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Summary. A result, referred to as the generalized partial correspondence princi-

ple, is proved for noninertial viscoelastic boundary value problems. This states that

if are the complementary regions of the boundary of a viscoelastic

medium with a unique Poisson's ratio, on which displacements u,(r, t) and stresses

<7jj(r, t)rij are specified, respectively, then if c B^\t) for all t' < t, the stresses

satisfying this mixed boundary value problem at time t are the stresses for the elastic

problem with the same boundary regions and the same specified stresses while known

functions take the place of the specified displacements. It is noteworthy that B^(t'),

t' < t, is not required to be monotonic increasing.

Similarly, if has the property B\}\t') C Bu(t), t' < t, then the above state-

ment holds but with stresses and displacements interchanged.

In certain cases, it is not necessary to assume that the material has a unique Pois-

son's ratio, though in these cases the statement of the principle is altered and though

somewhat restricted still has a useful range of application.

The principle is applied to obtain certain nontrivial results of possible experimental

interest for the normal contact problem, where the loading history is restricted only

in the manner specified above.

1. Introduction. The original or classical form of the correspondence principle

provided a powerful tool for solving mixed viscoelastic boundary value problems

where the boundary regions are not time-dependent. This principle is discussed,

for example, in [1], where references to the original papers are given. Later [2, 3,

4], extended forms of this principle were given which covered situations where the

boundary regions are increasing or decreasing monotonically. This topic is discussed

in more general terms in [5], which also addresses the situation where the body

occupies an ablating region.
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In this paper, we present a generalization of the correspondence principle which

applies to a far more general range of situations, but does not privide complete infor-

mation on the solution. We will refer to it as the generalized partial correspondence

principle to distinguish it from the principle developed in [2-5], which we refer to

as the extended correspondence principle.

In Sec. 2 we prove the result under the assumption that the material has a unique

Poisson's ratio. In Sec. 3 it is shown that the restriction on Poisson's ratio for the

material is not always necessary. In Sec. 4 an interesting example is worked out.

Some concluding observations are presented in Sec. 5.

2. Material with unique Poisson's ratio. The approach used is a generalization of

that developed in [6]. Temperature variations are ignored, however. Also, a different

notation is adopted. The constitutive and dynamical equations are written in the

form (see Golden and Graham [7])

Oij(r, 0 = 2 f dt'fi(t - t')eij(r,t') + Sij f dt'k(t - t')ekk(r, t'),
J— OO J— oo

olJJ(r, r) = 0, / = 1,2,3, (2.1)

where the summation convention is in force and inertial effects are neglected. The

quantities 07; (r, t) and e,;(r, t) are the stress and strain Cartesian tensor components,

respectively, at position r = (x, y, z) and time t. The strain tensor is related to the

displacements w,(r, 0 by the usual formulas:

2e,7(r, 0 = t) + u7.,(r, t). (2.2)

The kernels of the hereditary integrals in (2.1), namely n(t) and A(0, are related to

the relaxation functions for shear and bulk deformation. We have

n(t) = Gl(0)S(t) + Gl(t)H(t), (2.3)

where G\(t) is the shear relaxation function for the material, H(t) is the Heaviside

step function, and <5(0 is the singular delta function. There is a similar relation

between k(t) + 2ju(t)/3 and the bulk relaxation function. Both A(0 and n(t) are zero

for negative t. If the material has a unique Poisson's ratio v then

Kt) = t#^;M0. (2-4)

If (2.4) is valid, then by defining the pseudodisplacements

Vi(r,t)= ( dt'fi(t - t')Uj{r, t') (2.5)
J — OO

and taking account of (2.2), it is clear that (2.1) has the form of the elastic equations

for a material with shear modulus unity and Poisson's ratio v if the displacements

M,(r, 0 are replaced by w,(r, t).

