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Abstract. This work presents and evaluates three classes of definite integrals which

can arise in the signal processing analysis of coherent imaging systems. All integrals

yield to the method of contour integration in the complex plane. Such a treatment

requires physically reasonable constraints on the beam divergence, apodizing function

of the phased array. The physical foundation of the three integral classes is described

in the text.

I. Introduction. Theoretical research in applied fields such as signal analysis and

signal processing often leads to mathematical relations which do not have readily ac-

cessible analytical solutions. Of particular interest to this work are classes of integral

relations which are neither documented in any of the well-known large integral ta-

bles nor generated by the powerful mathematical computer expert system commonly

known by the program name MACSYMA. Fast computers have provided workers in

a variety of theoretical sciences with numerical solution paths. Numerical solutions

are, of course, very important and extremely useful. However, if analytical solutions

can be found they possess much more flexibility to the variation of intrinsic param-

eters, and allow the worker to develop more of an intuitive-physical insight into the

parametric nature of the solutions to physical problems.

In this note we present and evaluate three classes of definite integrals which have

their physical origins in the signal analysis fields relevant to coherent imaging systems.

Such imaging systems can include, for example, radar, sonar, ultrasound, and radio-

astronomy imaging systems. We have added an appendix to the text in which we

discuss a specific example of the physical basis for these integrals. For further reading

concerning the physical basis for some of the integrals described herein, the reader

is referred to some of the published papers by one of the authors [1-4],
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II. First class of integrals. Of the three classes of integrals described in the intro-

duction, we begin with

/OO

dzA(z)e
-OO

i2mzx s*n z /j\

sin2m (z/N)'

The evaluation of this integral, as well as all others in this communication, proceeds

with the method of contour integration in the complex plane, see for example, [5-6].

As is well known, contour integration implies the conversion of a definite integral to

a suitably chosen closed-contour integral in the complex plane. An integral about a

closed contour is proportional to the sum of the residues of the integrand enclosed by

the contours. A "suitably chosen" contour is a contour for which the integrals over

all constituent segments are known or expressible in terms of the definite integral to

be evaluated.

The function A(z) of (1) models the apodizing function for a detector phased

array system. This identification implies several restrictions. Along the real axis, we

expect to find a smooth (i.e., nonsingular), even function that attains a maximum

value at the origin and decays to zero at infinity. Our contour integration approach

will necessitate strengthening this constraint such that A(z) decays to zero as z goes

to infinity everywhere in the complex plane (i.e., imaginary axis as well as real axis).

Furthermore, while singularities of A(z) are allowed at points not on the real axis, we

permit only simple poles for these singularities. A typical example of an allowable

A(z) is 1/(1 + P2z2). This Lorentzian function possesses simple poles at i/p and

-i/p.
We consider two possible contours of integration, C\ and Ci, in our computations.

Both contours coincide with the real axis from -R to +R. To Ci is then added

a semicircular component of radius R in the upper (positive imaginary) half-plane.

Similarly, C2 possesses an additional semicircular component of radius R in the lower

(negative imaginary) half-plane. Both contours are closed. As R goes to infinity, C\

will enclose the entire upper half-plane while C2 encloses the lower half-plane.

The integrand of (1) has no poles on the real axis, and thus no residues there, as

the sin2m z numerator vanishes and maintains a finite limit when the denominator

vanishes at z = jNn for all integers j. If x > 1, then, one may integrate over the

contour C\ since the term e,2mzx in the integrand of (1) will force a zero contribution

from the upper half-plane semicircle contour integral as the contour radius goes to

infinity. This zero contribution implies ^(x) is equal to 2ni times the sum of the

residues of the integrand of equation (1) in the upper-half-plane. All such residues

emanate from simple poles of A(z). Similarly, when x < -1, the contour C2 is

appropriate since the exponential term renders the integrand negligible along the

lower half-plane semicircle (at infinite radius). Thus, *F^(*) is given by -2ni times

the sum of the residues of the integrand in the lower-half-plane. If A(z) is the

Lorentzian 1/(1 + P2z2), then

Y^ix) = |e~2mxl13
r

sinh(l//?) l2m

sinh( 1 /(PN))_
for x > 1.
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Replacing x by -x in the above expression yields the result for x < -1. Note that

in both cases 4^(x) goes to zero as the Lorentzian parameter /? goes to zero.

