
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLVI, NUMBER 1

MARCH 1988, PAGES 77-93

TRAVELLING WAVES IN NONLINEARLY VISCOELASTIC MEDIA

AND SHOCK STRUCTURE IN ELASTIC MEDIA*

By

STUART S. ANTMAN (University of Maryland)

AND

REZA MALEK-MADANI ( United States Naval Academy)

1. Introduction. In this paper we study a class of travelling shear waves in incom-

pressible nonlinearly viscoelastic media with three goals:

i) to present exact solutions for a family of properly invariant equations of non-

linear viscoelasticity,

ii) to study the roles'of nonlinear elastic response and nonlinear viscous response

in determining the qualitative behavior of solutions,

iii) to study the behavior of solutions in the limit as the viscous dissipation ap-

proaches zero in order to illuminate the shock structure of the system of hyperbolic

conservation laws that result from this limit process.

An important way to study a hyperbolic system of the form

U, = f(U)z (1.1)

is to examine its relationship to a parabolic system of the form

U, = f(U)z + AUzz (1.2)

where A is a small constant semi-positive-definite matrix. (Here and throughout this

paper subscripts denote partial derivatives.) The motivation for introducing (1.2)

comes from gas dynamics: Equation (1.1) may be regarded as describing a one-

dimensional flow of an inviscid fluid and Equation (1.2) that of a Newtonian fluid.

Within solid mechanics, however, there is no compelling reason to expect to find

dissipative mechanisms of a kind inspired by that of classical fluid dynamics.

Our Equations (2.12), (2.13), which describe a special class of motions of a very

general family of nonlinearly viscoelastic materials, can be cast in the form

d_
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where ^ and u depend on u] -I- uj, 2(wiM3z + «2«4Z), u\z + u2Az. System (1.3) allows a

dependence on uzz far richer than does (1.2). That (1.3) is parabolic-hyperbolic can
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be expected to cause serious analytic difficulties (to which we allude in Section 6).

On the other hand, the mathematical structure of (1.3) is special in several ways, as

a consequence of its role as a correctly posed, fully nonlinear problem of mechanics.

In Sec. 2, we formulate the governing equations for the special motions of our

viscoelastic materials. In Sec. 3, we obtain the equations for travelling waves and

determine many of their qualitative properties. In Sec. 4 we study the effect of small

viscosity, thereby obtaining viscous shock profiles. Here we show the paramount role

played by the elastic response and the surprisingly minor role played by the viscous

response. In Sec. 5 we discuss shock admissibility criteria. We comment on questions

of stability and existence in Sec. 6. In Sec. 7 we compare our results with those for

systems like (1.2).

2. Formulation of the governing equations. Let {i,j, k} be a fixed right-handed

orthonormal basis for Euclidean three-space. The reference configuration for the

body under study is the entire space, a typical material point of which has the form

Xi + Yj -I- Zk with X, Y,Z real. We study shearing motions of the space that take this

material point to the point x'\ + y] + zk at time t with

x = X + u(Z,t), y — Y + v(Z,t), z — Z. (2.1)

We henceforth replace the argument Z of the displacements u and v with z.

Relative to the basis {i,j, k} the left Cauchy-Green tensor B and the stretching

tensor D have matrices

B
1 -(- ul UZVZ uz

uzvz 1 + v2 vz

uz vz 1

d=5
0 0 uzt

0 0 \zl

uzl vzt 0

(2.2a, b)

Note that detB = 1 so that (2.1) describes an isochoric motion.

We assume that the space is filled with an incompressible isotropic homogeneous

viscoelastic material of differential type of complexity 1. For such a material the

Cauchy strees T is given by a constitutive equation of the form

T = -pi + S(B, D) (2.3)

where p, the unknown pressure field, is the Lagrange multiplier maintaining the

constraint of incompressibility, I is the identity tensor, and S, the extra stress, is

an isotropic tensor function of its two arguments. (Cf. [24, Eq. (35.9)]. S could

also depend on p (cf. [1]), but such dependence will not affect our analysis.) A

representation theorem of Rivlin and Ericksen [21, §27] (cf. [24, Eq. (13.7)]), shows

that S has the form

S(B, D) = y/,B + y/2D + ^3B2 + y/4D2 + ^S[BD + DB] + y/6[B2D + DB2]

+ y/7[BD2 + D2B] + ^8[B2D2 + D2B2] (2.4)

where y/\, y/% are isotropic scalar functions of B and D. Since the eigenvalues of

D are distinct except when uz, = 0 = vzl or since the eigenvalues of B are distinct

except when uz = 0 = vz, a further result of Rivlin and Ericksen [21, §34] (cf. [24,

Eq. (11.22)]) asserts that y/\,..., depend on the invariants

trB, trB2, trB3, trD, trD2, trD3, tr(BD), tr(BD2), tr(DB2), tr(B2D2) (2.5)
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(except possibly when uz,vz,uzl,vzl vanish simultaneously). Here tr denotes trace.