Consider the viscoelastic boundary value problem

Ui(r,t) = di(r,t), r e B'ur,(t),

a ij(r, t)nj(r) = c,(r, t), re
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where B\j\t) and B^\t) are disjoint regions of the boundary B of the medium such

that

B = B<P(t)UB«\t) (2.7)

and where di{v, t) and c,-(r, t) are specified functions. Now let B^(t') C B(al\t) for all

t' < t. Otherwise, the history of B^\t') is arbitrary. It need not be monotonic, for

example. This implies that B\j\t) is contained in all B^(t'), t' < t, so that

Vi(T,t)= f dt'n{t-t')di{r,t'), r eB^(t),
J — CO

(2.8)

is known, since if r is in the region B[}\t) it follows that it is in all regions B\}\t'),

t' < t. Therefore, the viscoelastic problem can be reduced to an elastic problem with

the Vj(r, t) playing the part of displacements, where on the boundary region B^'\t),

Vj(r, t) is given by (2.8) and on B^(t), er,7(r, t)rij is given by the second equation of

(2.6). The dependence on fi(t) comes in only through the boundary value of v,(r,t)

given by (2.8). Thus, 07/(r, t) and v,-(r, t) at any point in the medium are given by the

elastic solution for shear modulus unity and Poisson's ratio v, and boundary values

specified as above. Therefore o,j{r, t) is known everywhere, if the elastic problem can

be solved for the boundary regions B\}\t), B^\t). In particular, if the dj{r, t') vanish

for all t' < t, the stresses at time t are given by the corresponding elastic stresses and

can at most depend on v. This situation occurs in the case of certain crack problems.

The pseudodisplacements Vj(r, t) are also known. However, in general, the dis-

placements cannot be deduced without a further assumption on B\}\t'), namely that

it is stationary or monotonically decreasing for all t' < t. This latter assumption

brings us back to the extended correspondence principle as enunciated in the some-

what special case considered in [6]. In the more general case considered here, nothing

can be said about the displacements.

Similarly, if B\j\t') C B\}\t), the displacements are given in terms of the specified

displacements t/,(r, t), r e B\}\t), and the known functions

<?,(r, t) = [' dt'y(t - t')Oij{r, t')nj(r); r € £<'>, (2.9)
J — OO

where y(t) is the inverse of fi(t) in the sense that

[ dt'y(t - t')n(t') = [ dt'n(t - t')y(t') = S(t). (2.10)
Jo Jo

It is related to the shear creep function of the medium by an equation similar to (2.3).

The statement prior to (2.9) may be demonstrated by transferring the hereditary

integral on to the stresses in (2.1) to obtain

v
\Qij{r, t) = Eij{r, t) + y—^Ckkir, t)du, (2.11)

which has the elastic form in terms of the pseudostresses

Qu(r't)=[ dt'y(t - t')au(r, t'). (2.12)
J — CO
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If the specified stresses on B^(t) are always zero then the qi(r,t) are zero and the

displacements are given by the elastic formula, which can depend at most on Poisson's

ratio v. This is the case for certain contact problems.

The considerations of this section generalize readily to a nonisotropic material for

which all the relaxation functions are proportional to each other, and to linearized

nonisothermal theories. Also, nonvanishing body force fields may be incorporated.

3. Materials with two relaxation functions. The assumption that the material has

a unique Poisson's ratio is not always necessary. It is difficult to give a general

characterization of the class of problems for which the assumption is redundant.

However, in this section we will isolate one problem class of this kind, in the sense

that a restricted statement of the principle is possible in such cases.

The viscoelastic Papkovich-Neuber representation was given by Gurtin and Stern-

berg [8], We write it in the form (xi, Xi, x^ = x, y, z)

if dt'n(t-t')Ui(r, t') = f dt'K(t - - Xj<l)jfi{r,t) - <t>0,i{r.t). (3.1)
J — oo J — oo

where </>,, i = 0,1,2, 3, are harmonic functions and K(t) is defined by the fact that its

Fourier transform

/OO

dtK(t)e~'wl (3.2)
-oo

is given by

ic(co) = 3 — 40(a)), 0(a)) =—-—- , (3.3)
2 (A(«) +//(«))

where is the complex modulus for shear and A(co) + 2/i(a>)/3 is the bulk complex

modulus. Thus 0(a)) is a generalized Poisson's ratio of the material. The function

K(t) has the causal property that it vanishes for t < 0 [9]. This applies also to the

inverse transform of 0(co), namely u(t).