The results of the preceding paragraph originate from the observation that the

choice of either Ci (for x > 1) or C2 (for x < -1) allowed us to invoke Cauchy's

theorem [5] for the integral about a closed contour of an analytic function in the

complex plane. With x in the interval ( -1, 1), however, the situation is not so simple.

In this case the integrand diverges along infinite semicircles in both the upper and

lower half-planes. Thus, neither C\ nor C2 is an appropriate contour of integration.

We resolve this difficulty by decomposing the numerator sin2'" z as

sin2m z = [sin2m z - fq(z)] + fq(z), (2a)

where

M*) = (x)WB-1)fc (2r) e-i2*m~k\ (2b)

We construct the function fq(z) of Eq. (2b) by expressing sin z as (eiz-e~iz)/(2i) and

expanding this quantity raised to the 2m power. The bracketed quantity [sin2m z -

fq(z)] of Eq. (2a) now decays to zero along the semicircular portion of the contour

C\ while fq{z) vanishes along the semicircular portion of contour C2 (for x > 0).

Thus, we evaluate *F^(x) of equation (1) by evaluating two integrals generated by

this decomposition of sin2m z. We must add that the integer q may vary from 0

to m - 1 and is completely determined by the value of the independent variable x

through the requirement

m - q - \ m - q . , „
 <x< , q = 0,1,2,..., m - 1. (3)

mm

Analogous results apply to the case -1 < x < 0.

The decomposition of the numerator sin2m z effectively turns the isolated real

points z = jNn into singularities. Thus, evaluation of the two separate integrals will

require computation of residues at these singularities. We now modify our contour

definitions somewhat so that C\ "jumps" over each singularity via semicircular ex-

cursions into the positive half-plane while C2 avoids the singularities with negative

half-plane semicircles. From Eq. (1) and the ensuing discussion on the integrand

decomposition, we write

Y%(x)= f°° dzA(z)e'2^Sm2m2Z~{llz) + r dzA(z)el2mzx , ■ (4)
J-00 sin (z/N) J-00 sin (z/N)

Evaluating the first integral over C\ and the second over C2, we write

ilmzx fq(z) I
- 27n ^ Residue < A(z)e

•_ 2m
sin (z/N) J

+ 2 ni UHP Residues {A{z)ei2mzxSin * f^z)\

\ sin (z/iV) J

-LHP Residues < A(z)e'2mzx
fq{z)

sin2m (z/N)
(5)
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The summation on n simply counts the singularities along the real axis while the last

bracketed term specifies the sum of all upper-half-plane (UHP) residues minus the

sum of all lower-half-plane (LHP) residues. These latter residues exist only due to

the simple poles of A(z).

To proceed from Eq. (5) we must construct the residue of the quantity within the

curly brackets. This task requires a Taylor series expansion of [sin(z/iV)]~2m about

the singularity z = nNn. We find

(sin u)~2m — (u - nn)~2m j 1 + ^£r,m(u - nn)2r 1 , (6a)

r= 1

where

Zr.m = YlCrl (2m V 1 ) • fOrr>l, (6b)
t= i

C" ( ir'S(2i'+3)! 5 m + 5)!X'"
r-t-i i it—2 . j

(6c)

X
£ + 3)! [2(r - t - i\ - ii i'»-i) + 3]!'

i=u

To Eq. (6b) we add the definition £o,m = 1.