When B and D are given by (2.2), a lengthy computation shows that all entries of

(2.5) depend upon r) = [t]0, r]\, t]2) where

rj0 = u2z + vl t]\ = 2(uzuz, + vzvzt), rj2 = u2zt + v]t. (2.6)

Moreover, a further computation shows that (2.4) yields constitutive equations of

the form
i • (Sk) = h{t])uz + v{v)uzt,

j - (Sk) = //(»i)vz + v{r))vzt, (2.7)

k-(Sk) =£(„).

We assume that the scalar functions fi, v, £ are continuously differentiable.

We assume that the density of the reference configuration is uniform. Since the

medium is incompressible, this density is also the density of any deformed configu-

ration. Without loss of generality we take this density to be unity. If the medium is

subject to zero body force, then (2.3), (2.7) imply that the equations of motion are

-px + Luuz + vuzt]z = u„, (2.8)

-Py + [ftvz + vvzt]z = vtt, (2.9)

[~P + Z]z = 0. (2.10)

Since u and v are independent of x and y, Eqs. (2.8) and (2.9) imply that p is

affine in x and y while (2.10) implies that pz is independent of x and y. Thus p

must have the form

p(x, y, z, t) = m(t)x + n(t)y + q(z, t). (2.11)

If we assume that the pressure field (at infinity) is independent of x and y, then

m = 0 = n and (2.8) and (2.9) reduce to the autonomous system

(ixuz + nuzt)z = u„, (2.12)

(/ivz + vvz,)z = v„. (2.13)

After (2.12) and (2.13) are solved, q can be found from (2.10) to within a function

of t, which is determined by conditions at infinity.

More generally, we could set

U = uz, V = vz. (2.14)

Then (2.8), (2.9), (2.11) yield, in place of (2.12), (2.13), the related autonomous

system

[fiU + uU,]zz = Ult, (2.15)

[ftV + uV,]zz = V„. (2.16)

In this case m, n and the various functions of t that arise from integration are deter-

mined by conditions at infinity. Note that the presence of certain body forces would

also yield (2.15), (2.16).
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To avoid minor technical difficulties we limit our attention to (2.12), (2.13). Note

that this system admits the elegant complex form

(fiwz + uwzt)z = w„ (2.17)

for w = u + iv, with % = |wr|2, rji = (|wz|2)r, m = \wzt\2.

We assume that

M-,0,0)>0. (2.18)

This assumption, which is not critical in our development, is a consequence of the

Baker-Ericksen inequality (cf. [23, §53]). We also require that (2.12), (2.13) be

parabolic in the sense that the matrix

d(HU:+W:t) d(nu~_+uu=,)

du:t dv:,
d(uv:+vv:,) d(nu:+ UV;l)

du:, dvz,

This condition, which has thermodynamic significance, ensures that the constitutive

equations (2.7) describe a dissipative material.

If we let n o = §^, H.\ = etc., then (2.19) is equivalent to

v + 2[>,iu\ + (fi2 + v,\)uzuzt + v2u2zt] > 0, (2.20a)

v + 2[u iv2 + (/i,2 + v,\)vzvzt + u2v2,] > 0, (2.20b)

r i
u2 + 2v

is positive-definite. (2.19)

J«. 1 *7o + + v,i)h +V.2I2 ~l~ 4(/z 1 u2 ~ H,2v,i){uzvz, - V:uz,)2 > 0.

(2.21)

From (2.20) we obtain

v

We further require that

^,i>7o + +K\)ri\ +v,2tl2 > 0. (2.22)

uzt(iiuz + uuzt) + vz,{/ivz + vvzt) —> 00 as u2zl + v2, —> 00. (2.23)

3. Travelling waves. We seek travelling wave solutions of (2.17) of the form

w(z, t) = w (1—— ^ (3.1)
7

where c (without loss of generality) is a positive constant and y is a positive constant

to be assigned later. We denote derivatives of vv with respect to its argument by

primes. Substituting (3.1) into (2.17) we obtain the ordinary differential equation

(fxw' - cy~^vw")' = c2vv" (3.2)

where the arguments of // and v are y~2\w'\2, -c7~3(|vv'|2)', c2y~4|vv"|2. We integrate

(3.2) once to get

HW-cy~xvW' = c2W + a (3.3)

where

vv' = yW — ytj + iyV (3.4)

and where the constant of integration a can be taken to be real and nonnegative

because our problem is invariant under rotations of the complex W-plane. (For
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elastic materials u — 0 and y. depends only on t]0 = \W\2, so that (3.3) reduces to a

very uninteresting relation. But elastic materials do possess a very interesting family

of standing shear waves. Cf. [2].) From now on we omit the carets over tyTJ,V.

Note that the scaling of (3.4) is quite natural, and is consistent with (2.14).

We now study how the phase portrait of (3.3) in the complex W phase plane

depends on a, c, and the constitutive functions // and v. We first examine the

degenerate case in which a = 0, so that (3.3) is equivalent to

cvU' = y(n - c2)U, cvV = y(fi - c2)V (3.5a,b)

Note that derivatives of U and V are hidden as arguments of n and v in (3.5). But

(2.19) and (2.23) support a global implicit function theorem to the effect that (3.5) is

equivalent to a system in standard form, in which U', V are expressed as functions

of U, V,c, y. The trajectories of (3.5) lie on rays through the origin of the H^-plane.