Green and Zerna [10] consider for elastic materials a particular class of problems

characterized by the fact that the shearing stress vanishes at all points in a plane,

taken to be the z = 0 plane. We will translate their observations so that they apply to

a viscoelastic material. This class of problems can be solved by choosing <f>\ = 02 = 0

and putting

d(f>(r,t)
03 = (-)"

dz ' (3.4)

00 = (~) f dt1 K\(t - t')4>{r, t'),
J —OO

where <j)(r, t) is a harmonic function and K\(t) is defined by

K\{a>) = l(k(co) - 1) = 1 - 10(aj). (3.5)
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The displacements are related to <j>(r, t) by

2vx(r,t)=2 f dt'fi{t - t')ux(r,t')
J —OO-OO

- z
' dxdz

(3.6)

{r,t) + J dt'K\(t - t')^{r,t'),

2v>{'',)=+/_! d',K<{' - '"'f <r- '">•

where K2{t) is defined by

/c2(cu) = j(l+£(«)) = 2(1-£(«)). (3.7)

We also give the stress components axz, ayz, and azz:

d3(f> d34> <93</> d2(f>
°xz = ZlM)^' °yz = Z~d^' °zz = ZW ~ W ( }

These are independent of the material constants. The remaining components do

depend on Poisson's ratio, however, in the elastic case and therefore will have hered-

itary integrals as in (3.6). We assume that all quantities vanish at infinity and that

the boundary regions of interest are in the plane z — 0. The tangential stresses are

all zero on the plane z = 0. Thus, they are specified everywhere, and B\}\t') and

are empty for all t'. We drop the superscript on and B^(t').

Consider the case where Bu(t) C Bu{t'), t' < t. On the boundary z = 0, the last

equation of (3.6) on Bu(t) can be written as

/'J —c

dt'l(t-t')uz(r,t') = -^(r,t), reBu(t), (3.9)

where l(t) is defined by the requirement that its Fourier transform is given by

= « (3.10)
1 + k((o) 1 - u(a>)

It is causal in the sense that l(t) = 0 for t < 0 by virtue of the argument given in [9].

The point is that if Bu(t) is contained in Bu(t'), t' < t, then the hereditary integral

on the left of (3.9) is given in terms of dj(r, t'), t' < t, on Bu(t). The stress boundary

condition is

(Tzz{T,t) =-~(r,t) = cz{r,t), r € Ba{t). (3.11)

We solve the problem by finding the harmonic function obeying these boundary

conditions. This is also the solution to the elastic problem with the same specified

stress and with (///(1 - v)) times the normal displacement given by the integral on

the left of (3.9), where n is the elastic shear modulus and u is the elastic Poisson's

ratio. The three stresses in (3.8) will be given by the elastic form of the solution

for these boundary quantities, since (3.8) is independent of the material parameters.

This does not apply to the other stresses, nor to the quantities vx(r, t) etc., as given by
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(3.6). The other stresses contain hereditary integrals over <j>(r, t'), t' < t. However,

<j>{r, t') at times earlier than t is not necessarily known. The argument above relies

on special circumstances prevailing at time t. Therefore, the stresses axx, ayy, axy

are not necessarily calculable, by virtue of this principle. The same applies to the

quantities on the left of (3.6). But even if these were known, it would not necessarily

be possible to deduce the displacements, since once again the functions vx(r, t') may

not be known for V < t.

If the specified displacement is zero on Bu(t) then, on this region, the left-hand

side of (3.9) is zero. It follows that the stresses axz, ayz, ozz are identical in form to

these for the corresponding elastic problem. These circumstances apply in the case

of mode I crack problems.

In the case of plane problems, a more general result may be obtained, which

we briefly note. In this case, the Papkovich-Neuber relations are replaced by the

Kolosov-Muskhelishvili equations, which, for crack or half-plane problems, may

be written in terms of one complex potential. The equations giving the stresses in

terms of this potential do not depend explicitly on the material parameters. If, in

the displacement equation, all the dependence on the material parameters can be

grouped to form one hereditary integral over the displacement, in the statement of

the boundary conditions, then the argument outlined above for the three-dimensional

case goes through and all the stresses are given by the elastic form in terms of the

known boundary quantities. This is always possible for crack problems (even in the

presence of mode II shear stresses on the crack face) provided that the displacement

difference, or the gap, across the axis containing the crack is used, rather than the

displacement itself. A nontrivial instance of the generalized partial correspondence

principle for a crack problem (mode I) has been given in [11]. See also [12], which

incorporates mode II shear stresses on the crack face.

