aem = (1 + 2«)|a1 - a2f + | ctx + a,f, (l)

where are the in-plane principal stresses, and parameters (m, R) characterize the

normal plastic anisotropy of the sheet. For the problem considered here we may identify

the principal stresses with the polar components (or,ae). The dependence of the yield

locus (1) on parameters (m, R) is illustrated in Fig. 2 for the relevant quadrant where both

stress components are positive. Note that the standard Mises and Tresca loci are obtained

with (m = 2, R = 1) and (m = 1, R = 0), respectively.

The stress concentration problem, for a rigid circular inclusion, has been solved by

Yang [2] using an earlier anisotropic theory proposed by Hill in [3], That theory is just a

particular case of (1) when m = 2. A complete elasto/plastic solution to the problem, for

Fig. 2. Variation of the yield locus with parameters (in, R) when both stress components are positive. The

Mises material is described by ( m = 2, R = l),and the Tresca material is described by (m = 1 ,R = 0).

The heavy lines show the operative parts of the yield locus. With m = 1 only the point ar = ag = =

(1 + R)oe is operative.
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a restricted version of (1) with m = 1, and accounting for linear strain hardening, has

been given recently in [4].

The analogous problem of the stress concentration at a circular hole has been treated in

several papers [5-8]. The analysis by Budiansky [7] contains a general investigation with

different families of constitutive relations accounting for plastic anisotropy.

The solution in this paper is within the usual framework of axially-symmetric, plane-

stress, small-strain plasticity. Elastic strains are neglected and changes in the thickness at

the rigid boundary are permitted. Contact is made with the earlier result given in [2] for

m = 2.

Analysis. Anticipating that ar > ae > 0 throughout the entire field, we rewrite definition

(1) in the form

2(1 + R)a« = (1 + 2R)(or - ae)m +(ar + oe)"'. (2)

Relation (2) is identically satisfied by the parametric representation

or — og = /(sina)2/mae, (3a)

ar + ae = H {cos a)2/"'oe, (3b)

where

*-(2 + 2*)'* J-(£%)'". (4)

The stress components are therefore given by

or = Srae, ae = Sgae, (5)

with

Sr = 7[//(cosa)2/"' + J(sina)2/m], (6a)

Se = ^[//(cosa)2/m — /(sina)2/'"j. (6b)

For the class of materials considered here it is possible to integrate the constitutive

relations of the flow theory associated with (1). This leads to the deformation theory-type

constitutive relations

er=I>, Eg = r> (7)

where (er, e6) are the usual strain components,

T-, 1 / \ 2(m- \)/m 1 / . \2(m — l)/m /0 \
I; = — (cos a) + — (sin a) , (8a)

M J

Te = ^(cosafm-1)/m -\(srna)2im-1)/m, (8b)
ti J

and e is the effective plastic strain determined by the uniaxial characteristic

e = K/ao)"> (9)

where a0 and n are material constants.

With u denoting the radial displacement, we have the kinematical relations

er = du/dr, ee = u/r, (10)

which may be conjoined to form the compatibility equation

rd£g/dr + e0 — Er = 0. (11)
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Now, we combine the equation of equilibrium

rdar/dr + ar - a9 = 0 (12)

with (11) and eliminate the radial coordinate, thus obtaining the differential relation

(ar - ae) dee +(er - ee) dar = 0. (13)

Substituting in (13) the stresses from (5) and the strains from (7) gives, with the aid of (9),

dae/ae = /(a) da, (14)

where

(sr-s,)iY+(rr-r,)s;
/(**/ C \ F _i_ (F F \ o v^/

\Sr S#) n rg + (Yr rg) Sr

and the prime denotes differentiation with respect to a. A further substitution of (6) and

(8) results in

, , / 2 \ (m — 1) tana +(m — 2)/(tana)<m 2)/m + /2(tana)<3m A)/m , .