The singular points of (3.5) consist of the origin together with those circles of radius

A about the origin for which

H{A2,0,0) = c2. (3.6)

There can be any number of such circles because the only restriction we have imposed

on fi(-, 0,0) is (2.18).
To find the actual nature of these radial trajectories we observe that (3.5) causes the

last term in the left side of (2.21) to vanish. Let S(c, y) be the set of all (U,KU', V) e

R4 satisfying (3.5). Then (2.21) implies that

v I v + 2 1 /
^,l>70+ 2 (<".2 + ".l)l +U.2rl2 > 0 (3.7)

on S(c, y). Thus u cannot vanish on S(c, y). Now (2.20) implies that v(0,0,0) > 0.

Since (0, 0,0,0) e S(c, y) and since v is continuous, we can conclude that u is positive

on the connected component of S(c,y) containing (0,0,0,0). That (3.5) can be put

into standard form implies that S(c, y) is connected. Thus v is positive on S(c, y).

From (3.5) (or better yet, from its version in polar coordinates) we then find that

trajectories move radially outward where n(tj) > c2 and W ± 0 and inward where

H{rj) < c2 and W ^ 0 (as the phase y~'(z — ct) increases). Moreover, (3.5) implies

that - c2 can vanish only on the singular circles defined by (3.6) and possibly

at the origin. Thus we have a complete phase portrait of (3.5). A typical example is

illustrated in Fig. 3.8.

Now we turn our attention to the general case in which a > 0. Then (3.3) becomes

cvU' = y(n - c2)U - ya, cvV' = y{n - c2)V (3.9a,b)

from which we obtain

cu[UV' - VU'] = yaV (3.10)

We introduce polar coordinates R, 0 by

U = R cos0, F = sin 0, (3.11)

in terms of which (3.9) becomes

cvR' - y(n - c2)R - yacosQ, (3-12)

cvR& = ya sin 0 (3.13)



82 STUART S. ANTMAN AND REZA MALEK-MADANI

Fig. 3.8a. A typical graph of the constitutive function 0. 0) show-

ing the two roots A\ and A2 of (3.6) when c2 has the indicated value.

Since u is continuously differentiate, the slope of R >-> m(R2, 0,0) is

0 at R = 0.

1/

Fig. 3.8b. Phase portrait of (3.5) corresponding to Fig. 3.8a. The two

families of trajectories attracted toward the circle of radius A, are

heteroclinic. Note that as the c2 of Fig. 3.8a is reduced to zero, the

two singular circles approach each other, coalesce, and then disappear,

whereupon the phase portrait is globally that of a node and contains

no heteroclinic trajectories.

where rj = (R2, -2cy~l RR',c2y~2[{R')2 + (tfO')2])-

The singular points of (3.9) occur when U' = 0 = V or possibly where v = 0.

In the former case the positivity of a readily shows that the corresponding singular

points are of the form (t/*, 0) where U* is a solution of

[fi{U2,0,0)-c2]U = a. (3.14)

Suppose v = 0. Then (3.10) implies that V = 0. Now the assumptions (2.19) and

(2.23) support a global implicit function theorem implying that (3.9) can be written

in the standard form

U' = f(U, Vc, a, y), V = g{U,Vc,a,y)V (3.15)
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[ p. [U2,0,0)-c2] U

Fig. 3.15. If //(•, 0,0) has the form shown in Fig. 3.8a, then U

lM(U2,0, 0)-c2]t/ has the form shown here and the intersection of its

graph with a horizontal line with a small enough ordinate a determines

the five roots U\ U$ of (3.14).

Moreover, (3.9) implies that g must be even in V. Thus V = 0 when V = 0.

On the other hand, (2.20b) implies that (V')2u2 > 0 when u = 0 (and V = 0),

which contradicts the fact that V = 0. We conclude that not only are there no

singular points corresponding to the vanishing of v, but that v can vanish nowhere

on solutions of (3.9). Note that the singular points are determined solely by the

elastic response. While it would be perfectly reasonable to supplement (2.18) with

the requirement that U i-+ Ufi(U2,0,0) be increasing, such an hypothesis would say

nothing about the number and disposition of solutions of (3.4). In Fig. 3.15 we

illustrate the construction of roots U\, Us of (3.14) when n(-,0,0) has the form

shown in Fig. 3.8a.

It is important to note that the singular points are collinear. They accordingly

correspond to states with constant and parallel W's. If U i-> U/u(U2,0,0) is strictly

increasing, then c2 and a can always be adjusted so that (3.14) has two prescribed

roots.