Now consider the case where Ba(t) C Ba(t') for all t' < t. If one writes down the

above equations in terms of the harmonic functions,

X(r.t)= ['
J — o

dt' k(t - t')(f)(r, t'), (3.12)

where k(t) is the inverse of l(t) in the sense that they are related by an equation

similar to (2.10). Then (3.9) and (3.11) in particular become

fJ —(

d
uz{r,t) = -—x(r,t), r e Bu(t)

d2 (3-13)
dt' k(t - t')cz(r, t') = - —jx(r, t), re Ba(t)

where the left-hand side of the second relation is known. The solution is a harmonic

function obeying these boundary conditions and is the same as the elastic solution

with these boundary conditions. The quantity x(r- 0 is given at time t and not

necessarily at earlier times. However, if we operate on each equation of (3.6) with

y(t) in a convolution sense to obtain diaplacements on the left-hand side, and also

replace t) by its expression in terms of ^(r, t), it is clear that the displacements

will in general depend on hereditary integrals over x(r, t) and thus are not necessarily
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known. The exception is uz(r, t) for r in the plane z = 0. Outside the region Bu(t)

(where it is known anyway) it will still be given by the first equation of (3.13) and

therefore by the elastic form in terms of the given boundary quantities, namely those

on the left of (3.13). If cz(r,t') is zero for all t' < t then the hereditary integral

playing the part of the specified stress is zero and uz(r,t), r e Ba(t), will be given

by precisely the elastic form for the same specified displacement on Bu(t) and zero

stress on Ba(t). This situation would prevail in the case of contact problems. An

observation by Ting [13] is related to this result.

Equation (3.1) can be generalized to apply to aging viscoelastic materials (see

[14]). Furthermore, the above arguments do not rely in an essential way on the

convolution form of the hereditary integrals. Fourier transforms are used merely for

convenient definition of various functions. It follows that the results of this paper

may be adapted to the case of aging materials (see [7]).

4. Example: a contact problem. We now present an example to illustrate the utility

of the partial correspondence principles given above. We shall work in terms of

circular cylindrical coordinates (p, 6, z). A smooth rigid spherical indentor of radius

R is pressed into an isotropic and homogeneous viscoelastic half-space occupying

the region z > 0 by a normal time-dependent load. Body force and temperature

fields are absent and all field quantities are functions of (p, z, /) and independent of

6. Provided the radius of the contact area remains small compared to that of the

sphere, the boundary conditions may be written in the form

uz(p, 0, t) = D(t) - p2/(2R), 0 < p < a(t),

azz(p,0,t)=0, p > a(t), (4.1)

<jpZ{p,0,t)= ogz{p,0,t) = 0, p> 0,

and the conditions at infinity are

Ojj(p, z,t)-+ 0 as (p2 + z2) —> oo, all (i,j). (4.2)

Here D(t) specifies the time-dependent depth of penetration of the tip of the indentor

into the half-space while a(t) is the radius of the circular area of contact.

First we consider the case when a(t') > a(t), t' < t. In the notation of previous

sections this corresponds to the circumstance that B^(t') C B^\t), t' < /; B^\t) =

B, i = 1,2; c,(r, t) = 0, i = 1,2, 3, and d-${r, t) = D(t) - p2/(2R). By combining (4. la)

with (3.9) we find that for this problem

/
l^dt'Ht-t')D(t')-^ = -j£(p,0,t), 0 <p<a(t), (4.3)

where
r OO

le= dt'l(t'), (4.4)
Jo

while, by using (4.1b), Eq. (3.11) becomes

0 = -^-(p,0j), p > a(t). (4.5)
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Using the fact that (3.8) is independent of material properties and the elastic solution

of the contact problem governed by (4.3), (4.5) (see Sneddon [15]), we find that for

the viscoelastic problem under consideration

azz{p,0,t) = ^(a2(t) -p2)l/2, 0 <p<a(t), (4.6)

where a(t) is related to the history of indentation by

u:dt'l(t - t')D(t') = = De(t). (4.7)

It follows from (4.6) that the total load acting in the indentor is

0/

Wit) = 3^a\t) = We(t). (4.8)

Here and later "e" is used to indicate elastic quantities. Further, by considering the

particular circumstance that a{t") = a(t), t' < t" < t, and leaving a(t"), t" < t',

unaltered we conclude that

azz{p, 0, t) < ozz(p, 0, t'), W{t)<W(t'), t' <t, (4.9)

because to achieve such a sudden reduction in contact area at t' a decrease in applied

load will be required if a(t') < a(t), while if a(t') = a(t) the results (4.6), (4.8)

apply at time t' and (4.9) is an equality. Thus the applied loads achieve a minimum

simultaneously with the contact area.