\ YYl / I i \ r/♦ \(2m — 2)/m jit. \(2m- 4)/m ' ^ '
v ' n -(n - l)/(tana) + I (tana)

where

I = H/J = (1 + 2R)1/m. (17)

The integral of Eq. (14) provides the solution of the problem; once the dependence of ae

on a has been determined, the corresponding expressions for the stresses and the strains

follow from (5) and (7). The spatial profiles of these quantities can be found by

transforming, from parameter a to the radial coordinate r, through the relation

d, s; + x,/(») ,
7 s^rsr d°- <l8)

which is obtained from (12) with the aid of (5) and (14).

In order to solve (14) we need to know the boundary data. At infinity, where

or = ag = ax, we have from (3a) that a = 0, while from (1) we find that ae = (2/H)a00.

At the inner boundary, where u — 0, the circumferential strain ee has to vanish or, from

(8b),

tana„ =/^",/(2"^2). (19)

Thus, parameter a varies from zero at infinity to the value given by (19) at r = a. The

stress points on the yield locus will therefore move along the corresponding heavy parts

shown in Fig. 2. Note, however, that with m = 1 parameter a is identically equal to zero

over the entire field, and the only operative part of the yield locus is the corner point

ar = ag = ax = (1 4- R)ae. The solution for this special case is different from the one

given by (14), as will be described shortly.

A convenient measure of the stress field near the rigid ring is given by the stress

concentration factor, defined as

k = ae(r = a)/a00. (20)

Thus, integration of (14) from infinity to the inner boundary gives

k = (^) exp J "f(a)da. (21)
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Illustrative numerical results obtained from (21) are shown in Fig. 3. Also shown are the

reference curves k = 2/H, which give the ratio ae/ax for a uniform sheet under

equibiaxial tension. Note that this is also the asymptotic value of (21) as n becomes very

large. It may be concluded from Fig. 3 that the n-sensitivity of the local stress field near

the ring increases with parameter m but decreases with parameter R.

When m = 2, definition (1) and its associated constitutive relations are reduced to the

earlier anisotropic theory given by Hill [3]. The integral in (21) can then be expressed in a

closed form, as observed already in [2], namely

k =
1 + R

it + 1 4* 1R

v'2(l + R)( 1 + 2 R)

(n + \+ 2R)/(n+\ + 2R)

exp
(n - lWl + 2R 1

arctan
n2 + 1 + 2R ft + 2 R

A further specification for the Mises material, with R - 1, reads

n + 3
(n + 3)/(«z + 3)

t-|ir1 exp
77 (n — 1)

2)[3 (n2 + 3)

(22)

(23)

Analogous expressions for the stress concentration at a circular hole (free boundary) are

given in [7], [6], and [5],

For materials with m = 1 the entire field is in an equibiaxial state of stress with the

obvious result

k = 1/(1 + R). (24)

The analogous expression for the hole problem [7] is

v(l+2«)/(«-l-2K)

k =
1 + R (tT2^) • ^

When R = 0 we obtain from (24) and (25) the stress concentration factors for the

standard Tresca material.

The constitutive relations for the rigid-ring problem when m = 1 are not given by the

usual normality rule since the whole field is at the corner regime of the yield locus. Instead

we use the plastic work-equivalence relation, which leads here to the relation

Er + £e = TT^6' ^

Inserting (9) and (10) in (26) results in a differential equation for the radial displacement,

with the solution

(<-»/«.)" tr_2!) (27)

2(1 + R)
n+ 1 r
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Fig. 3. Stress concentration factor for different values of the anisotropy parameters (m,R) and hardening

parameter n. Note the results for the Mises material (m = 2, R = 1) and the Tresca material

(m = 1, R = 0). The heavy lines show the reference level k = 2/H for a uniform sheet. The insert

shows kr/k for different m and R.
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It follows from (27) that the strain-rates ratio

ke/er=(r2-a2)/(r2 + a2) (28)

remains bounded between 0 (at the hole) and 1 (at infinity).

Finally, we mention that the radial stress concentration factor defined as kr = ar(r =

a)/ox is equal to Sr(aa)k or, with the aid of (6a) and (19),

kr = (J/2)(1 + (29)

Thus, the ratio kr/k is independent of n. That ratio is always greater than one (Fig. 3), so

that kr > k. With m = 1 and m = 2 we get the simple relations

K
k 1 = 1

kr

i + R, -f = / + R • (30)m-2 A + 2 R
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