To classify these singular points, we linearize (3.9) about them, obtaining the

uncoupled system

c(y + 2nAy-*U})SU' = y{ji - c2 + 2ii,0U2)SU, (3.16a)

cvSV' = y{fi - c2)SV (3.16b)

for the variations SU.SV. Here u, n, n0, n,\ have arguments U},0,Q. Note that

(2.20) ensures that the coefficient of SU' in (3.16a) is positive, while (2.21) ensures

that v > 0. The roots of the characteristic equation for (3.16) are

y[(li - c2) + 2n,0U2] y{n - c2)

c{yu + 2n,\U}) ' cu ■ ( ' j

Note that the numerator of (3.17a) is just y times the derivative with respect to U

of the left side of (3.14) at roots of (3.14). It changes sign at simple roots. Its

denominator has fixed sign, by our preceding remarks. From Fig. 3.15, which is

typical, we find that n - c2 is positive at positive roots of (3.14) and negative at
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negative roots. Thus if (3.14) has only simple roots, then the singular points are either

saddle points or nodes and their determination follows immediately from (3.14).

That (3.16) is uncoupled means that the stable and unstable separatrices through

each saddle point are parallel to the coordinate axes at the singular point and that

if the two roots in (3.17) are not equal, then each node has axes parallel to the

coordinate axes. Thus, we have

Theorem 3.18. The location and the type of the singular points of (3.9a,b) depend

only on the elastic response ^(-,0,0).

When the situation of Fig. 3.15 holds, U\ is an unstable node, U2 a saddle point,

U3 an unstable node, f74 a stable node, and Us a saddle point. See Fig. 4.6.

4. Viscous shock profiles. In this section we study the behavior of travelling wave

solutions of Eqs. (2.12), (2.13) where fi and v are given by

H = Ju(lo ) + eji{ri), i/ = ev[ti) (4.1)

where e is a small positive number. We note that unlike simpler models of viscosity

(cf., for instance, Conley and Smoller [5], T. P. Liu [17], Majda and Pego [20]) the

parameter e cannot be scaled out of the system of equations (2.12), (2.13), (4.1).

Substituting (4.1) into (3.9a,b) and introducing the travelling waves (3.1), we obtain

cey~l0U' = (Ji - c2)U + efiU - a, csy~li>V' = (JI - c2)V + efiV (4.2)

Suppose for large values of |?/i| and \rj2\ that fi and 0 have the form

/}(»?) = Mi{r]o)\ri\|*[sign(?7i )f + M2{t]0)\rj2\l/2 + ...,

= iVi(f/o)|r/i|p + N2(ri0)\t]2\q/2 + ...

where M\, M2, N\, N2, are prescribed functions, where fi = 0 or 1, where k, /, p,

q > 0, and where the ellipses denote lower-order terms. We now set y — sa and seek

an appropriate choice of a. We substitute (4.3) into (4.2) noting that in the resulting

equation the only e's that appear have exponents 0, 1 — a( 1 + p), 1 - a( 1 + q), 1 - ak,

1 - at. These are the candidates for the smallest exponent on e. Let us consider the

case in which q > p,k - 1, / - 1; the treatment of all other cases is similar. Then

the candidates for the smallest exponent are 0 and 1 - a(l + q). If they are not

equal, then the coefficients of the smaller must vanish, producing an inadmissible

degeneracy. We consequently take a = (1 + q)~x. After some tedious calculation we

find that the leading terms of (3.9), corresponding to the limit of s approaching zero,

can be reduced to the form

U* = Cu~c2)U-at y, = (44)

with

D = cNV*"1 {[(/7 - c2)U - a]2 + [(/Z - c2) V]2}^.'2

Since the denominators of (4.4) are the same, we conclude that the only effect of the

terms N2 and q is merely a nonlinear rescaling of the orbits. These observations lead

to



TRAVELLING WAVES AND SHOCKS 85

-a2 -u5 -u4 -a

Fig. 4.6. Typical phase portrait for the reduced system (4.4) when Ji

has the form of 0,0) of Fig. 3.8a. The horizontal and vertical iso-

clines are shown as dashed curves. Note that the horizontal isoclines

other than the (/-axis are circles. Separatrices are shown as heavy

curves. The portrait is symmetric about the [/-axis. For this prob-

lem, the disposition of the horizontal and vertical isoclines completely

determines the topological character of the phase portrait.

Theorem 4.5. The qualitative properties of the phase portrait of (4.4) (which corre-

sponds to (4.2), (4.3) with e = 0) are completely determined by the elastic response
-p.

In Fig. 4.6, we exhibit the phase portrait of (4.4) when Ji has the form of fi(-, 0,0)

shown in Fig. 3.8a. In this case Fig. 3.15 is valid. It is a straightforward exercise to

determine the qualitative behavior of U and V on any trajectory of Fig. 4.6.

In view of the remarks following (3.5) and the construction leading to (4.4), we

can write (4.2), (4.3) in the form

U' = [(Ji - c2)U - a]D+ ct>{U Ve) = f(U, Ke),

V = {]I-c2)VD-l + y/{U,Ke)V = g{U,Ve)V

where <f> and (// afe continuous, <j>(U,V0) = 0 = i//(U,K0), and </>(•, •, e) and y/(-, s)

are continuously differentiable. (Cf. (3.15).) 0 and ^ need not be continuously

differentiable in e because the most important terms excluded from (4.4) could be

proportional to with /? e (0, 1). But we avoid this difficulty simply by introducing a
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new small parameter co = eP, (a change of variables, which, with foresight, could have

been performed ab initio). Then the resulting composite functions corresponding

to <t> and yy would be continuously differentiable in U,Kco. Thus, without loss of

generality, we take <f> and yj of (4.7) to be continuously differentiable.