We must also expand the product A(z)fq(z)el2mzx in a Taylor series for the even-

tual goal of determining the complete residue. With the observation that

d2^[A(z)fq(z)e'2™*] = ^yei2mnKNx^ (2s-iyJA(nxN){ 2

V* ( ^ ^ A dJ A(nnN) ., 2j-1- > v~V wk ( \ / l\2s— i— /x X, ( / )—^—^(-2i)2s 1 J22(~lr [ k )(m-mx-k)2s 1 J,
j=o k=o v '

(7)
we may merge all preliminary results. From Eqs. (5-7), we find

00 m TV 2s*
u//V/v\ _ V 1) n \ ' ni2mnnNx \ ' _ <*m-s,m t ^*>2.?

22m ^ (25-1)!(25-1)!
n=—oo 5=1

,_n \ J / nn \ 'y=0 x 7 fc=o

.2 m

27ti UHP Residues J ^(z)e'2wz-vSm ,z
\ sin 2m(z/N)

-LHP Residues < A(z)e'2mzx—— >
\ sin 2m(z/N)J (8)
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Evaluation of the UHP and LHP residue terms of Eqs. (8) requires specification of

a particular form of A(z). If we choose the Lorentzian A(z) = 1/(1 + P2z2), then

(—Wn-rr 00 m
\sjN 1 „\ _ V 1J n \ ' „i2mnnNx \ y S,m—s,mr 1-^02.?

2 2m 2^ e (25-1)! 1 '
n=—oo 5=1

E P"1) '"y (-zo-^Et-D* (\m) e* - ̂
,-_n \ J / t_n * /

2s- 1

X

;=0 x ' """ k=0

_  2m
+ TLg-lmxIli sinh(l//?)

/? |_sinh(l/(/?7V))

-2^2sinh^^ ^(-l)fc^2™ j sinh2(m - mx -/c)/£. (8')

The expressions of Eqs. (8) and (8') for ¥^(x) simplify somewhat and become

strictly real when we recall that the coherence function A(z) is an even function of z.

Again, we note that Eq. (3) prescribes the appropriate value of the integer q in terms

of the independent variable x. The final result for *F^(x) in Eq. (8) is continuous

for all x.

III. Second class of integrals. We define a similar and somewhat simpler class of

integrals Am(x) as

2m

/°° sin 7dz A(z)ei2mzx-—j^—. (9)
-OO ^

Am differs from 4^ only in the denominator within the integrand. We continue to

restrict A(z) as discussed earlier.

This Am class is easier than the previous case since we do not require a power

series expansion of [sin2m(z/7V)]_1. We may write, as we did for Eq. (5),

Am(x) = - 2;li Residue I.A(z)ei2mzx^^

+ 2 ni
2m

. vii rt

UHP Residues I A(z)e
j2mzxsin m z - f9(z

z2m

- LHP Residues j A(z)e 2m
i2mzx fq(z)

Z2
• (10)

In this case we have only one singularity on the real axis (z = 0). Expanding the

quantity A(z)ei2mzx fq(z) in a Taylor series about z = 0 to determine the residue, we
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find

*■<*>=(iy £<-■>* (f) («—
j=0 v ' k=0

+ 2ni UHP Residues { A(z)ei2mzx——Z\Jq^

LHP Residues IA(z)e'2mzx (11)

Again, evaluation of the UHP and LHP residues awaits our specification of A(z).

Choosing the Lorentzian of Eq. (8'), we find

4-w-(ct2£' G)j £(ll)t C")(m -mx ~k)2m""
v ' j=0 x ' k=0 v '

+ itfi2m~ie~2mx/fi[sinh(l/fl)]2m - y^(-l)^^^^sinh2(w - mx - k)/fi.

(11')
The definition of the integer q in Eqs. (11) and (11') is precisely equivalent to

that in Eq. (8). As in the discussion in the previous section, Am(x) is more easily

expressed in terms of the residues due to poles of A(z) when x > 1 or x < -1. For

the 1/(1 + p2z2) Lorentzian A(z),

Am(x) = 7tfi2m~{e~2mx^[sinh( 1 / P)]2m, x>\.