In the particular circumstance that a(t'), -oo <t'<t, is constant or monotonic the

normal surface displacement outside the contact area may be calculated by inverting

(see Sneddon [15])

dt' l{t - t')uz(p, 0, t')L
rfc(fl2(0-O. p<a{t),

H r , / x , , (4-10)
I h {(2a2(t) - p2) sin ^sUlJ + ^/p2 - a2(t)j , p > a(t).

We now apply an argument similar to that developed after (4.9) to show that

De(t) = min -i / dt" l(t' - t")D(t"). (4.11)
<'<< le J-oo

If a(t') > a(t), consider a sudden decrease in contact area to a{t) at this time, as

defined before (4.9). Such a decrease will entail a reduction in the indentation.

Furthermore, after this decrease, it follows from (4.7) that

| [' dt" l(t' - t")D(t") = De(t') = De{t).
'e J-oo

(4.12)

Also, /(f) can be written as the sum of a singular and a slowly varying term, in

the same manner as p(t), given by (1.3). The phenomenon of relaxation leads us

to conclude that the slowly varying part is nonpositive. It follows, on using these

observations in (4.12), that Da(t') > De(t), where Da(t') is the indentation after the

sudden decrease in contact area. Thus D(t') > Da(t') > De(t). If a(t') = a(t) the
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same argument goes through, omitting the portions related to the sudden decrease in

contact area. Thus

D(t')>De(t), -00 <t'<t. (4.13)

We deduce that

]- [' dt" l(t'
'e J-00

t")[D(t")-De{t)]>0 (4.14)

since operating with /(/' - t") cannot cause a change of sign. This is clear in the

case of a material with unique Poisson's ratio, since l(t) reduces to p(t)/(l - v) and

/u(t) certainly has this property. If it did not, then we see from (2.1) that a given

shear stress could correspond to a history of shear strain of the opposite sign. More

generally, we can argue on the basis of the generalized Boussinesq equation relating

surface displacement and stress (see [17]) which contains a hereditary integral over

displacement with l(t - t') as the kernel. If l(t - t') could cause a change of sign,

then a positive surface pressure could be associated with a history of negative surface

displacement. Equation (4.11) follows from (4.14). This result will be used later.

Next consider the case when a(t') < a(t), t' < t. This corresponds to the cir-

cumstances that D t' < t; = B, i - 1,2; and c, and d3 are

constrained as in the previous case. By combining (4.1a,b) with (3.13) we find that

D(t) - p2/(2R) = -9L(p,0,t), 0 < p < a(t),

%x (4"15)

The displacement uz(p, 0, t), is the same as in the elastic case by virtue of the argu-

ment after (3.13). We therefore have (Sneddon [15])

«*(/>. °.0 = ^ |(2«2(0 - P2) sin-1 + \!P2 -«2(oJ - P > a(t), (4.16)

where a(t) is related to D(t) by

0(0 = R = DM' (417)

fJ — (

At the same time
rt 4

dt' k(t - t')<rzz(p,0,t') = —(a2(t) - p2)l/2, 0<p<a(t). (4.18)
> 7lK

Strictly (4.6) and (4.16) are manifestations of the generalized partial correspondence

principle. Equations (4.7) and (4.17) are further relations which follow from known

results in the elastic case and the formal analogy between (4.3), (4.5), (4.15), and the

corresponding elastic problem. As before, consideration of the case when a(t") =

fl(0> t' < < U with a(t"), t" < t, unaltered implies that

uz(p,0,t) > uz(p,0,t'), D(t)>D(t'), t'<t, (4.19)

so that indentation is maximum at the same time as contact area.

Integration of (4.18) yields

keJ-0
dt' k{t - t')W(t') = We(t), (4.20)
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where kele = 1 and We(t) is given by (4.8). In the particular case when a(t'), -oo <

t' < t, is constant or monotone increasing, (4.20) is true for all time and may be

inverted to express W (/) in terms of the history of We(t). Using essentially a similar

argument to that yielding (4.11), one may show that

We(t) = max-i- [ dt" k(t'
t kg J_ oo

(4.21)

provided a{t') < a{t), -oo <t'<t.

The forms of the above equations appropriate to a material with a unique Poisson's

ratio v may be obtained by replacing l(t) by n{t)/{ \ - v) as noted earlier, and k(t)

by (1 - v)y(t). We now confine the discussion to materials of this kind.