We next study how the location of the horizontal and vertical isoclines of (3.9)

depend on e for e small.

Let us recall the following elementary theory (which does not seem to be readily

accessible). Let h be a small positive number and let R2 x (-h, h) 9 (x, e) h-> f(x, e) €

R be a continuously differentiable function. Let the gradient §j(x, 0) of / with respect

to x at e = 0 satisfy

|£(x.0)#0if/(x,0) = 0. (4.8)

Then

/(x, 0) = 0 (4.9)

defines a C1 -curve in R2, to which we can give the parametric representation s ► x(s)

with x continuously differentiable. By definition of a C1-curve, the function

df,
"(*) = g£(x(s),0)/ dx*(s).°) (4.10)

assigning the unit normal vector to the curve x is well-defined and continuous. Now

set
g(s, t, s) = f(x{s) + tn{s), e). (4.11)

Then (4.9) implies that g(s, t, 0) = 0, regarded as an equation for t in terms of s, has

a solution t — 0. Since

gt(s, 0, 0) = 0) • n(s) ± 0 (4.12)

by (4.8) and (4.10), the implicit function theorem implies that for e sufficiently small

the equation g(s,t,e) = 0 has a continuously differentiable solution t = t(s, e) with

t(s, 0) = 0. Thus for small e, the curve s x(s) + t(s, e)n(^) is continuously differen-

tiable and approaches the curve 5 >-»■ x(j) as e —> 0, uniformly on compact subsets of

R2.

The horizontal isoclines of (4.7) are the curves in the (U, F)-phase plane satisfying

g(UVe)V = 0. (4.13)

The isocline V = 0 is independent of e, so we need only consider other branches

of horizontal isoclines, for which g(U, Ve) = 0, V ± 0. We identify g(U, Ks) with

/(x, e) of the preceding paragraph. Then (4.9) is equivalent to

Ji(U2 + V2) = c2 (4.14)

(which describe circles) while (4.8) yields

(U2 + V2)~p0(U2 + V2) ± 0 (4.15)

for U, V satisfying (4.14), V / 0. Thus, if Ji has the form of ^(-,0,0) of Fig. 3.8a,
then the horizontal isoclines of (4.7) are close to those of (4.4) on compact sets



TRAVELLING WAVES AND SHOCKS 87

when e is small. The treatment of the vertical isoclines is analogous. The condition

corresponding to (4.8) is

(IJIqU2 + Ju - c2, 2pUV) ± (0,0) when [Ji(U2 + V2) - c2]U = a. (4.16)

(Here a > 0). Hence we deduce

Theorem 4.17. On any compact subset of {{U,V)\ V / 0}, the horizontal and

vertical isoclines of (4.7) approach those of (4.4) uniformly as e —► 0. If R i->

Ji(R2) - c2 has only simple zeros, then the horizontal isoclines of (4.7) approach

those of (4.4) uniformly as e —> 0 on any compact subset of the phase plane. If

U h-> [ju{U2) - c2]U - a has only simple zeros, the same statement applies to the

vertical isoclines.

The above result is a theorem on the structural stability of the isoclines of (4.7). A

similar theorem can be obtained for those orbits of (4.7) that connect nondegenerate

equilibrium points. First, we note that system (4.4) is gradient-like, i.e., there is a

real-valued function K(U,V) which increases along nonconstant solutions of (4.4).

To see this we note if D were unity, then the right-hand side of (4.4) would have a

potential k(U, V). We can then define K = D~lk. Now, suppose that C is an orbit

connecting two nondegenerate equilibrium points of (4.4), say a saddle point to an

attractive node. As shown before, these points are also nondegenerate equilibrium

points of (4.7). Let TV be a neighborhood of C containing no other equilibrium points

of (4.7). It is easy to show that the function K makes (4.7) gradient-like in ./V if e is

sufficiently small. We are now in a position to use a theorem of Conley and Smoller

[4], Since C is an orbit connecting two equilibrium points, its Conley index, h(C),

is 0 (cf. Smoller [23], p. 453). We note that C is the maximal invariant set of (4.4)

in N. A consequence of the definition of the Conley index is that h{C) = 0 where C

is the maximal invariant set of (4.7) in N. Since (4.7) is gradient-like and h(C) = 0,

Theorem 22.33 of [23] implies that there is a connecting orbit for (4.7) in N. These

remarks lead to

Theorem 4.18. The orbits of (4.4) connecting nondegenerate equilibrium points with

(Conley) index 0 continue as connecting orbits of (4.7) for e sufficiently small.