One obtains the result for x < -1 by replacing x by -x in this equation.

IV. Third class of integrals. We consider another set of integrals I„(a) of the form:

= r dzsm-zsm-(z -a)
I-X z"(z - a)"

As it stands, this integrand has no singularities. We cannot choose a simple contour

for integration, however, since the integrand diverges at infinity along the positive

and negative imaginary axes. Evaluation of In{a) is facilitated by a change of variable

and application of a trigonometric identity to yield

t< \ f°° a (cos2/?-cos2 z)n
In(a)= / dz  r~— where b = a/2. (13)
"v ; J-oc (z - b)"(z + b)n '

The next step requires expansion of the numerator of the integrand of equation (13):

(cos2 b - cos2 zy = £(-ir(") cos2("~m) b cos2m z. (14)

m=0 ^ '

As with the previous integrals, we expand the trigonometric term in terms of imagi-

nary exponentials. In this case,

cos 2 = ^(^'Z + e~'z).

In{a)
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Raising this form of cos z to the 2m power, we can classify all terms as bounded along

the positive imaginary axis or bounded along the negative imaginary axis. Thus, we

partition cos2m z as

cos2m z = [cos2m z - fm{z)] + fm(z) (15a)

/ow\
with fm{z) = 2~lm £ ( ) e~i2^m-j). (15b)

y=0 ^ J '

We evaluate the integral corresponding to the bracketed term of Eq. (15a) about

contour C\ and the integral of the remaining (/m(z)) term about contour Ci. (Recall

the contour definitions of section II.) After performing the summation indicated by

Eq. (14), we find that the cos2w z term of Eq. (15a) drops out so that

/.(«)—'4 E ResidM {(z-/".ff+t)'}
m= 1 x ' -b.+b K

(b = a/ 2). (16)

The summation on m begins at m — 1, instead of m = 0, because /o(z) = 0. (There

is no need to partition a constant numerator.) The inner summation of Eq. (16)

indicates that we must consider residues at both z = b and z = -b.

By expanding (z + b)~" about z = b and multiplying this expansion by a corre-

sponding Taylor series for fm(z), we construct the residue for the z — b pole:

X>1)«(2 b)-»-«(
„—f\ \

Noting that

q + n-l\ 1 d"-l-«fm(b)
q ) (n - 1 - q)\ dzn~l-i

9=0 7 V '

dsfm(z' = 2~2m J2 (2^) [_/2(m -j)]se-i2z{m-J),
dz

j=o

one observes that the residue of the pole at z = —b will be the negative complex

conjugate of that at z = b. The sum of both residues is then twice the imaginary

part of the residue above.

Combining these statements with Eq. (16),

I„{a) = (-2)"+1tia~n Y^{-\)ml'2m cos2(n~m) b

m=1 ^ '

?r-l i" 1 " ( q + n - 1\ 1 / 2m \  
Img(25Fl , J(^rrr^rE( j )<"'-■') "

In Eq. (17) "Im" stands for "imaginary part".

n-\-q p-i2b(m—j)

(17)
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We can simplify the equation (17) expression for In(a) by considering separately

the two possibilities of n even and n odd. For n odd (i.e., n = 1,3,5,...),

m= 1 v '

(—l)qf2q + n~\\ 1 (2m \, -\n-l-2q ■ r I *\1
£ (^M 2«f i Ym->]
q=0 x 7 7=0

(«-1)/2 . ... /0 , „ \ 1 rn-1EHt
(2a)2?-'

^ ^ (2^-22) (^W g (T)<m - jr~2' °°s[a(m -J)1

(18)
For even n (i.e., n = 2,4,...), on the other hand,

#=0(2fl)M ^ / (« - 1 - 2^)! 7=0

7)"-2? sin[a(w - j)]

j)n 1 2?cos[a(m-;)]

(19)
Inserting the specific values of n = 1 and n = 2 into Eqs. (18) and (19), respectively,

we find
n . n f sin 2a \
~a sma and  2a~J '