Consider a strain-controlled history where the indentation is given by

D(t') = A(d - cos(cot')), for all t', (4.22)

and steady-state conditions are assumed to be established. It is further assumed that

d>\fi(co)\/m. (4-23)

where fi(co) is the shear complex modulus of the material. Equation (4.7) becomes

A{d - (\fi{(o)\/fi{0) cos (cot + <p(cx>))} = De(t), (4.24)

where <p{co) is the loss angle of the viscoelastic material (see [7], for example). At

times /' < t, the left-hand side of (4.24) is equal to the right-hand side of (4.11) and

we deduce that the special times t of minimum contact area are given by

t = (2nn - 4>(a>))/a>, (4.25)

where n is any integer. These times precede the times of minimum indentation by

<p(co)/a>. The minimum value of the contact area may be deduced from (4.7) and

De{t) = A{d-m<o)\im)Y (4-26)

Equations (4.17), (4.19) give that the maximum value of De(t) and of a(t) occurs at

the same time as that of D(t). Also, from (4.22)

t — 2n(n + j)/oj,

De(t) — D(t) — A(d + 1),

where n is any integer. The maximum contact area can be determined from the

second relation.

Finally, consider the stress-controlled case where

W{t') = K(d-cos((ot')), d> 1. (4.28)

Equation (4.20) gives that, at the time of maximum contact area,

Wc(t) = K{d - (/j.(0)/\/x(co)\) cos(a>t - ip(co))), (4.29)

where We(t) is related to a(t) by (4.8). From (4.21) we deduce that the times of

maximum contact area are given by

t = [<p(a>) + 2n{n + j)]/a>, (4.30)
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where n is any integer. These are later than the times of maximum load by <p(a>)/a).

From (4.28) and (4.9) we deduce that the occurrences of minimum load and min-

imum contact area are simultaneous, both at times Inn/ci for any integer n. The

value of the minimum contact area follows from (4.8) and the relation

We(t) = K(d- 1), (4.31)

where t is one of these times.

Equations (4.7), (4.8), (4.17), (4.18), and (4.30) are generalizations of results

demonstrated for periodic loading of a punch on a standard linear solid by Golden

and Graham [16] and Graham and Golden [17]; see also [7], These results can be

generalized without difficulty to the case of a general punch shape.

5. Conclusions. Thus, in a mixed boundary value problem for a viscoelastic mate-

rial with unique Poisson's ratio, where the boundary regions may be different for dif-

ferent components of displacement and stress, if B\l\t) is such that B\j\t') c B\}\t),

i = 1, 2, 3, for all t' < t, then at time t the displacement everywhere is given by the

same form as for the elastic problem with the same boundary regions and the same

specified displacements but where the specified stresses are replaced by hereditary

integrals over these stresses. By virtue of the assumption on B{u'\t), these integrals

are known. If, where the stresses are specified, they vanish for all t' < t then these

hereditary integrals are zero, and the displacements are given by precisely the elastic

form. The most immediate example of this is that of frictionless contact problems.

Note that the assumption on B\}\t) imposes no constraint on the history of this re-

gion except that specified. In particular, it is far more general than the assumption

that B[}\t) is monotonically increasing.

If, on the other hand, we have that at a given time B^(t') C B\j\t), for all t' < t,

then the stresses at time t will be given by the stresses of the elastic problem with

the same boundary regions and the same specified stresses, but where the specified

displacements are replaced by known hereditary integrals of the originally prescribed

displacements. If the displacements are always prescribed to be zero, the stresses

are identically those of the elastic problem. This happens in crack problems. For

example, in cracks under mode I displacement, only the normal displacement is

important and this is zero off the crack face. In fact, a nontrivial instance of the

generalized partial correspondence principle has been demonstrated for such cracks

in [11], In the case of more general crack problems, if they can be phrased so that the

gap on the x-axis (along which the crack is lying) is the effective boundary quantity

rather than displacement itself, then the gap is always zero off the crack face (see

[12]).
There are restricted conditions under which it is not necessary to assume that the

material has a unique Poisson's ratio. A particular problem class of this kind is

discussed in Sec. 3 and an example is worked out in Sec. 4. The problems discussed

in [11, 12, 13, 16, 17] are all members of the class. For these problems, the statement

of the principle is altered and usually restricted to special circumstances. Though

presented for the nonaging case, the general results also apply to aging viscoelastic

materials.
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