5. Admissibility of shocks and viscous shock profiles. In this section we study the

admissibility of shock waves of

utt - {Jiuz)z = 0, v,t — (Jivz)z = 0 (5.1)

where JH depends only on ?/0. Under appropriate conditions on Ji the above system

is hyperbolic. Let U\ = uz, Ui = vz, w3 = ut, u4 = vt, and u = (u\, U2, uj, w4). Then we

can write (5.1) as the fourth-order system

u, = [f(u)]z = fluz (5.2)

where

f(u) =

"3

U4

~pu 1

L/Z u2->

du

1

df
T~ u
ou

0 0 10

0 0 0 1

ju + 2^i0u2 2iu0uiu2 0 0

2 J10U\U2 ~p+2jl0U2 0 0

(5.3)
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We note that (5.1) is formally the same as the equations governing the planar mo-

tion of a nonlinearly elastic string and, in that context, has been studied extensively

by Keyfitz and Kranzer [13] and by Shearer [22], Also, Antman and Guo [2] ex-

hibited standing wave solutions of (5.1) under assumptions on Ji that are physically

reasonable for shearing motions of incompressible nonlinearly elastic bodies.

System (5.2), (5.3) is hyperbolic for all values of rj0 = u] + u\ for which ~p0 and

Ji 4- 2?ioJi0 are positive. In particular, the four eigenvalues of are ±y/^o an<^

±y/ji + 2t/o/7o with ^e first two linearly degenerate. Moreover, system (5.2), (5.3)

fails to be strictly hyperbolic at all points for which Ji0 is zero.

Solutions to the initial value problem of a quasilinear hyperbolic system generally

develop discontinuities or shocks in finite time. For this reason it is necessary to seek

solutions of these systems in the wider class of weak solutions where the propagation

of these discontinuities is allowed and well posed. Unfortunately, uniqueness is lost

in this larger class of admissible solutions. There has been a considerable amount

of research into obtaining the proper admissibility criterion for choosing a unique

solution. The question of uniqueness has been settled for some systems of conser-

vation laws (cf. DiPerna [8]). These systems have the property, among others, that

the characteristic fields are either linearly degenerate or genuinely nonlinear. The

question of uniqueness of solutions still remains open for systems, such as ours, that

fail to be genuinely nonlinear. Furthermore, there are several admissibility criteria

that, either for physical or mathematical reasons, are candidates for the appropriate

extra condition needed for the unique determination of a solution to (5.2). In this

section we make a comparison of the "generalized entropy condition" (cf. Liu [16])

and the "viscosity" criterion in the context of (5.2).

Let us denote a discontinuity of (5.1) by (s, u~,u+) where 5 is the speed of prop-

agation and where u- and u+ are the limits of u about the discontinuity from the

"left", and the "right". Then the Rankine-Hugoniot jump conditions for (5.1) are

-s[wi] = [m3],

= [uA,1 1 _ (5.4)

-s[u3] = IUUi],

-j[m4] = [flu2l

where [w] = w+ - w~. We next eliminate the velocities w3 and w4 from (5.4) and

introduce the polar coordinates (r, 6) in the (wi, «2)-plane by setting u\ = rcosd,

U2 = r sin 6, where r2 = t]0. We then substitute these relations into (5.4) and conclude

that (5.1) admits only shocks for which [6] = 0 or [/*] = 0. Shocks of the second kind

are linearly degenerate. In the remainder of this paper we discuss the question of

admissibility of shock waves of the first kind. Note that the shock across which 8 is

continuous corresponds to the collinear singular points for travelling waves discussed

in the paragraph preceding that containing (3.16). The shock across which Ji is

continuous corresponds to travelling waves with <3 = 0. (Cf. (3.6).)

Before stating our results, we need to introduce the concept of the generalized en-

tropy criterion. We assume that (s, u-, u+) satisfies the Rankine-Hugoniot conditions

(5.4) and set s = s(u~, u+). Let u~ be in R4. Let 5(u~, u) be the set of all points in R4
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that can be connected to u~ by a shock, i.e., let (u~, u) satisfy the Rankine-Hugoniot

conditions for some s. A triple (s, u~,u+) is said to be admissible according to the

generalized entropy condition of Liu [16] if

s(iT",u) > s(iT,u+) (5.5)

for every u on .S'(u~>u+) between u~ and u+. For (5.1), inequality (5.5) requires

that the chord connecting (r~, r~Ji((r~)2) to (r+, r+~p((r+)2) remain above the graph

of the function r i-> rji(r2) for all r between r~ and r+. We remark that (5.5) is

reasonable when r~ and r+ are of the same sign but it fails to hold, unless Ju is a

constant function, when r~ and r+ are of opposite sign since r /7(r2) is obviously

even.

For constitutive functions that are globally genuinely nonlinear it is not difficult

to show that inequality (5.5) reduces to the classical shock conditions of Lax [15],

which require that an admissible shock is produced by the intersection in forward

time of characteristics of the same family. Specifically, a shock (s, u~,u+) is said to

be admissible according to Lax's criterion if

[/I + 2(M? + ul)~p0]\(u- u-} >S2> ~P\(u;,uIy

S2>[Jl+ 2{u] + W2)£,o]I«,«2+) > 7*l(u+«+)•

In the terminology of [15], inequalities (5.6) are equivalent to the definitions of

an admissible 4-shock and an admissible 1-shock when /Z0 is positive. Moreover,

although (5.6) is a reasonable assumption when (5.1) is strictly hyperbolic, we do not

expect it to hold for every u\, u2 between the points {u\, mJ) and (w{\ u\) since the

constitutive function, (0,00 )9ch r~p{r2), is neither convex nor concave.