Appendix: Physical basis for integrals. The first- and second-order forms of the

integrals appearing in the text relate physically to covariance matrix elements which

are generated in the mathematical analyses of imaging systems using coherent detec-

tion techniques. These applications can include microwave systems relevant to active

and/or passive radars, and celestial radio astronomy. For acoustic coherent systems,

relations of this type appear in the analysis of both sonar and ultrasonic imaging

systems. As mentioned in the introduction, the reader is referred to the work of one

of us [1-4] for details of the various applications. Suffice it here to illustrate one

example which is not included in the previous work cited.

Consider a multistatic radar (single receive multiple transmitters), where the tar-

gets are illuminated in such a manner that the phases of the scattered radiation from

the different targets can be treated as statistically independent random variables each

of which is uniformly distributed in the interval (0,2n). The scattered signal will

be coherently detected by a linear phased array receiver, with the individual antenna

elements located at the space points r„. We assume omni-directional individual an-

tenna elements, and narrow band detection of the signal at the microwave wave-

length X. The coordinate system is chosen so that the polar axis in the spherical

polar coordinate system is coincident with the array axis. The scattering space will
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be divided up into elemental volume elements which will be labeled by the index /.

The beam-formed signal, which leads to focusing at the polar angle /if0C - cos(0foc),

is represented by

E(zn,n<oc,t) = rtoT^e''w-2"('"-fc)>. (A. 1)

/ 1

Here k is the carrier wavevector the magnitude of which is given in terms of the carrier

frequency fc (Hertz) and the wavelength X as k - Infdc = 2^/A; /?/ represents the

complex scattering amplitude from the /th volume element. Consider a uniform

linear phased array antenna consisting of N + M + 1 elements which is divided into

two overlapping subantennas each of length (N + I)d. Here d represents the uniform

spacing of the antenna elements. The overlapping elements are common to both

subantennas. The signals from the two subantennas are

(N-M)/2 (N+M)/2

Ui(/ifoc>0= y ] E(zn,ll foe 0) U2 (/J-foc > 0 = ) ^ E(zn, fJ,f0C, t).

n=-(N+M)/2 n=(-N+M)/2

(A.2)
The correlation between the signals received in these two antennas is expressed by

the off-diagonal covariance matrix elements,

ri,2C«foc>0 = (U,(/Zfoe,0)U2(/ifoc,0)- (A.3)

Here the brackets represent an average taken over an ensemble of scatterers. Due to

the statistical independence of the complex scattering amplitudes, only the coherent

part of the scattering gives a nonzero contribution to the ensemble average,

(M<> = o,8w. (A.4)

Accordingly,

r, 2(Wot,,) = V + ')(w - (A.5)
, (4nR') sin [n{n, - utoc)d/X\

The sum over / is now converted into a volume integral in spherical polar coordinates,

roo r2n r +1

T<j,G(n,)-> / R2dR d<f> dno(R,<j), fi)G{n). (A.6)
j Jo Jo J-1

Here G(n/) is a general function of the polar angle variable. Using these results, with

the normalized covariance matrix elements defined as

71.2(^00 = 0)= . (A.7)
V1 1,11 2.2

we obtain

r+n(N+\)d/X , A(, i2zMHN+\) sin2(z)
.. m J-*(N+l)d/l az^z>e sm2(z/(N+l)) /A0X

7i,2(/^foc - 0)   — sm2(;)  . (A.8)

J-jt(\+l)d/X U ^ 1 sm2(z/(N+l))

For practical phased array systems, the total phased array antenna length, (N + l)af,

must be long compared to the wavelength. This limit coupled with the fact that
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real apodizing functions converge rapidly to zero at large polar angles due to the

beam patterns of the individual receiving antenna elements, permits us to extend the

integration limits in the above expressions to ±00. The resulting integral expression

with the limits extended to ±00 is one of the forms considered in the text.
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