Does the shock solution obtained from the vanishing viscosity method satisfy (5.5)

and (5.6) and vice versa? To what extent does the validity of (5.5) and (5.6) depend

on the form of n and ui A partial answer to these questions is given by

Theorem 5.7. Let (s, u~,u+) be a shock that satisfies (5.5) with strict inequality for

u 7^ u+ and also satisfies (5.6). Let fi and 0 satisfy (4.3). Then there is a one-

parameter family of travelling wave solutions of (2.12), (2.13) that converges to this

shock pointwise almost everywhere as s approaches zero.

Proof. Without loss of generality, we assume that uf = 0. Following the calcula-

tions that led to (4.4) and (4.7) we find that u\{£,) and u2(£), with £ = y~'(z - st),

satisfy
. (7/ - c2)u\ — a ,, ,

«i = — T, + <t>{u\,u2,e),

f (5.8)
"2 = ^ °D + V("i> "2. e)w2

where 0 and y/ are as defined in (4.7). The parameter a is chosen such that (wj~> 0)

and (mJ, 0) are equilibrium points of (5.8). Condition (5.6) guarantees that (wf.O)

is a saddle point and that («|, 0) is an attractive node. The strict inequality in (5.5)

implies that there are no other equilibrium points between them. It follows from the

second equation of (5.8) that the w,-axis is invariant under (4.3). Also, linearization
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of (4.3) about (w^.O) reveals that the unstable manifold of this equilibrium point

is tangent to the Wi-axis. Thus the unstable manifold remains in the Wi-axis and

approaches the attractive equilibrium point (m|,0).

We note that if the strict inequality in (5.5) does not hold, then there is at least

a third equilibrium point (u*, 0) with u\ < u* < which prevents the unstable

manifold from reaching (wf,0). Thus, in this case, although the generalized entropy

condition is satisfied for both (5, u~,u+) and (s, u~,u*), only the latter state satisfies

the viscosity criterion.

6. Comments on stability and existence. In this section we study the stability of

the viscous shock profiles described by Theorem 5.7 when // and v satisfy (4.1).

Furthermore, we present a proof of the existence and uniqueness of the solutions

to the initial-boundary value problem of (2.12), (2.13) for a class of constitutive

functions.

As in the previous section, (2.12), (2.13) subject to (4.1) can be written as the

system

u, = f(u), + e[G1(u,uz)ii + G2(u,uz)iiz]r, (6.1)

where

f(u)

" U 3

«4

Jiu\

The eigenvalues of M = are

r0 0 0 0
0 0 0 0
jx 0 0 0

L0 fi 0 0J

g2 =

ro 0 0 0
0000
0 0 V 0

0 0 0 0

(6.2)

A, = -yjn + 2t]0ju0, A2 = -y/fl, A3 = sJJl, A4 = H + 2t]0/iQ. (6.3)

Let 1, and r, denote the left and right eigenvectors of M normalized so that 1, • r, = 1

(1, is the right eigenvector of MT). Then

1,"Mr,'= 2M|[A2 + (^-Ai)2] for /= 1,4,

vul
(6.4)

h ■ Mr,- = 2^2[^2 + - ^>)2] ^ ' = 1. 3,

where A, = a-^, i = 1,2.

In recent years there has been a substantial amount of research on the stability

of travelling wave solutions of systems of the form (6.1) where G) = 0 and G2 does

not depend on uz (cf. Liu [17], [18], Goodman [10], Majda and Pego [20]). Since v

and t]0 are positive, (6.4) implies that condition (3.21) of [17] is satisfied. For these

special systems Liu [17] and Goodman [10] also required that

C = (l1,l2,l3,l4)TG2(u)(r1,r2,r3,r4) (6.5)

be positive-definite. A lengthy calculation shows that in our case, however,

1 0 0 11

0 110

0 110
-1 0 0 1J

c = 5 (6.6)
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which is a singular matrix of rank 2. We also point out that our model (with Gi = 0,

G2 = G2(u)) satisfies Majda and Pego's [20] definition of linear stability, but does

not satisfy their definition of strict stability.

Recently Liu [18] showed that a condition like (6.5) is not needed to prove the

stability of viscous shocks for the one-dimensional equations of a compressible heat-

conducting Navier-Stokes fluid. Presumably his approach could be extended to (6.1)

with Gi = 0 and G2 independent of uz. We point out that models of viscoelastic-

ity satisfying these conditions were treated by Kanel' [12] and MacCamy [19]. A

richer class of physically reasonable dissipative mechanisms, which could ensure the

positive-definiteness of (6.5), are discussed in the last paragraph of Sec. 7. All these

observations indicate that the stability of viscous shock profiles remains an important

open problem for general systems of the form (6.1).

We next turn to the question of existence, uniqueness, and regularity of solutions to

(2.12), (2.13) subject to traction-free boundary conditions specified at the two planes

z = 0 and z = 1. The program we follow is the one introduced by Friedman [9] in the

context of linear parabolic differential equations with nonconstant coefficients and

applied successfully by Dafermos [6] to an equation of one-dimensional nonlinear

viscoelasticity. The idea of the proof of the existence theorem is as follows. Given a

parabolic equation having coefficients that are Holder continuous together with their

appropriate derivatives, one proves that the Holder norm of the solution, together

with its derivatives of order up to 2 in z and up to order 1 in t, are bounded by

the Holder norm of the boundary data and the forcing term. The analysis leading

to these estimates has two stages. The first is a lengthy and meticulous estimation

of the Holder norm of the second derivative of the solution in terms of the Holder

norm of the solution itself and the forcing term. This analysis relies solely on local

estimates of the fundamental solution of the parabolic equation. The second stage is

an estimate of the Holder norm of the solution in terms of the boundary data and the

forcing term [9, p. 121]. This estimate relies crucially on the maximum principle, a

property that our system lacks in general. The local existence theorem in [6] is proved

by combining the above a priori estimate with the Leray-Schauder theory. The proof

of existence for all time relies on energy estimates and on growth conditions imposed

on the nonlinearities that control the elastic and the viscoelastic responses.

Our existence theorem follows the program by Dafermos [6] very closely. We shall

point out some of the differences in our model and otherwise refer the reader to [6]

for the methodology. We begin with the following assumption. Let M be the matrix

of partial derivatives of )iuz + uuzt, H-Vz + uvzl with respect to uz, vz. Let N be the

matrix defined in (2.19). Our assumption concerning the elastic and the viscoelastic

responses is

|Mv|2 < (Nv, v), (6.7)

for v e R2. This assumption is a generalization of (2.2) of Dafermos [6]. (As

pointed out in [3] his assumption may not be physically reasonable for bodies suffering

compression, but is perfectly satisfactory for the description of shearing motions.)

A careful study of the proofs of the bounds of the fundamental solutions of lin-

ear parabolic equations with nonconstant coefficients obtained in [9] reveals that the
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same bounds can be obtained for such parabolic systems. In order to use this in-

formation to obtain a priori bounds on the Holder norm of the solution in terms of

Holder norms of the forcing term and the initial data we need to invoke a maximum

principle. For that reason we assume that n and v are functions of rj0 only and invoke

Theorem VII.2.1 of Ladyzenskaja et al. [14] which provides the maximum principle

for systems whose highest-order spatial derivatives are uncoupled. A tedious and

lengthy manipulation now shows that all of the a priori estimates obtained in [6] also

hold for (2.12), (2.13) and that the proof of the existence and uniqueness presented

in [6] goes through in our case. We summarize these remarks in

Theorem 6.8. Let n = h{yjq), u = v{r\o) be twice continuously differentiable. Let

»o, Mi, v0, V] be twice continuously differentiable functions of z with m'-(0) = m'-(1) =

v;'(0) = v-(l) = 0 for / = 0,1. Suppose (2.19) and (6.7) hold. Then (2.12), (2.13) has
a unique solution in C2+a([0, 1] x [0, T]) satisfying the initial condition

u{z, 0) = u0(z), v(z,0) = v0(z), Ut{z, 0) = U\{z), v,(z, 0) = Vi(z), (6.9)

and the boundary conditions

uz{0, t) = vz(0, t) = mz(1, t) = vz(l, t) = 0. (6.10)

7. Conclusions. Conley and Smoller [5] studied (1.2) finding that the qualitative

behavior of the phase portrait for travelling waves depends crucially on the form of

A. Indeed, they exhibit A's for which there are no orbits connecting singular points.

Majda and Pego [20] studied (1.2) when A depends on u. They showed that the A's

for which there are no connecting orbits could be excluded by the imposition of a

further requirement they call strict stability.

In Sees. 3 and 4 we showed that the qualitative properties of the phase portrait for

(4.2), (4.3) are scarcely affected by the nature of the viscous dissipation. This result

stands in marked contrast to that of Conley and Smoller, whose phase portraits,

corresponding to a limited class of dissipative mechanisms, are highly sensitive to

changes in the mechanism. Whereas some of their equations lack enough connecting

orbits, we confront the opposite problem that some pairs of singular points are joined

by an infinity of connecting orbits. The chief difference between our model and theirs

is that ours comes from a correctly formulated physical theory and theirs does not.

Our equations also fail to be strictly stable in the sense of Majda and Pego [20],

In Theorems 4.17 and 4.18 we proved results on the structural stability of our

phase portraits. We point out that the concept of structural stability is in a certain

sense inappropriate from the viewpoint of the underlying mechanics. Qualitative

properties of solutions need not be invariant under all small changes of (2.12), (2.13),

but only under changes of ^ and v, for only these changes are consonant with the

representation theorem delivering (2.4).

Admissibility conditions, such as that of Liu [16], which is based on the mathe-

matical question of uniqueness for Riemann's problem, illuminate some of the issues

associated with the multiplicity of connecting orbits, but do not resolve them fully.

What may be required is a much deeper investigation of admissibility conditions

generated by the evanescence of a whole array of dissipative mechanisms including

viscosity, heat conduction, and strain-gradient effects (cf. [7], [11].)
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